
Functional-first Programming in
an Information-Rich World

Dr Kenji Takeda

Microsoft Research Connections

Functional-first
programming

Information-
rich

programming

Recurring Problems in Software

Getting things done

Efficiency

Correctness

Complexity

What’s the Need?

Developers delivering correct, efficient
software, on-time

This is the set of problems that F# helps

solve

Observation #1

At the core of every functional-first
language is this:

simple, correct, robust code for
complex problems

Observation #2

A highly interoperable language allows
rapid, non-intrusive deployment and

integration of components

Functional code is a part of a larger solution. Your code
can be rapidly integrated and deployed.

Observation #2 cont.

Interoperable languages remove entire
phases from the software

development process

No R  C#
No Mathematica  C++

Observation #3

Strongly-typed functional languages
maintain efficiency

comparable to C# and Java, and sometimes C++

Observation #4

Strongly-typed functional languages
help analytical programmers tackle

more complex problems

How Functional-first Helps

Simple, correct, robust code

Interoperability eliminates entire phases

Strong typing gives efficiency

Analytical developers empowered to solve
complex problems

What is F# and why
should I care?

F# is…

...a practical, functional-first

programming language that allows you

to write simple code to solve complex

problems.

F# and Open Source

F# 2.0 compiler+library open source drop

Apache 2.0 license

www.tryfsharp.org

http://blogs.msdn.com/dsyme

Simple code,
Strongly typed

type Command = Command of (Rover -> unit)

let BrakeCommand =

 Command(fun rover -> rover.Accelerate(-1.0))

let TurnLeftCommand =

 Command(fun rover -> rover.Rotate(-5.0<degs>))

 abstract class Command
 {
 public virtual void Execute();
 }
 abstract class RoverCommand : Command
 {
 protected Rover Rover { get; private set; }

 public RoverCommand(MarsRover rover)
 {
 this.Rover = rover;
 }
 }
 class BrakeCommand : RoverCommand
 {
 public BrakeCommand(Rover rover)
 : base(rover)
 {
 }
 public override void Execute()
 {
 Rover.Rotate(-5.0);
 }
 }
 class TurnLeftCommand : RoverCommand
 {
 public TurnLeftCommand(Rover rover)
 : base(rover)
 {
 }
 public override void Execute()
 {
 Rover.Rotate(-5.0);
 }
 }

Simplicity: Functions as Values
OO

let swap (x, y) = (y, x)

let rotations (x, y, z) =

 [(x, y, z);

 (z, x, y);

 (y, z, x)]

let reduce f (x, y, z) =

 f x + f y + f z

Tuple<U,T> Swap<T,U>(Tuple<T,U> t)

{

 return new Tuple<U,T>(t.Item2, t.Item1)

}

ReadOnlyCollection<Tuple<T,T,T>>
Rotations<T>(Tuple<T,T,T> t)

{

 new ReadOnlyCollection<int>

 (new Tuple<T,T,T>[]

 { new Tuple<T,T,T>(t.Item1,t.Item2,t.Item3);

 new Tuple<T,T,T>(t.Item3,t.Item1,t.Item2);

 new Tuple<T,T,T>(t.Item2,t.Item3,t.Item1); });

}

int Reduce<T>(Func<T,int> f,Tuple<T,T,T> t)

{

 return f(t.Item1) + f(t.Item2) + f (t.Item3);

}

Simplicity: Functional Data
C#

The Big Trends

 THE WEB MULTICORE DATA

Async.Parallel [httpAsync "www.google.com"
 httpAsync "www.bing.com"
 httpAsync "www.yahoo.com"]

|> Async.RunSynchronously

Parallel I/O

Async.Parallel [for i in 0 .. 200 -> computeTask i]

|> Async.RunSynchronously

Parallel CPU

Units of Measure

1985

Mirror on underside
of shuttle

SDI experiment:
The plan

Big mountain in Hawaii

http://upload.wikimedia.org/wikipedia/commons/9/97/Sts-51-g-patch.png

1985

SDI experiment:
The reality

http://upload.wikimedia.org/wikipedia/commons/9/97/Sts-51-g-patch.png

1985

Units of Measure
let EarthMass = 5.9736e24<kg>

// Average between pole and equator radii
let EarthRadius = 6371.0e3<m>

// Gravitational acceleration on surface of Earth
let g = PhysicalConstants.G * EarthMass / (EarthRadius * EarthRadius)

Interested in units of measure?

Kennedy, WMM 2008
search for “kennedy units”

Examples and Case Studies

Example - power company

I have written an application to balance the national
power generation schedule … for an energy company.

