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Abstract
A protein can be thought of as a computational element, i.e. a processing unit able to transform
an input into an output signal. Indeed, in a biochemical pathway, an enzyme reads the amount of
reactants (substrates) and converts them into products. In this work, we consider the biochemical
pathway in unicellular organisms (e.g. bacteria) as a living computer, and we program it in order to
obtain desired outputs. The genome sequence is an executable code speci�ed by a set of commands
in a sort of ad-hoc low-level programming language. Each combination of genes is coded as a string
of bits y ∈ {0, 1}L. Each bit controls a gene set and therefore the chemical reaction associated
with it. Through an optimal executable code stored in the �memory� of bacteria, we simultaneously
maximise the concentration of two or more metabolites of interest.

Bacteria as von Neumann architectures
Inspired by Brent and Bruck [1], who studied similarities and di�erences between biological systems
and von Neumann computers, we propose a mapping between the von Neumann architecture and
bacteria. This mapping suggests thinking of the metabolism as a Turing Machine (TM).
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The bacterium takes as input the substrates required for its growth and, through its chemical reaction
network, produces desired metabolites as output. The string y acts as a program stored in the RAM.
Let Y be the multiset of the bits of y, and P (Y ; p) be the set of all partitions of Y with p blocks.
We formalise the control unit by de�ning the function

gΦ : {0, 1}L −→
⋃

y∈{0,1}L

P (Y ; p)

ȳ ∈ {0, 1}L 7−→ Π ∈ P (Ȳ ; p).

Each element of the partition Π is the submultiset bs of all the gene sets that play a role in the
reactions belonging to the s-th pathway. In other words, gΦ turns syntax into semantics.

Reaction networks as TM
We map the chemical reaction network to the
Minsky's Register Machine (RM), i.e. a �-
nite state machine augmented with a �nite num-
ber of registers. The RM has been proven to be
equivalent to the TM [2]. We de�ne:

• The set of state species {Di}, where each
Di is associated with the state i of the RM;

• The set of register species {Hr}, where
each Hr is associated with the register r
of the RM, and therefore represents the
molecular count of species r;

• The instruction inc(i, r, j) as the chemical
reaction Di → Dj + Hr;

• The instruction dec(i, r, j, k) as eitherDi+
Hr → Dj or Di → Dk depending on
whether Hr > 0 or Hr = 0 respectively.

In our FBA approach, the variables are the
�uxes of the reactions in the network, therefore
a high �ux corresponds to both a high rate of
reaction and a high mass of products.

• In the increment reaction inc(i, r, j), Hr

is positively correlated with the reaction
�ux;

• In the decrement reaction dec(i, r, j, k),
when Hr > 0, it is negatively correlated
with the reaction �ux.

Genetic design of (living) computers

We program molecular machines using a novel algorithm called Genetic Design through Multi-
Objective optimisation (GDMO).

• Through a speci�c optimal code stored in the �memory� of the organism, we are able to simul-
taneously maximise the yield of two or more metabolites of interest.

• The genetic code, i.e. the �computation instructions� given to the machine, is represented by
a Pareto-optimal string of bits y ∈ {0, 1}L.
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Maximisation in anaerobic (A) and aerobic (B) conditions with glucose uptake rate 10 mmolh−1 gDW−1.
The Pareto fronts of GDMO are in black. The results of GDLS depend on its parameters M and k [3].

Wild Type OptFlux OptGene GDLS GDLS OptKnock OptKnock GDMO GDMO GDMO
Acetate 8.30 15.129 15.138 15.914 - - 12.565 13.797 19.150 -

(82.3%) (82.4%) (91.7%) - - (51.4%) (66.20%) (130.7%) -
Succinate 0.077 10.007 9.874 - 9.727 9.069 - - - 10.610

(12877%) (12704%) - (12514%) (12362%) - - - (13659%)
Biomass 0.23 n.a. n.a. 0.0500 0.0500 0.1181 0.1165 0.1296 0.053 0.087

n.a. n.a. (-78.4%) (-78.4%) (-77.9%) (-49.6%) (-43.91%) (-77.10%) (-62%)
k cost n.a. n.a. n.a. 14 26 54 53 5 10 8

Best solutions (mmol h−1 gDW−1) obtained by OptFlux ([4]), OptGene ([5]), GDLS ([3]), OptKnock ([6]) and GDMO
on the E. coli K-12 MG1655 iAF1260 model ([7]), in anaerobic conditions with 10 mmol h−1 gDW−1 of glucose uptake.

Conclusion
Since the simulated TM can be universal, the
proposed mapping between metabolism and TM
allows to perform any kind of computation,
through a set of species and chemical reactions
characterised by their �ux. In principle, this
means that bacteria can carry out at least any
computation performed by a computer.
A program embedded in a bacterium, whose
metabolism works like a TM, could be able
to implement the knockout strategy found by
GDMO. The minimisation of the number of
knockouts ensures a low-e�ort, reliable and re-
producible result, allowing cells to become pro-
grammable manufacturers of biochemical prod-
ucts of interest.
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