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Abstract
Network bandwidth is often the bottleneck resource

for large-scale data analytics. Cloud-based analytics
platforms such as Amazon’s Elastic Map Reduce pro-
vide high bandwidth within a compute cluster but lim-
ited bandwidth to storage resources such as S3 servers.
If data is accessed from another public cloud or a pri-
vate cloud, then the network is not only a performance
bottleneck but also causes egress bandwidth charges.

This paper describes Rhea, a system to reduce traffic
between storage and compute nodes for Hadoop MapRe-
duce jobs. Rhea filters data read from storage by remov-
ing input rows, and column values within rows. Filters
are job-specific and are automatically generated from
static analysis of the mapper’s byte code. Filters are
stateless, side effect free, and do not change the output of
the MapReduce computation. Filtering is transparent to
both the compute and storage nodes and is best-effort, al-
lowing it to opportunistically use spare CPU cycles when
available. Our evaluation shows that Rhea filters signif-
icantly reduce the amount of bytes transferred (e.g. by
a factor >5 for some of our jobs), and correspondingly
reduce egress bandwidth charges and overall execution
time by similar factors.

1 Introduction

Data analytics platforms like MapReduce [11],
Dryad [19, 30], Hadoop [15] and SCOPE [10] en-
able simple scalable processing of large data sets. When
combined with public cloud services that provide shared
multi-tenant storage [3, 7] and compute [1, 6], they
make it feasible to store and process large data sets in the
cloud. For example, Amazon’s Elastic MapReduce [2]
allows users to upload Hadoop jobs which run on the
EC2 compute service [1] and can process data stored in
the S3 storage service [3].

A shared public cloud infrastructure often has limited
bandwidth between the storage and the compute nodes.

This is in contrast to a dedicated cluster, where com-
putations such as MapReduce mappers can run directly
on the same nodes that store the data. Cloud providers
usually do not allow customer VMs to run on storage
servers, for a variety of reasons including security and
performance isolation. When analyzing large volumes
of data, the network bandwidth between the storage and
the compute servers becomes a bottleneck. This band-
width scarcity is made worse when operating in a hybrid
scenario such as a mixed public-private or public-public
cloud setting. For example, a company might run a com-
pute job in a private cluster which accesses data stored
with a cloud provider. Alternatively, a compute job run-
ning on one cloud provider’s infrastructure may access
data stored with a different provider.

In the MapReduce programming model, used in
Hadoop, the map function is invoked on every row in
the input data. As a simple programming abstraction this
has many advantages, and has proved to be very versa-
tile, but it does require that every byte of the input data be
transmitted to the mappers. This is a challenge when the
storage and compute are not co-located. Within a sin-
gle cloud this causes network congestion often putting
stress on a significantly oversubscribed network. There
have been several studies of different cloud providers
showing the average throughput from storage to compute
is low [14, 29]. When running the jobs across public
clouds or between public and private clouds the situation
is even worse, as there are ingress and egress bandwidth
fees to pay, and the available network capacity between
the clusters is even lower. Hence reducing the amount
of data transferred across bottleneck or congested links
should yield a reduction in execution time, and reduce
costs when the data traverses cloud provider boundaries.

This paper describes Rhea, a system that automati-
cally and transparently reduces the amount of data trans-
ferred between the storage and compute infrastructures
for MapReduce-like workloads. MapReduce inputs typ-
ically consist of a large number of rows each with one
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or more columns. E.g., for click-log data sets stored as
text files, a row is a line of text with comma-separated
columns. During the processing of the input data set the
map function is applied to each row, and optionally gen-
erates some output which is then fed to the reduce phase.
A key observation is that many rows result in no output at
all from the map function, and the computed result would
be identical if the row were not read at all. For rows that
do generate output, not all columns in the row contribute
to the output; many are simply ignored by the map code.
Rhea exploits these two observations by filtering the data
read from storage before it traverses the network. It re-
moves superfluous rows as well as columns within rows.

Hadoop users submit MapReduce jobs to Rhea as
compiled Java packages. Each job package contains the
classes to be used for the map and reduce phases of the
job together with job configuration state. Rhea applies
static analysis techniques to the Java bytecode associ-
ated with the map operation of the user’s job. The static
analysis is used to create row filters and column selec-
tors specific to that job. A row filter takes a single row as
an input and returns true or false, indicating whether the
row must be passed on to the mapper or not. A column
selector takes a single row as input and returns a modi-
fied version of the row with one or more columns set to
a null value, such as an empty string in the case of text-
based rows. Thus Rhea can infer and exploit both row
selectivity and column selectivity in Hadoop jobs. The
filters themselves are simple Java methods. Rhea only
requires the binary bytecode of the submitted job, not
the source code, which means that a cloud provider can
use the tool without requiring source code. Rhea filters
are conservative in the sense that they never filter data
that would cause a change in the mapper’s output. Fil-
ters may have false positives, but never false negatives.
In general, Rhea filters can be run anywhere upstream of
the bottleneck link.

Rhea filters are stateless and free of side effects. This
means filters are safe to run on storage servers, unlike
the map code itself which can contain arbitrary opera-
tions. Filters from different users can be run simultane-
ously in the same address space. The filtering employed
by Rhea is transparent to Hadoop. This allows filters to
be inserted or removed at any time during a job. This
means that filtering can be employed on a best-effort ba-
sis in response to the availability of resources. For in-
stance, filters may be disabled when there is insufficient
processing capacity on the storage server.

We have architected Rhea such that we do not need
to make any modifications to Hadoop. Hadoop jobs are
submitted to Rhea as a pre-processing step. The Rhea
filter generator examines the code and identifies the con-
ditions under which an input row (and columns within
that row) will cause the mapper to generate output. Rhea

also modifies the Hadoop control job object to redirect
its I/O via the filtering proxy. The modified job can then
be run on any unmodified Hadoop cluster, for example
Amazon’s Elastic MapReduce.