...the calculation engine was written in F#.

The use of F# to address the complexity at the heart of
this application clearly demonstrates a sweet spot for
the language … algorithmic analysis of large data sets.

Simon Cousins (Eon Powergen)

Example power company
Interoperation ... Seamless. The

C# programmer need never know.

Units of measure … a huge

time saver...it eradicates a whole
class of errors…

Exploratory programming

…Working with F# Interactive
allowed me to explore the solution
space more effectively.

Unit testing …a joy to test. There

are no complex time-dependent
interactions to screw things up….

Parallelism …The functional purity

... makes it ripe for exploiting the
inherent parallelism in processing
vectors of data.

Code reduction… … vectors

and matrices…higher order
functions eat these for breakfast
with minimal fuss, minimal code.
Beautiful.

Lack of bugs… Functional

programming can feel strange. ..
once the type checker is satisfied
that’s often it, it works.

Example - Biotech

...F# rocks - building algorithms for DNA processing and it's like a
drug. 12-15 at Amyris use F#... A complete genome
resequencing pipeline with interface, algs, reporting in ~5K lines
and it has been incredibly reliable, fast and easy to maintain.. A
suffix tree in 150 lines that can index 200,000 bases a second ;)

F# v. Python: F# has been phenomenally useful. I would be
writing a lot of this in Python otherwise and F# is more robust,
20x - 100x faster to run and faster to develop.

Units of measure: I started labelling the coordinates as one or
zero based and immediately found a bug where I'd casually
mixed the two systems. Yay F#!

Darren Platt, Amyris BioTechnologies

Example - F# in Advertisement Ranking
& Rating @ Microsoft

Around 95% of the code in these projects has been developed in
F#.

• F# allowed for rapid development of prototypes, and thus also
rapid verification or falsification of the underlying
mathematical models.

• Complex algorithms, for example to compute Nash equilibria
in game theory, can be expressed succinctly.

• Units of measure reduced the chance of errors dramatically:
Prices, probabilities, derivatives, etc. can already be kept apart
at compile time.

How Functional-first Helps

Simple, correct, robust code

Interoperability improves time-to-market

Strong-typing gives efficiency

Analytical developers empowered to solve
more complex problems

Lesson: Combining with the right tools
is key

• F# + existing C++ components
A mathematical

model

• Oracle + F# (Server) + F#/C# (Silverlight) A trading engine

• F# + FCore Math
A calculation engine
with GPU execution

• Data Services + F# + ASP.NET A scalable web service

• F# + Hadoop + ServiceStack
A scalable big-data

service

• F# (Server) + SQL Server + DataFeeds + ASP.NET +
F# (WebSharper) + HTML5 A Web 2.0 startup

Examples

Recent Developments in F# @
Microsoft

 • queries, powerful data integration,
better tooling, portable libraries F# 3.0

• for scalable service programming F# + Azure

• for scalable big-data programming
F# + Azure

Hadoop

• for scalable math programming
F# + Azure Cloud

Numerics

Information-rich programming

The developer’s perspective

• Languages do not
integrate information

– Non-intuitive

– Not simple

– Disorganised

– Static

– High friction

A Big Problem

New thinking required for languages

• Bringing information into the language

• Solution: Type Providers

• Why F#?
– Control of the language

– Type inference

– Strong tooling

– Interoperability

– LINQ

– Open architecture

http://fsharp.net/

A Type Provider is….

“A compile-time component that provides a computed
space of types and methods on-demand …”

“A compiler plug-in…”

“An adaptor between data/services and the .NET type

system…”

Note: F# still contains no data

Open architecture

You can write your own type provider

Intellisense for Data

video

WorldBankVS11Demo4by3.wmv

Complex data

video

CEESMetOfficeDemoFINAL.wmv

Programming the web

Type Providers: Applications

• …web data

• …data markets

• …network management

• …a spreadsheet

• …web services

• …CRM data

• …social data

• …SQL data

• …XML data

without
explicit

codegen

strongly
typed

extensible,
open

• Functional-first languages
deliver real value

• Rapid, correct development
is central

• Parallelism a bonus

• F.P. as a recruitment strategy:
languages are important,
people even more so

Functional
Programming

In Summary – Functional-First Languages

Improved time-to-market
for analytical
components

Ready for supported use
in VS2010 + VS11

Code correctness,
efficiency and

interoperation in the
modern enterprise

A bright future ahead for
web/data/cloud

F#

In Summary – F#

Learn more at
F# Tutorial Session: Wednesday@1700

http://fsharp.net
www.tryfsharp.org

©2011 Microsoft Corporation. All rights reserved.

