DejaVu: A Complex Event Processing System
for Pattern Matching over Live and Historical Data Streams

Systems @ ETH ziiich

Nihal Dindar, Peter M. Fischer, Nesime Tatbul @ ETH Zurich

Motivation
* Find patterns on both live and archived data streams as well as detecting correlations among them
* Use cases: financial data analysis, healthcare monitoring, supply chain management, etc.

Goals
Design and implement a CEP system that (i)detects and correlates patterns, (ii)works over both live and historical events, (iii) provides a
uniform declarative query interface and (iv)scales to high throughput for high-volume streams

DejaVu Query Processing Engine Optimizing PCQ Processing SQL-based Uniform Query Languagell!
 Extends relational database engine MySQL by scost-model based optimizations, i;lgl\C/IT symbolL, initPricel, minPriceL, initPriceA, .
 pattern matching (semantic windows) || both architectural and algorithmic: StockLive MATCH_RECOGNIZE (
 continuous query life cycle epattern computation before live- PARTITION BY symbol
* Pattern expressions composable with SQL archive correlation MEASURES A.symbol AS symbolL, A.price AS initPricel,
. . . LAST(B.price) AS minPricel
* Automata-based pattern computation lazy archive pattern computation PATTERN(A B+) |
* Optimizations to reduce pattern matching cost erecent input buffering DEFINE /* A matches any row */ } ;fill;n stock
* input sharing squery result caching B AS (B.price < PREV(B.Price))),
. C . . i e StockArchive MATCH_RECOGNIZE (
state mlnlmlzatl.on . Jjoin source oradering . // Tickshaped inlstock price
* Supports Pattern Correlation Queries (PCQs) WHERE symbolA = symbolL }Correlation of live
 formal semantics *Throughput improvements up to 2 RECENCY = 7 seconds; and archive patterns
e architectural extensions orders of magnitude

* cost model and optimizations

Upon detecting a fall

in the current price of

stock X on the live stream,
look for a tick-shaped pattern
for X within recent archive.

T ive Pattern
_ NYSE il T
<Symbol, Price, ...><StartTime, EndTime> HR2 SEET) SEReEE . . @
<‘ABB’, 10.60, ... >, <...>,... ‘ _)
- E Run-time Instance;
g / < _
— - & 7| (% e
C HS too tao LN . tas tay
L . -
Archived Stream Storage g)o f [. N DeJ aVU
. - _ PAq .
© o Archive Pattern FSM
~ - —
2 £ A ol > Client
Vg -'E A B B* c*
Q@)
Fe) Q
: G o
MYISAM Storage 130 ' Arlce tick-shaped pattern fall pattern
(ol —_> ‘ (archive matches) (live match)
1,/ L 1/
o060
— e e Query Result Cache
.)
recency region
Time>
Live Stream Storage Query Result Cache Performance on NYSE TAQ Data
* In-memory storage engine for incoming streams i ' - . .
Y ge eng g * Caches archive matches to avoid re 35000 o2y e Tt o rosul odene — 5
. . i irst t —il—
* Support for pull and push modes computation of archive patterns 30000 | lazy, archive first, w/o result cache A -

lazy, archive first, w result cache s

* Significant performance benefits when
recency correlation regions overlap

25000 [

Archived Stream Storage
* On-disk storage engine for archived streams
* Append-only, order-preserving, indexes

20000
e Size at most linear to the size of the

recency region (fits into memory in most
cases)

Throughput (events/sec)

Recent Input Buffer
* Cache for efficient access to recent stream data
* Bulk inserts into archive stream storage

5000

0