The rest of the paper is organized as follows. Section 2
expands on the potential benefits of Rhea in different sce-
narios. It also provides running examples that we use
throughout the paper, to explain the operation of Rhea
as well as demonstrate its benefits. Section 3 describes
the design and implementation of Rhea, and details of
its filter generation algorithms. Section 4 analyzes the
performance improvement of our approach using real-
istic MapReduce jobs as well as microbenchmarks, as
well as the overheads of filter generation and filter exe-
cution. Section 6 discusses related work, and Section 7
concludes with a summary of the strengths and limita-
tions of Rhea and directions for future work.

2 Background

In this section we describe the types of cloud-based de-
ployment where Rhea would provide benefit, and three
example Hadoop applications that we use to motivate and
evaluate Rhea.

2.1 Clouds

We consider three different usage scenarios, and how
Rhea can be integrated to improve performance in these
environments.

Public cloud This is where a single organization pro-
vides a multi-tenant cloud infrastructure with both stor-
age and compute, e.g. Amazon EC2 (compute) and
Amazon S3 (storage). Most public cloud providers, e.g.
Amazon and Microsoft Azure, internally separate stor-
age from compute for many reasons, including perfor-
mance isolation and security. This separation is also
driven by the fact that the storage can be accessed by ser-
vices running outside the cloud as well as services run-
ning inside the cloud. When storage and compute are not
co-located the bottleneck resource is the network band-
width between them. Networks used in these cloud in-
frastructures are often oversubscribed, which makes the
bandwidth valuable. Hence reducing storage-to-compute
network traffic can improve the transfer times between
storage and compute servers as well as overall utilization
of the data center.

In this environment, the cloud provider would auto-
matically generate and deploy Rhea filters when the user
submits a compute job. Rhea filters would ideally run
on the storage server. Alternatively, they could run on
a compute server in the same rack as the storage server.
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Both options require the cloud provider to explicitly sup-
port the use of Rhea filters.

Public-private cloud This refers to increasingly pop-
ular hybrid options where computation is performed on
a private cluster but data is stored in a public cloud, or
conversely data is stored on a private server but the elas-
tic properties of a public compute cloud are exploited
to enable compute intensive processing of the data. In
these cases the bandwidth between the private and pub-
lic cloud is the bottleneck resource, as providers charge
ingress and egress bandwidth fees per GB transferred to
and from the public cloud.

When the storage is in the private cloud, then Rhea
filters can be run in that same cloud, at no additional
cost. When the storage is in the public cloud, the cloud
provider (e.g. S3) could natively support third-party
Rhea filters running on the storage servers. However,
if this is not supported, users can still run Rhea filters in
a virtual machine on a compute cluster close to the stor-
age (e.g. an EC2 instance). Such a proxy will still have
better (and free) connectivity to the storage compared to
accessing it over the wide area. Our evaluation shows
that the savings in egress bandwidth charges outweigh
the dollar cost of a filtering VM instance. Additionally,
the isolation properties of Rhea filters make it possible
for multiple users to safely share a single filtering VM
and thus reduce this cost.

Public-public cloud In this scenario, compute and
storage are both in public clouds, but they are owned
by two different operators, e.g. Amazon EC2 and Azure
Storage. This could occur due to pricing or regulatory
constraints about where data and compute is performed,
or it could be because a job requires a public data set that
is stored in a different cloud. In this case, as with the hy-
brid private-public cloud, the Rhea filters could be run in
the storage infrastructure if supported natively, but if not
the Rhea filter proxy can be run on a co-located compute
infrastructure.

2.2 Example applications
We describe three Hadoop jobs that we use to motivate
and evaluate Rhea. Two are based on processing large
system logs; the third processes geo-location information
extracted from Wikipedia articles.

2.2.1 Log processing

Hadoop is a good fit for text log processing and is fre-
quently used for that purpose. The use of Java gives
enough flexibility, for example, to parse semi-structured
text rows with variable lengths and numbers of columns.

At the same time, the simplicity and scalability of the
MapReduce model allows large logs to be processed over
many machines in parallel.

The specific example in this paper uses logs from
a large compute/storage platform consisting of tens of
thousands of servers. Users issue tasks to the system,
which spawn processes on multiple servers, and consume
CPU and other resources on each server. The logs cap-
ture information about CPU, I/O, and other resource us-
age on these machines. They are periodically processed
to gather statistics about utilization, identify heavy users,
etc. In this system, there are two logs: the process log
and the activity log. The process log has one row per
process, with information about its task, user and total
execution time. Each row has 18 columns. The process
log accumulates 126 M rows/day, with an average row
size of 325 bytes, resulting in 41 GB/day of data. The
activity log records finer-grained information about the
actions performed by each process, such as reading and
writing files. The first column of each activity row is a
type column indicating the type of activity. These rows
have 10 columns, and the log accumulates at 53 GB/day.

FindUserUsage Our first example job is a top-k query:
it identifies the top k users by total process execution
time. This requires only the process log and not the ac-
tivity log. It requires only 2 of the 18 columns (61 of 325
bytes on average) in each row of the process log (user ID
and execution time). However, every row must be pro-
cessed to correctly identify the top k users. Thus this job
has column selectivity but no row selectivity.

ComputeIoVolumes Our second example job pro-
cesses the log to compute a distribution across tasks of
the amount of input and intermediate data read by the
task from storage. This requires correlating rows repre-
senting I/O read requests from the activity log, with the
task and process information in the process log. From
the process log, rows corresponding to failed and killed
processes are skipped, which results in only 69% of the
rows being relevant. For these rows, only 4 of the 18
columns are used in the computation. From the activity
log, only rows of type “I/O read” are relevant (25% of
the total), and only 4 of the 10 columns are used. Thus
this job has both row and column selectivity on both its
inputs.

