
RelationalReasoningforProgramsusing
Higher-OrderStore

PhD student: Aleš Bizjak Supervisor: Lars Birkedal

IT University of Copenhagen

When is a program transformation correct?
A program transformation should preserve the meaning of the source pro-

gram. Consider an ML-like language (i.e. call by value language with ef-

fects) and a compiler optimization that replaces

let r = g (f 13) (f 13) in r * r

with

let x = f 13 in let r = g x x in r * r

This transformation is not sound in general, as the function f could, for ex-

ample, increase a global counter, write to a file, rely on a random number

generator or fire a missile.

In general, a program transformation transforms an expression e to e′.

This is sound if e is contextually equivalent to e’, meaning that for any

program C[e] has the same the observable behavior as C[e′].

It is difficult to prove contextual equivalence directly from the definition,

even for simple programs, and the main difficulty stems from the fact that

a context can bind free variables of an expression in nontransparent ways.

When is a compiler correct?
Another desirable property of a compiler is that the program it produces

is observationally equal to the source program. Here, we need a relation

between source and target languages that reifies our intuitive notion of

equivalence. In the absence of computational effects and at ground types,

such a relation is relatively easy to specify (e.g. if two programs produce

integers they should be equal if, when run, they produce the same value),

but for modular reasoning (e.g. to enable linking) we need to extend it to

higher types.

Suppose we have a multi-stage com-

piler that first transforms the source

language to an intermediate lan-

guage, (possibly) does some pro-

gram transformations on the inter-

mediate language and then gener-

ates some target language code. We

want a relation between source and

intermediate language, R, that re-

flects a notion of equivalence and

that enables us to prove that the

first part of the compiler generates

correct code. Then we need some

approximation of contextual equiva-

lence, S, that enables us to reason

about the correctness of optimiza-

tions and, finally, we need a relation,

T, that enables us to reason about

the final phase of the compiler.

source

intermediate

target

source

target

intermediate

R

S

T

EQ

In addition, we would also like to have a relation between the source and

target languages, EQ, that captures when a target program realizes the

source program. EQ is needed because we would like to combine code,

generated by different compilers, in the final program (imagine using a

C# implemented library in an F# program).

Recent and ongoing work, the foundations
Developing suitable relations for increasingly rich languages has been the

focus of a lot of recent research. One popular and useful technique has

been the method of logical relations. It leverages types to build a family

of relations. It consists, roughly, of giving, for each type, a relation on

some set of realizers that expresses the properties we wish expressions

of that type to have. The adjective logical comes from the property that

the family is not an arbitrary type-indexed family of relations, but, loosely

speaking, admits induction on the type structure; it is a lifting of relations

on ground types to higher types. Logical relations have been applied to

reasoning about contextual equivalence for ML-like languages with higher-

order store, recursive types and impredicative polymorphism. Specifically,

accommodating higher-order store has led to the development of Kripke

models over recursive worlds. Logical relations have also been applied to

proving correctness of simple, single-stage compilers. [1, 4, 3]

The future
The equivalences we can prove depend very much on what properties we

can express using the types; having a richer type system enables more

refined reasoning. For instance, in the starting example on the left, if the

type system would be able to express that the function f is pure, we could

make the transformation.

Such properties can be expressed using effect annotations. Typing judg-

ments are thus extended with effect and regions:


︸︷︷︸

set of regions

|

environment
︷︸︸︷

 ` e
︸︷︷︸

expression

:

type
︷︸︸︷

τ | ϵ
︸︷︷︸

set of effects

.

The set of effects describe what could possibly happen by running the

computation and the set of regions describes where it could happen.

Soundness of program transformations based on effects can be proven

using logical relations. An example of this approach, where effects are only

read, write and allocate, is a recent paper [2] showing a “parallelization

theorem” for an ML-like language with concurrency primitives.

Extending this approach to a richer language with a richer set of effects,

i.e. more realistic language, is a possible direction.

Another possible direction is investigating methods for reasoning about

multi-stage compilers. The methods that have been developed do not

provide a good way to do so. In the example, the ideal would be that the

relation EQ would simply be the composition of relations R, S and T, but

the composition of logical relations in not well behaved. The challenge,

then, is to find definitions of well-behaved relations R, S, T and EQ, such

that, at least,

R ◦ S ◦ T ⊆ EQ

holds.

References

[1] Nick Benton and Chung-Kil Hur. Realizability and compositional compiler cor-

rectness for a polymorphic language. Technical report, MSR-TR-2010-62, 2010.

[2] Lars Birkedal, Filip Sieczkowski, and Jacob Thamsborg. A concurrent logical

relation, 2012. Submitted for publication.

[3] Lars Birkedal, Kristian Støvring, and Jacob Thamsborg. Realisability semantics

of parametric polymorphism, general references and recursive types. Mathe-

matical Structures in Computer Science, 20(4):655–703, 2010.

[4] Jacob Thamsborg and Lars Birkedal. A kripke logical relation for effect-based

program transformations. In ICFP, pages 445–456, 2011.

