

Obstruction degree: measuring concurrency in shared memory systems

Rachid Guerraoui, Mihai Letia

Research challenge

How to predict the performance of concurrent algorithms before implementing them

Complexity theory has limited applicability for concurrent algorithms

Objective

- Reason about the algorithm, not the implementation
- Make predictions about performance under concurrency, i.e. scalability
- Define a metric that is simple to compute
- Output a single number showing how concurrent the algorithm is

Obstruction degree

Plot the number of objects to which the algorithm needs atomic access at any step

Obstruction degree = area under the plot

Algorithm	Obstruction degree
Basic TM algorithm	n^2
Two-phase locking	n^2
Basic elastic transactions	n
Hand-over-hand locking	n

Further reading

Rachid Guerraoui and Mihai Letia. Obstruction degree: measuring concurrency in shared memory systems. Tech. rep. EPFL-REPORT-177869, EPFL, 2012.URL: http://infoscience.epfl.ch/record/177869

Experimental results - Linked list

Algorithm	Find	Insert	Remove
Coarse	n^2	n^2	n^2
Fine	n	n	n
Optimistic	1	1	1
Lazy	0	1	1
Lock-free	0	0	0

Benchmark using 20% updates, 256 element list

Conclusion

Low obstruction degree