2.2.2 GeoLocation

This publicly available example application [23] groups
Wikipedia articles by their geographical location. The
input data is based on a publicly available data set [22].
It has 1.11 M rows and the total data size is 90 MB. The
input format is text, with each line corresponding to a
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row and tab characters separating columns within the
row. Each row contains a type column which determines
how the rest of the row is interpreted; depending on the
type, rows have either 3 or 4 columns in total. Only one
of the two row types in the input data is relevant to the
GeoLocation application. About 25% of the rows are of
the relevant type, comprising 21% of the bytes. All the
columns of the relevant rows are processed, hence there
is no column selectivity.

2.3 Explicit versus implicit filtering

Rhea creates filters implicitly and transparently using
static analysis of the programs. An alternative would be
to have the programmer do this explicitly. For exam-
ple a language like SQL makes the filtering predicates
and columns accessed within each row explicit. E.g.,
the “WHERE” clause in a SQL statement identifies the
filtering predicate and the “SELECT” statement for col-
umn selectivity. Several storage systems support explicit
column selectivity for MapReduce jobs, e.g. “slice pred-
icates” in Cassandra [8, 9] and “input format classes” in
Zebra [32]. In such situations input data pre-filtering can
be performed using standard ideas from database query
optimization.

While extremely useful for this kind of query opti-
mization and reasoning, explicit approaches often pro-
vide less flexibility, as the application is tied to a specific
interface to the storage (SQL, Cassandra, etc). They are
also not well suited for free-format or semi-structured
text files, which have to be parsed in an application-
specific manner. This flexibility is one of the reasons that
platforms such as SCOPE [10] allow a mixture of SQL-
like and actual C# code. Eventually all code (including
the SQL part) is compiled down to .NET and executed.

Our aim in Rhea is to handle the general case where
programmers can embed application-specific column
parsing logic or arbitrary code in the mapper, without im-
posing any additional programmer burden such as hand-
annotating the code with filtering predicates. Instead,
Rhea infers filters automatically from a static analysis of
the application byte code.

3 Design and Implementation

The aim of Rhea is transparent filtering for MapReduce
jobs running in a cloud infrastructure as well as across
clouds. This leads to several design decisions. First, to
use a proxy architecture: filters run in a proxy that can
be placed anywhere between the compute and storage
layers, and is transparent to both. With this approach,
no changes are required to the compute platform (i.e
Hadoop) or the storage platform (e.g. S3). It allows
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Filter 
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Figure 1: System architecture

flexibility in filter placement. For example, in the pub-
lic cloud scenario the cloud provider would run filter-
ing proxies on or near the storage servers; in the pub-
lic/private and public/public cross-cloud scenarios, the
user could additionally run filtering proxies in a virtual
machine in a compute cluster in the same data center as
the storage.

Figure 1 shows the architecture of Rhea, which con-
sists of two components: a filter generator and a filtering
proxy. The filter generator takes a Hadoop job as input.
It generates a modified, Rhea-aware version of the job
as well as a set of filters for it. The filters are uploaded
to the filtering proxy. Hadoop jobs access storage using
URIs (uniform resource identifiers); the Rhea filter gen-
erator automatically modifies these URIs to point to the
filtering proxy. Additionally it embeds a “filter specifi-
cation” in each URI, which is interpreted by the filtering
proxy.

Our prototype filtering proxy works with Amazon’s
S3 storage and can also be configured to work with lo-
cal storage. The proxy exposes the public S3 REST
API to its client. S3 objects are named by a <
bucketID,ob jectID > tuple. The Hadoop framework
wraps this in a thin “Hadoop S3 native file system” shim
layer; however this layer simply uses path names as S3
object IDs. Rhea-aware jobs embed a filter specification
in their path names, which is then passed unmodified to
the filtering proxy inside the object ID. The filter specifi-
cation is interpreted by the Rhea S3 proxy and is used to
apply the appropriate filters; the proxy then removes the
filter specification and passes the request on to the un-
derlying S3 storage. This allows Rhea to be used with-
out modifications either to Hadoop or to S3 servers. The
Rhea architecture assumes that filtering proxies are run
upstream of the bottleneck link, either by the provider or
by the user. It also assumes that Hadoop jobs are prepro-
cessed by the Rhea filter generator to take advantage of
the proxy.

The Rhea filter generator takes a MapReduce program
in Java byte code form, and generates a row filter and a
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column selector for each mapper class found in the pro-
gram. These are encoded as boolean methods on an ex-
tension of the corresponding mapper class. The extended
classes are shipped to the filtering proxy as Java jar files
and dynamically loaded into its address space. The fil-
ter generator, and the static analysis underlying it, are
thus key components of Rhea. They are implemented on
top of SAWJA [18], a tool which provides a high-level
stackless representation of Java byte code as well as in-
frastructure for designing custom program analyses. We
now describe how row filters and column selectors are
generated.

3.1 Row Filters
Given a map method with signature:

public void map(LongWritable key ,

Text value ,

OutputCollector outputCollector ,

Reporter reporter)

the filter generator generates a method:

public boolean filter (LongWritable key ,

Text value ,

OutputCollector outputCollector ,

Reporter reporter)

Intuitively, filter is a “stripped-down” version of map, re-
taining only those instructions and execution paths from
map that determine whether or not a given invocation will
produce an output. Crucially, instructions that only de-
termine the content of the output are not included in the
filter.

Listing 1 shows an example: a fragment of the Ge-
oLocation map method (Section 2.2.2). The method tok-
enizes the input value (line 7), then skips 3 tokens ahead
(line 9–11), then examines if the GEO_RSS_URI static field
is equal to the third token (line 13). If the condition
is true, more processing follows (line 14–26) and some
value is output on outputCollector.

Listing 2 shows the filter generated by Rhea for this
mapper. Similarly to the map method, it tokenizes the in-
put (line 8). It then compares the second token to the
static field GEO_RSS_URI (line 12). Variable bcvar8 here
corresponds to pointTyp in map. This test exactly deter-
mines whether or not map would have produced output,
and hence filter simply returns this boolean. In more
complex cases, it may not be possible to determine ex-
actly, for all execution paths, whether output would be
produced. For execution paths where the analysis is not
exact, the filter conservatively returns true. Thus the fil-
ter might have false positives but never false negatives.

