
1. Introduction
A key challenge in writing concurrent software is to correctly and efficiently synchronize concurrently

executing code. Our goal is to develop synchronization techniques that exploit properties of realistic

code in order to automatically synchronize concurrent operations in a correct and efficient way.

Enforcing Atomicity for Data Structure Manipulations

2. Synchronization using Shape Properties
We have developed an automatic technique that adds fine grain locking to data structure

implementations. This technique is applicable to data structures where the shape of shared memory

is a forest; it allows the shared shape to change dynamically as long as the shared shape is a forest

between invocations of the data structure operations (This enables handling, for example, operations

with tree rotations and operations that move items between different trees).

Domination Locking: The technique is based on Domination Locking, a novel locking protocol which

is a strict generalization of existing locking protocols for dynamically changing graphs. This protocol

capitalizes on the inability of programs in modern programming languages (such as Java) to access

shared memory without following pointers from a designated set of roots.

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 4 6 8

Th
ro

u
gh

p
u

t
(o

p
s/

m
se

c)

Threads

Treap

Single Manual hand-over-hand Automatic

0

200

400

600

800

1000

1200

1400

1 2 4 6 8

Th
ro

u
gh

p
u

t
(o

p
s/

m
se

c)

Threads

Red-Black Tree with top-down rebalancing

Single Automatic

3. Collaborative Synchronization
We are currently working on a methodology for collaboration between data structure synchronization

and their clients’ synchronization.

The main idea is to create data structures that enable their clients to dynamically give information

about their future behavior (e.g., what operations will not be used starting from a specific situation).

This information can be utilized by a data structure for its synchronization, and for helping

synchronizing the client code.

We are currently developing data structures that are able to utilize such information, and static

algorithms that compute this information. Preliminary results show that such data structures enable to

automatically create effective synchronization for composed clients operations.

Guy Golan Gueta

Supervisors: Mooly Sagiv, Eran Yahav

