
Whenever o is accessed, both of these contracts are evaluated. The access
is only legal if they are both satisfied.
Contracts are evaluated in the context of the object which declares them.
This means that when we evaluate the contract of x, this refers to o1;
accessor refers to the object making the access.
In the example above, accesses to o from o1 are valid; accesses coming
from o2 are invalid, since they violate the contract defined for x.

Controlling Aliasing with Aliasing Contracts
Janina Voigt, Alan Mycroft

Computer Laboratory, University of Cambridge

What is Aliasing? Aliasing for Sharing When Aliasing Goes Wrong

class Class {

 private Object[] signers;

 Object[] getSigners() {

 return signers;

 }

}

Aliasing can break encapsulation.
The following example is taken from JDK
1.1.1. A particular class records its signers,
the entities that have digitally signed the
implementation.

Because getSigners returns a reference
to the internal signers array, any client
can now modify signers directly,
without the Class’ knowledge.
This is a common problem when getters
return references to internal objects.

We need aliasing to implement
many common progamming
idioms.
Aliasing allows us to share one
object between several parts of the
system. This is important, for
example, when one object can
belong to two separate collections:

Student

phdStudents

supervisors

College

Department

In modern OO programming
languages, an object reference
does not contain the object
itself, but the address of the
object on the heap.

For this reason, multiple
variables can refer to the same
object at the same time. We
call this aliasing.
A change in one variable
impacts all others:

Integer x = 5;

Integer y = x;

y = y + 10

print(x + “,“ + y);

This prints 15, 15.

Variable Object

In the example above, we saw that
making signers private was not
enough to protect it. Access modifiers
like private and public protect
only the variables, not the objects to
which they point.
The aim of aliasing contracts is to
protect the objects themselves.

Aliasing Contracts –
Object Encapsulation

An Example

Variable Object

Access Modifiers Aliasing Contracts

Overview of Aliasing Contracts
• Aliasing contracts specify

preconditions for accesses to an
object.

• In the code, contracts are declared on
variables and apply to the objects to
which the variables point.

• Since multiple variables may point to
the same object, one object can have
multiple contracts.

• Whenever an object is accessed, all
of its contracts must be satisfied, or
the access is illegal.

We have two objects, o1 and o2, with fields x and y, which both point to
the same object, o. The tick and cross show which accesses to o are valid
and invalid, given the aliasing contracts defined for x and y.

Both x and y declare aliasing contracts:
• accessor == this means that o1 expects that it (this) will be
the only object accessing o. The keyword accessor refers to the object
making the access.
• true means that o2 imposes no preconditions on accesses to o.

Aliasing contracts depend on the dynamic aliasing structure of the
program. If we reassign x to point to another object, accesses to o from y
become valid.

x y

o1 o2
o

true
accessor

== this

x y

o1 o2
o

accessor

== this
true

o’