Comparison of map and filter reveals two interest-
ing details. First, while map extracted three tokens from
the input, filter only extracted two. The third token
does not determine whether or not output is produced,

1 ... // class and field declarations

2 public void map(LongWritable key , Text value ,

3 OutputCollector <Text , Text > outputCollector ,

4 Reporter reporter) throws IOException {

5

6 String dataRow = value.toString ();

7 StringTokenizer dataTokenizer =

8 new StringTokenizer(dataRow , "\t");

9 String artName = dataTokenizer.nextToken ();

10 String pointTyp = dataTokenizer.nextToken ();

11 String geoPoint = dataTokenizer.nextToken ();

12

13 if (GEO_RSS_URI.equals(pointTyp )) {

14 StringTokenizer st =

15 new StringTokenizer(geoPoint , " ");

16 String strLat = st.nextToken ();

17 String strLong = st.nextToken ();

18 double lat = Double.parseDouble(strLat );

19 double lang = Double.parseDouble(strLong );

20 long roundedLat = Math.round(lat);

21 long roundedLong = Math.round(lang);

22 String locationKey = ...

23 String locationName = ...

24 locationName = ...

25 geoLocationKey.set(locationKey );

26 geoLocationName.set(locationName );

27 outputCollector.collect(geoLocationKey ,

28 geoLocationName );

29 } }

Listing 1: GeoLocation map job

although it does affect the value of the output. The static
analysis detects this and omits the extraction of the third
token from filter. Second, map does substantial process-
ing (line 14–26) before producing the output. All these
instructions are omitted from the filter. This is again be-
cause these instructions affect the output value but are
irrelevant to computing the output condition. The filter
generator correctly detects this and omits these instruc-
tions.

3.1.1 Static analysis for row filter generation

Rhea filters are generated using a static analysis that is a
variant of dependency analyses commonly found in the
program slicing literature [17, 25]. At a high level, the
approach is to consider all control flow paths that lead to
an output statement, and then to find all instructions that
influence conditional branch decisions on those paths.

More precisely, the analysis steps are:
• We identify a set OutputLabelSet of output la-

bels. A label is simply a unique program point,
with its associated instruction. An output label is
a call to one of a small set of Hadoop methods that
are provided for mappers to generate output, e.g.,
OutputCollector.collect or Context.out.

• Next, we collect all control flow labels (branch in-
structions) that form part of any execution path
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1 public boolean filter (LongWritable bcvar1 ,

2 Text bcvar2 ,

3 OutputCollector bcvar3 , Reporter bcvar4) {

4

5 boolean cond = false;

6 String bcvar5 = bcvar2.toString ();

7 String irvar0 = "\t";

8 StringTokenizer bcvar6 =

9 new StringTokenizer(bcvar5 ,irvar0 );

10 String bcvar7 = bcvar6.nextToken ();

11 String bcvar8 = bcvar6.nextToken ();

12 boolean irvar0_1=GEO_RSS_URI.equals(bcvar8 );

13

14 cond = (( irvar0_1 ?1:0) != 0);

15 if (!cond) return false;

16 return true;

17 }

Listing 2: Row filter generated for GeoLocation

leading to an output label. We call this the
RelevantCtflSet. It contains both conditional and
unconditional branches.

• The next step is a label-flow analysis: we implement
a standard forward analysis [26] inside the analysis
framework provided by SAWJA. We compute, for
every point in the program, a map from a variable to
the labels that may influence the value of the vari-
able at that program point. Hence this step returns
a map from labels, to a map from variables to label
sets:

FlowMap : Label 7→ (Var 7→ LabelSet)

• We compute the closure of the RelevantCtflSet: for
every instruction in RelevantCtflSet, we accumu-
late all the labels that may affect the value that is
used in that control flow instruction to perform a
jump.

RelevantSet = RelevantCtflSet
∪ { ` | ∃`c,∃x,

`c ∈ RelevantCtflSet
∧ x ∈ vars(instr(`c))
∧ ` ∈ FlowMap(`c)(x) }

Here vars(instr(`c)) is the set of variables refer-
enced in the instruction at label `c. Since we only
consider control flow instructions here, it is the set
of variables used in the branch conditional (if any).

• We emit the code corresponding to RelevantSet, re-
placing output labels with return true statements,
and inserting return false at all other exits from the
control flow graph.

3.2 Column selection
So far we have described row filtering, where each input
record is either suppressed entirely or passed unmodified

1 public String select (LongWritable bcvar1 ,

2 Text bcvar2 ,

3 OutputCollector cvar3 , Reporter bcvar4) {

4 String bcvar5 = bcvar2.toString ();

5 String irvar0 = "\t";

6 StringTokenizer bcvar6

7 = StringTokenizer(bcvar5 ,irvar0 );

8 int i = 0;

9 String filler = computeFiller(irvar0 );

10 StringBuilder out = new StringBuilder ();

11 String curr , aux;

12 while (bcvar6.hasMoreTokens ()) {

13 curr = bcvar6.nextToken ();

14 if (i == 2 || i == 1 || i == 0) {

15 aux = curr;

16 } else {

17 aux = filler;

18 };

19 if (bcvar6.hasMoreTokens ()) {

20 out.append(aux). append(irvar0 );

21 }

22 else {

23 out.append(aux);

24 }

25 i++;

26 }

27 return out.toString (); }

Listing 3: Column selector generated for GeoLocation

to the computation. However, it is also valuable to sup-
press individual columns within rows. For example, in a
top-k query (Section 2.2.1) all rows must be examined to
generate the output, but only a subset of the columns are
relevant. Suppressing the irrelevant column values will
save bandwidth without having any effect on correctness.
As a simple example, consider a mapper which is given a
comma-separated input row "alice,usa,25". If the map-
per only uses the first and last columns and ignores the
second, we could safely transform the input record to the
value "alice,,25" without changing the program’s be-
havior. Note that we retain the column separators, which
allows the mapper to parse the input row exactly as if we
had not suppressed the irrelevant columns. This means
that we can transparently mix filtered and unfiltered in-
put data in a single execution. Some mappers use regular
expressions to tokenize the input, e.g., multiple consec-
utive commas could count as a single separator. In this
case, the string "alice,,25" would not be a correct filter
output, but the string "alice,?,25" would be correct.

