

Machine Learning for the Automatic Analysis of Medical Images

D. Zikic, B. Glocker,

E. Konukoglu, A. Criminisi, J. Shotton, J. Feulner, C. Demiralp, O. Thomas, T. Das, R. Jena, S. Price

Microsoft Research Connections

Microsoft Research, Cambridge Addenbrooke's NHS Hospital, Cambridge University of Washington, Radiology, Seattle

Machine learning for medical image analysis

What is wrong with my patient? What is the best treatment?

Machine learning for medical image analysis

The problem of quantifying disease progression

Machine learning for medical image analysis

 Project 1. Automatic delineation of brain tumor in multi-channel MR images

 Project 2. Automatic localization and identification of vertebrae in CT scans

Automatic 3D segmentation of glioblastoma

3D MRI input data

Overview of the method

Training a pixel-wise classifier

Testing a pixel-wise classifier

New Patient, previously unseen

The labelled database

1st Step: Obtain Expert Segmentation

1st Step: Obtain Expert Segmentation

1st Step: Obtain Expert Segmentation

Decision forests for pixel-wise classification

What can decision forests do? tasks

What can decision forests do? applications

Classification forests

e.g. semantic segmentation

Regression forests

e.g. object localization

Density forests

Manifold forests

Semi-supervised forests

e.g. semi-sup. semantic segmentation

Generic trees and decision trees

A general tree structure

A decision tree

Decision tree testing (runtime)

Prediction at leaf

$$p(c|\mathbf{v}) = \sum_{j} p(c|j)p(j|\mathbf{v})$$

Classification forest: the ensemble model

The ensemble model

Forest output probability
$$p(c|\mathbf{v}) = \frac{1}{T} \sum_{t}^{T} p_t(c|\mathbf{v})$$

Classification forest: analysing generalization

Classification forest: analysing generalization

Back to tumour segmentation

Evaluation

Evaluation framework

- 40 labelled patient images (training/testing splits: 10/30, 20/20, 30/10)
 - → good performance even with small amount of training data
- Evaluation of robustness of algorithm
 - → method is robust to setting of key parameters
- Multiple random splits into training and testing data (10 random folds per training/testing split → 600 experiments)
- With 40 patients and our experiment setup → Largest evaluation for this problem so far

Our combination of high-quality input data and segmentation methodology achieves significantly better quantitative results than previous state of the art methods

Glioblastoma segmentation: Qualitative results

Glioblastoma segmentation: Qualitative results

Comparative, quantitative results

DICE: mean and std.	GT	AC	NC	E	
Bauer et al.	77±9	64±13	45±23	60±16	
Our method 30/10	90±9	85±9	75±16	80±18	
Our method 10/30	89±9	84±9	70±19	72±23	

Accuracy: mean and std.	AC	NC	E
Verma <i>et al.</i>	89±29	34±39	93±9
Our method 30/10	99.6±0.3	98.6±0.7	99.8±0.2
Our method 10/30	99.4±0.3	98.4±0.8	99.7±0.4

[Bauer et al.] S. Bauer, L.-P. Nolte, and M. Reyes.

Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization. In MICCAI, 2011.

[Verma et al.] R. Verma, E. I. Zacharaki, Y. Ou, H. Cai, S. Chawla, A.-K. Lee, E.R. Melhem, R. Wolf, and C. Davatzikos. Multi-parametric tissue characterisation of brain neoplasm and their recurrence using pattern classification of MR images. Acad. Radiol., 15(8), 2008.

Quantitative results (II)

- training/testing data splits with set sizes of 10/30, 20/20, and 30/10
- 10 random folds per split

- → Clear improvement through use of Decision Forests over GMMs (contextual information)
- → Further improvement through use of initial probabilities in Decision Forests
- → DTI influence currently very pronounced (however not fully explored yet either) seems to show improvement for Edema and smaller amounts of training data

Project 2. Vertebrae Localization in Arbitrary Field-of-View CT Scans

Ben Glocker, Ender Konukoglu Antonio Criminisi, Johannes Feulner David R. Haynor

Microsoft Research, Cambridge

University of Washington, Radiology Department, Seattle

Problem Statement

Problem Statement

The Difficulty of Counting

Clinical Motivation

Patient-specific coordinate system

- Guided visualization/navigation in diagnostic tools
- Impact on Clinical Routine!
 after surgical Intervention
- Shape/population analysis for

disease modelling

Impact on Clinical Research!

Challenges

- Repetitive nature of structures
- Variability of normal anatomy
- Presence of pathologies
- Varying image acquisition (FOV, noise level, resolution, .

Our Machine Learning Approach

Two-stages:

1. Regression Forests

rough localization of visible part of the spine

2. Hidden Markov Model

accurate refinement using shape and appearance model

Experimental Setup

- 200 CT scans, trauma patients
- Slice distance [0.5, 6.5]mm (79 scans with 3.75mm)
- Number of slices: [51, 2058], 240 in average
- Visible parts: from 4 vertebrae up to whole-body scans
- Training/Testing split: 100/100

1mm 4mm

Quantitative Results

Vertebrae Stage 1: Regression F		n Forest	Stage 2: HMM		Distance to Closest			Identification				
Region	Counts	Median	Mean	Std	Median	Mean	Std	Median	Mean	Std	Correct	Rate
All	2595	15.91	18.35	11.32	5.31	9.50	10.55	4.79	6.10	5.53	2089	81%
Cervical	116	25.97	30.74	18.64	6.87	10.85	12.49	6.14	8.53	9.05	84	72%
Thoracic	1417	15.79	18.20	10.81	5.51	9.83	10.44	4.91	5.94	4.84	1100	78%
Lumbar	1062	15.40	17.20	10.07	4.88	8.92	10.45	4.59	6.06	5.82	905	85%

Stage 1: Forest Run-Time: < 1s

Stage 2: HMM Run-Time: < 2min

Outlook

Pre-op Post-op Pre-op Post-op

Summary

Glioblastoma:

 We achieve high-quality tissue-specific segmentations, surpassing quantitative results of previous state of the art

Spine:

Accurate vertebra localization and identification.
 Automatic. Works for highly cropped images.

More on decision forests

Tutorial on Decision Forests

Decision Forests for Classification, Regression, Density Estimation, Manifold Learning and Semi-Supervised Learning

A. Criminisi, J. Shotton and E. Konukoglu

http://research.microsoft.com/~antcrim