
DejaVu: A Complex Event Processing System
for Pattern Matching over Live and Historical Data Streams

Nihal Dindar, Peter M. Fischer, Nesime Tatbul @ ETH Zurich

Motivation
• Find patterns on both live and archived data streams as well as detecting correlations among them
• Use cases: financial data analysis, healthcare monitoring, supply chain management, etc.

Goals
Design and implement a CEP system that (i)detects and correlates patterns, (ii)works over both live and historical events, (iii) provides a
uniform declarative query interface and (iv)scales to high throughput for high-volume streams

MYISAM Storage

…

P
lu

gg
ab

le
 S

to
ra

ge
 E

n
gi

n
e

A
P

I

Archived Stream Storage

Data flow

Live Stream Storage

R
ec

en
t

In
p

u
t

B
u

ff
er

Live Stream Storage
• In-memory storage engine for incoming streams
• Support for pull and push modes

Archived Stream Storage
• On-disk storage engine for archived streams
• Append-only, order-preserving, indexes

Recent Input Buffer
• Cache for efficient access to recent stream data
• Bulk inserts into archive stream storage

Query Result Cache

• Caches archive matches to avoid re-
computation of archive patterns

• Significant performance benefits when
recency correlation regions overlap

• Size at most linear to the size of the
recency region (fits into memory in most
cases)

DejaVu Query Processing Engine
• Extends relational database engine MySQL by

• pattern matching (semantic windows)
• continuous query life cycle

• Pattern expressions composable with SQL
• Automata-based pattern computation
• Optimizations to reduce pattern matching cost

• input sharing
• state minimization

• Supports Pattern Correlation Queries (PCQs)
• formal semantics
• architectural extensions
• cost model and optimizations

Optimizing PCQ Processing
•cost-model based optimizations,
both architectural and algorithmic:
•pattern computation before live-
archive correlation
•lazy archive pattern computation
•recent input buffering
•query result caching
•join source ordering

•Throughput improvements up to 2
orders of magnitude

SQL-based Uniform Query Language[1]

SELECT symbolL, initPriceL, minPriceL, initPriceA, …
FROM
 StockLive MATCH_RECOGNIZE (
 PARTITION BY symbol
 MEASURES A.symbol AS symbolL, A.price AS initPriceL,
 LAST(B.price) AS minPriceL
 PATTERN(A B+)
 DEFINE /* A matches any row */
 B AS (B.price < PREV(B.Price))),
 StockArchive MATCH_RECOGNIZE (
 …. // Tick-shaped in stock price
WHERE symbolA = symbolL
RECENCY = 7 seconds;

Fall in stock
price

Correlation of live
and archive patterns

Performance on NYSE TAQ Data

Upon detecting a fall
in the current price of
stock X on the live stream,
look for a tick-shaped pattern
for X within recent archive.

Queries

Results

DejaVu

Client

recency region

tick-shaped pattern
(archive matches)

Time

Price
fall pattern
(live match)

<Symbol, Price, …><StartTime, EndTime>
<‘ABB’, 10.60, … >, <…>,…