For each map method, the Rhea filter generator pro-
duces a select method:

public String select (LongWritable key ,

Text value ,

OutputCollector outputCollector ,

Reporter reporter)

This method is called by the filtering proxy to transform
an input row into a shorter but equivalent (as far as pro-

6



NOTREF STRING(v) SPLIT(t,sep)

TOK(t,sep,0) TOK(t,sep,1) ...

v=value.toString() t=v.split(sep)

t.nextToken() t.nextToken()

t = new StringTokenizer(v,sep)

Figure 2: Simple transition system for column selector analysis

cessing is concerned) text record. Column filtering can
(but need not) be combined with row filtering; typically
the proxy first calls filter and then calls select for those
inputs for which filter returns true.

For the GeoLocation map function in Listing 1, Rhea
generates the column selector shown in Listing 3. The
map function tokenizes its input and only examines the
first three tokens of the input. The column selector code
captures this by retaining only the first three tokens. It to-
kenizes the input string, and builds a new string from the
generated tokens, replacing all unused tokens with a filler
value, which is either an empty string or a single char-
acter. The filler value is computed dynamically based
on the separator used for tokenization, to ensure that the
results are always correct when the string is again tok-
enized by the map function. The string output from the
column selector is then appended to the filter output and
send back to the mapper in place of the original text.

3.2.1 Static analysis for column selection

The static analysis for column selection is quite differ-
ent from that used for row filtering. In Hadoop, map-
pers split each row (record) into columns (fields) in an
application-specific manner. This is very flexible: it al-
lows for different rows in the same file to have different
numbers of columns. Mappers can also split the row into
columns in different ways, e.g., using String.split(), or
a tokenization library, or a regular expression matcher.
This flexibility makes the problem of correctly removing
irrelevant substrings challenging. Our solution is to de-
sign the analysis in a way that accommodates common
patterns of input column usage, and conservatively per-
forms no input column selection at all for usage patterns
that lie outside this domain.

Our analysis first assigns to each program point one
of the states from Figure 2 to capture the current repre-
sentation of the input, either as a string (state STRING) or
a sequence of tokens (state TOK). Calls to String.split()

or StringTokenizer() result in state transitions. For the
example in Listing 1 the initial state in the beginning
of map is NOTREF, to mean that the input value has not
been used yet. At line 6 the call to toString() transi-
tions to state STRING(dataRow). At line 7 the state becomes
TOK(dataTokenizer,"\t",0). The last parameter of TOK

represents the current token position of dataTokenizer,
which advances to 1, 2, and 3 in the subsequent lines.
The rest of the code does not affect the state: note that
StringTokenizer is used again, but not on the input string,
and hence this does not cause a state change.

We also include an error state (not shown in the fig-
ure) to catch tokenization patterns that are not supported.
Unexpected transitions, such as referencing the original
input when in the TOK state, lead to the error state. If an
error state is reached, then the analysis is abandoned, no
column selector is generated, and Rhea conservatively
defaults to transmitting the input row unmodified. Fur-
thermore, to allow for a statically unknown number of
calls to nextToken() (e.g. resulting from loops) our analy-
sis also includes another variation of the TOK state, which
we write TOKAFTER(t,sep,n) and signifies that the current
position of the tokenizer t is at or somewhere after n. In
our implementation we appropriately extend this set of
states to form a lattice and – as in the static analysis for
row filtering – instantiate SAWJA’s static analysis frame-
work, to compute the final map from program points to
one of these states.

Assuming that no error states have been produced, we
identify all program points that dereference an input to-
ken used in the rest of the map job. We then consult the
computed state at each of these program points, which
gives us a concrete position or a numerical constraint
about the tokens used. We finally generate code that iter-
ates over all tokens and emits those that are of interest, as
Listing 3 shows. Hence our column selection is always
safe, even when several control flow paths of the mapper
can assume different numbers of columns present in the
input row.

Finally, though we have focused on common string to-
kenization input patterns, the same technique extends to
other simple input usage models, such as field selection
from binary data or substring selection from the input
row. We plan to explore these extensions in future work.

3.3 Correctness
For a generated (row or column) filter to be correct, the
output of the mapper must be the same for both the fil-
tered and the original unfiltered input data set. Correct-
ness is ensured by enforcing the following properties:

7



Single-record correctness If the filter rejects an input
row, then calling the mapper on that row will result in no
output. Furthermore, if the mapper produces an output
on the original row, then calling mapper on the column-
filtered row will produce the same output.

Globally-stateless mappers Single-record correctness
is not sufficient for end-to-end correctness, if state can
be shared across different invocations of the mapper. Fil-
tered and unfiltered input may result in the same output
but may modify internal state (such as fields of the map-
per class or static fields). If this state could then affect
the output of future invocations, then the output of the
mapper may be affected by filtering the input dataset.
For example if map maintained a count of input records,
and enabled output only for every 10th record, then it
may not be correct to filter out any records, even those
which do not directly generate output. Map methods do
not usually maintain such state (state such as counters is
typically handled by reducers). However, if map is not
stateless, then no filter should be generated.

A simple way to ensure statelessness is to disallow
all access to global state. However this is too restric-
tive: mappers often read configuration or job parame-
ter information from fields initialized when the job is
started. In some cases, mappers also need to update class
fields. For example, in Listing 1, line 25–27, the vari-
ables geoLocationKey and geoLocationName are updated.
However, the updated values are immediately output.

Hence we use a less restrictive condition. We allow
accesses to fields of the mapper class, but ensure that if
such a field is read in any execution path of the map-
per then (i) that field is always set earlier in the same
execution path (as in GeoLocation), or (ii) that field is
never updated in any execution path of the mapper. To
handle calls to external library methods we use whitelist-
ing. Methods are only whitelisted if they are known not
to mutate their arguments or receiver object, and calls
to such methods are allowed. Calls to non-whitelisted
methods are only allowed if they cannot be passed an ar-
gument that contains a reference to any global variable
(this is ensured by a data-flow analysis).

Isolation We must finally ensure that filters for one
job cannot affect other jobs or the external environment,
such as performing filesystem I/O or loading classes dy-
namically via class loaders, or calling methods of the
OutputCollector argument.

We have a proof sketch of the end-to-end correctness
properties of Rhea based on the three aforementioned
conditions. We leave to future work a formal proof based
on the operational semantics of byte code and of the
SAWJA high-level representation [12].

3.4 Caching and delta filters

The design described so far is aimed at reducing the
amount of data fetched by each Hadoop job independent
of other jobs running on the same cluster. If users re-
peatedly run the same or similar Hadoop job (e.g., peri-
odically re-running a job to account for new input data),
then bandwidth can be further optimized by caching in-
put data at or near the compute nodes. E.g., a Hadoop
compute cluster could cache data in the HDFS file sys-
tem that is already used to stage intermediate results.

Combining caching with filtering requires two things.
First, caching must be best-effort: cache resources such
as local files on compute nodes are not guaranteed to be
available and could be lost at any time. Second, caching
must be both correct and efficient when combined with
filtering. For example, when re-running a MapReduce
job with the same Rhea filter but new input files, the sys-
tem should only fetch the filtered data from the new files
and combine them with the locally cached filtered data,
to generate the same result as if the entire input data had
been re-read from storage.

Rhea supports such scenarios with an optional, best-
effort caching proxy component. The caching proxy
can run anywhere between the compute nodes and the
filtering proxy, and intercepts all requests to the filter-
ing proxy. The caching proxy manages a local cache
with each cache entry corresponding to a unique <
f ileID, f ilterID > pair. Read requests that match both
the file and the filter ID of a cache entry are served en-
tirely locally. Requests matching only the file ID but with
a different filter are split into a local cache request and a
remote request. The filter specification in the remote re-
quest is replaced with a “delta” filter specification that
fetches only the rows missing from the locally cached
version.

If a job requests data filtered by a boolean filter f2(r),
and the cache already contains the same object but fil-
tered by a different boolean filter f1(r), then the delta
filter is a function that computes f2(r)∧¬ f1(r). Cur-
rently we simply encode this boolean expression into the
filter specification, and the filtering proxy computes it by
executing the methods that represent f1 and f2, sequen-
tially. We are working on generating the delta filter as a
single method that computes the entire expression, which
should be more efficient. We are also working on ways to
extend delta filtering to column selection: currently delta
filtering must be disabled if column selection is enabled.

4 Evaluation

In this section we evaluate the performance benefits and
the cost savings provided by Rhea.
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4.1 Experimental setup

We use two different testbeds to evaluate the in-cloud and
private-public cloud scenarios. In the in-cloud scenario,
filters run directly on the storage nodes, and compute
nodes are connected to storage over (oversubscribed)
LAN links. Since we cannot run our code on cloud
storage servers such as Amazon S3 servers, we replicate
this configuration in a small private cluster testbed. The
testbed has 27 compute and 1 storage node. The compute
nodes each have 4 2.27 GHz Xeon cores and 12 GB of
memory. The storage node has 8 2.13 GHz Xeon cores,
192 GB of memory, and an OCZ Revodrive X2 160 GB
SSD with a measured sequential read performance of
783 MB/s. We use the SSD to ensure that disk I/O is
never a performance bottleneck in our experiments.

All the nodes have 1 Gbps interfaces connecting via
a single 1 Gbps switch. Since the benefits of Rhea
improve as available storage-to-compute bandwidth de-
creases, experiments on our testbed will underestimate
the benefits of Rhea in large data centers with over-
subscribed networks between the storage and compute
nodes. The aggregate storage-to-compute bandwidth in
our testbed is 1 Gbps (128 MB/s), which compares favor-
ably with measured bandwidth from S3 to EC2, reported
as 20–50 MB/s [14, 29].

We also evaluate the private-public cloud scenario,
where data are stored on Amazon S3 servers, filters run
in an Amazon EC2 compute instance, and the Hadoop
job runs in a private cloud. We use the cluster testbed
described above to run the Hadoop jobs. We use a single
S3 bucket to store input data and a single high-CPU extra
large Windows EC2 instance to run the filtering proxy,
which costs US$1.16/hour. Both the S3 bucket and the
EC2 instance are in Amazon’s EU “region”: thus band-
width between the data and the filters is free and rela-
tively high. Traffic from the filtering proxy to the com-
pute cluster must traverse WAN links with lower band-
width, and an egress bandwidth charge of US$0.12/GB.
In this scenario we run the GeoLocation job unmodi-
fied. For the log processing jobs (FindUserUsage and
ComputeIoVolumes), the input data sets used for the in-
cloud experiments are too large to process in a reason-
able amount of time in the private-public configuration.
Hence we use a subset of the input data: 1 hour’s worth
of system logs rather than 1 day’s. The log data were
also anonymized for these experiments: all values ex-
cept those used in the computation were replaced by their
MD5 hashes.

All graphs in this section show means of five identical
runs, with error bars showing standard deviations.

4.2 Job characteristics
Table 1 shows the key characteristics of each job: the
input data size, analysis time, and the selectivity achiev-
able with row filtering, with column selection, and with
both row filtering and column selection. The analysis
was done on a Xeon 2.5 GHz processor and is dominated
by the time to read the entire Java program including li-
braries into memory. We define selectivity as the ratio of
output bytes to input bytes. Recall from Section 2 that
FindUserUsage has only column selectivity; GeoLoca-
tion shows only row selectivity, and ComputeIOVolumes
has both row and column selectivity.

4.3 Overall benefits
Figure 3(a) shows the performance of the three jobs for
the in-cloud testbed, in three different configurations.
The baseline configuration has no filtering enabled. The
Rhea configuration has both row filtering and column se-
lection enabled. Finally, the ideal configuration is one
where the input data is pre-processed with both row fil-
tering and column selection. The ideal configuration thus
gives all the benefits of Rhea with none of the runtime
overheads of online filtering.

Rhea reduces overall job runtime by 58%, 62%,
and 9% respectively for FindUserUsage, ComputeIoVol-
umes, and GeoLocation. Thus it more than doubles the
performance of the two large jobs. The GeoLocation job
is very small and its runtime is dominated by constant
factors such as JVM startup and Hadoop co-ordination.
As the input data size increases we would expect the ben-
efits of Rhea, which scale with the amount of data, to
increase relative to these constant costs. Rhea achieves
lower performance than the “ideal” configuration due to
the overhead of the filtering proxy. The filtering proxy
is currently an unoptimized Java implementation and we
are tuning its performance. However, we note that the
benefits already outweigh the costs for all the jobs.

Figure 3(b) shows the performance of the three jobs
running with the private-public setup. Note that the run-
times are substantially longer, despite using reduced data
sets for the two larger jobs, because of the low band-
width across the WAN. We also note that the benefits of
Rhea are much larger in this case, and very close to the
ideal case. There is still a small difference between Rhea
and “ideal”, which is due to a network rather than a pro-
cessing bottleneck. The “ideal” performance is measured
by reading filtered data directly from S3, and hence the
S3 bandwidth required is lower than with Rhea. In gen-
eral the proxy is bottlenecked on its output connections
(i.e. the WAN) and not on its input (reading from S3).
However both of these bandwidths are variable, and oc-
casionally the rate at which unfiltered data is read from
S3 drops below the rate required to saturate the output
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Job Analysis time Data Data reduction
Row Column Total

FindUserUsage 4.5 s 38 GB 100% 18% 18%
ComputeIOVolumes 9.1 s 88 GB 45% 58% 24%
GeoLocation 4.4 s 90 MB 25% 100% 25%

Table 1: Job characteristics
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Figure 3: Hadoop job runtimes

Job Baseline cost Rhea cost
Total CPU

FindUserUsage $0.42 $0.25 $0.16
ComputeIOVolumes $1.00 $0.55 $0.34
GeoLocation $0.01 $0.02 $0.01

Table 2: Dollar costs for private-public cloud

connection with filtered data. This creates a slight drop
in performance for Rhea with respect to the ideal case.

In the private-public scenario, we wish not only to im-
prove performance but also to reduce costs. Rhea re-
duces dollar costs by trading EC2 computation, a cheap
resource, for more expensive egress bandwidth. Table 2
shows the dollar costs for the three jobs in the baseline
and Rhea configurations. We see that Rhea reduces the
cost of the two larger jobs by 40% and 45% respec-
tively. The absolute dollar costs are low: this merely
reflects the small size of our experimental jobs and data
sets. The GeoLocation job show a very small increase in
cost. Hadoop startup and co-ordination cause the filter-
ing proxy to be mostly idle, which results in CPU charges
but not bandwidth charges.

Measured CPU utilization on the filtering proxy was
low (less than 9% for all jobs), with the network always
being the bottleneck. The cost advantage of Rhea can be
increased by improving the CPU utilization. For exam-
ple, in our experiments we used a “high-cpu extra-large”

instance (20 EC2 compute units, $1.16/hour). However,
given the low CPU utilization, a “large” instance (4 EC2
compute units, $0.48/hour) would give the same effec-
tive performance with higher CPU utilization and reduce
the CPU cost further.

Table 2 assumes per-second billing of VM instances,
not the per-hour billing offered by Amazon. Since our
sample data sets all take less than 2 hours to process, the
effect of rounding up to the nearest hour would be sig-
nificant. In practice, this round-up effect can be removed
by keeping the filtering proxy utilized with large jobs,
by running jobs back to back, and by sharing the proxy
across multiple users.

4.4 Detailed performance results

In this section we show further experimental results to
examine the benefits of Rhea in more detail. These re-
sults only use the in-cloud testbed as it lends itself more
easily to repeatable controlled experiments.

Figure 4 shows the separate effects of row filtering and
column selection for the three jobs. In addition to the
baseline, Rhea, and ideal configurations, we show a row-
only and a column-only configuration. These correspond
to running the Rhea filtering proxy with only row filter-
ing and only column selection enabled, respectively.

As expected, we note that FindUserUsage does not
benefit from row filtering, whereas ComputeIoVolumes
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Figure 4: Run times for different configurations (in-cloud)

benefits from both row filtering and column selection.
Row filtering for FindUserUsage actually reduces perfor-
mance slightly due to the overhead of the filtering proxy,
but this is more than compensated for by the benefits
of column selection. Row filtering and column selec-
tion can be individually disabled, for example if their
overheads are high: thus for FindUserUsage we would
choose the “column-only” configuration rather than the
default “Rhea” configuration.

The runtimes shown so far include computation time
on the Hadoop cluster. Since Rhea’s main benefit comes
from reducing the data fetch time from storage to com-
pute nodes, it is useful to examine this alone. We did
this by re-running the same experiments as above with
the same sets of filters, but with the map functions in the
compute nodes set to no-ops. This meant that no map
or reduce work was done in the compute cluster, and the
job was considered finished when all input data had been
fetched to all mapper nodes. Figure 5 shows the result
of these experiments. The benefits of Rhea measured
on fetch time alone are slightly higher (66%, 68% and
12% for the three jobs) than when the entire runtime is
considered. However, the differences are small, and the
overall results are similar. This is because the runtime is
dominated by the time to fetch data, even in the in-cloud
testbed: the computation time only adds a small and con-
stant factor to the runtime.

5 Discussion

The results in the previous section have demonstrated
the performance savings that we can generate for three
representative Hadoop jobs. However, for jobs that use
all their input data Rhea will not provide benefit. Jobs
often used to benchmark MapReduce systems, such as

Sort and WordCount, fall into this category. On the other
hand, we do believe that there are many jobs that benefit
from Rhea. We have not been able to quantify the per-
centage of such jobs as few organizations openly share
the jobs and data sets that they are processing. However,
we have observed many data analytics jobs in our orga-
nization that are selective and benefit from using Rhea.

Currently in Rhea we generate filters that are exe-
cutable. However, the static analysis could also produce
non-executable symbolic versions of the filters in addi-
tion to the executable filters. This would allow us to rea-
son about the relationship between filters, e.g., to know
that one filter subsumes another or to combine two filters
statically to generated a more efficient delta filter. We
have not yet explored this direction.

We have also, so far, restricted ourselves to analyz-
ing native Hadoop jobs. Hadoop is a generic program-
ming framework that allows the use of programs written
in other languages to be called during execution of a job
using the pipes interface. Rhea does not support the anal-
ysis of these programs, and simply does not produce any
filters. If a filter is not generated the data is fetched di-
rectly from the storage layer. As a result all input data
will be transferred from storage to compute servers, but
correctness is guaranteed.

In this paper we have assumed by default that data is
stored and transmitted uncompressed. Rhea filters can
also be used transparently on compressed data, with a
small additional CPU overhead of uncompressing and re-
compressing the data in the filtering proxy.

6 Related work

There is a large amount of work on improving the per-
formance of MapReduce, usually focusing around the
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Figure 5: Data fetch times for different configurations (in-cloud)

scheduling of jobs [20] and handling of stragglers and
failures [5, 31]. We are orthogonal to this work, in that
we are considering how to minimize storage to compute
bandwidth requirements.

Concurrently with this work, Jahani et al. [24] have de-
veloped the MANIMAL analyzer for MapReduce jobs.
Given a Hadoop program, MANIMAL uses static analy-
sis techniques similar to Rhea’s to generate an “index-
generation program” which is run off-line to generate
an indexed and column-projected version of the data.
Index-generation programs themselves are MapReduce
programs and must be run off-line. This means that they
must be run to completion on the entire data set to show
any benefit, and must be re-run whenever additional data
is appended. The entire data set must be read by Hadoop
compute nodes and then the index written back to stor-
age. This is expensive and impractical for our scenario
where there is limited bandwidth between storage and
compute. By contrast, Rhea filters are on-line, transpar-
ent, cheap, and best-effort. They can be dynamically en-
abled/disabled during job execution and there is no over-
head when they are disabled. Because they are online,
they do not cause additional overheads when fresh data
is appended. Furthermore, MANIMAL uses logical for-
mulas to encode the “execution descriptors” that perform
row filtering by selecting appropriately indexed versions
of the input data. Rhea filters by contrast can encode ar-
bitrary boolean functions over input rows. This allows
Rhea to handle mappers which perform complex pro-
cessing of input fields, e.g. string manipulation.

Hadoop2SQL [21] allows the efficient execution of
Hadoop code on a SQL database. The high-level goal
is to transform a Hadoop program into a SQL query or,
if the entire program cannot be transformed, parts of the
program. This is achieved by using static analysis. The
underlying assumption is that by pushing the Hadoop

query into the SQL database it will be more efficient.
In contrast, the goal of Rhea is to still enable Hadoop
programs to run on a cluster against any store that can
currently be used with Hadoop. The filters generated are
interposed on the data path between the storage and com-
pute to ensure only data that is to be processed is trans-
ferred.

In the storage field the closest work is on Active
Disks [27]. Here compute resources are provided di-
rectly in the hard disk and a program is partitioned to
run on the server and on the disks. A programmer is
expected to manually partition the program, and the op-
erations performed on the disk transform the data read
from it. Rhea pushes computation into the storage layer
but it does not require any explicit input from the pro-
grammer. The computation performed is determined au-
tomatically using static analysis. Furthermore, the filters
only suppress irrelevant data rather than transforming or
processing the data in other ways. At any point in an ex-
ecution the filter can be disabled, and the correctness of
the Hadoop job will not be impacted.

As far as the static analysis part of this work is con-
cerned, there exist effective tools for the static analy-
sis of Java code, such as Java model checkers that can
check properties of certain execution paths [4, 28]. The
extraction of (symbolic) conditions for path reachability
is also a common theme in the literature [13, 16] – in
our case the output must be executable conditions which
moreover have to preserve the end-to-end semantics of
the Map/Reduce job. The Key ideas behind our analy-
sis originate in classical work on how to identify “irrel-
evant” instructions for the control flow to reach certain
points [17, 25].
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7 Conclusions

We have described Rhea, a system that automatically
generates input data filters. The filters encode the im-
plicit data selectivity, in terms of row and column, for
map functions in Hadoop jobs. They are created by per-
forming static analysis on a Hadoop job.

In jobs that use only subsets of the input data, such as
most log processing jobs, we have demonstrated that this
can yield significant reductions in the data transferred be-
tween storage and compute. Even in jobs that touch all
rows, the column filtering can provide significant ben-
efit. Filtering the data improves performance for both
in-cloud and private-public cloud scenarios and also re-
duces dollar costs in the private-public cloud scenario.

The filters have several desirable properties: they are
transparent, safe, lightweight, and best-effort. They are
guaranteed to have no false negatives: all data used by
a map job will be passed through the filter. Filtering are
strictly an optimization. At any point in time the filter
can be stopped and the remaining data returned unfil-
tered transparently to Hadoop. We are currently inves-
tigating generalizing Rhea to support other data process-
ing tools beyond Hadoop (which use different language
runtimes).
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