
How do multicore machines actually

behave?

(x86, ARM/POWER, Java, and C/C++11)

Peter Sewell

University of Cambridge

TRANSFORM Summer School, MSR Cambridge, July 2012

p. 1

Who Needs to Know?

1. processor designers

2. concurrency library authors

3. compiler writers

4. programming language designers

5. verification tool builders

6. semanticists

7. mainstream programmers?

8. you?

p. 2

The Golden Age, 1945{1959

ProceĄor

Memory

p. 3

ProgramŊ

Memory locations x, y,... hold values (numbers 0 – 255)

Programs are lists of simple instructions:

start: x = 17
y = 1

label: y = 2 × y
x = x - 1
if x > 0 goto label
print y

...that are executed in order and that sometimes read (and
sometimes change) the values held in memory

...any read reads the most recent value written
p. 4

MultiproceĄorŊ

Thread Thread

Shared Memory

Multiple hardware threads operating on the same memory

p. 5

The GhoĆ of MultiproceĄorŊ PaĆ
BURROUGHS D825, 1962

‘‘Outstanding features include truly modular hardware
with parallel processing throughout’’

FUTURE PLANS
The complement of compiling languages is to be expanded.’’

p. 6

The GhoĆ of MultiproceĄorŊ Present

Intel Xeon E7
(up to 20 hardware threads)

IBM Power 795 server
(up to 1024 hardware threads)

p. 7

Multiprocessors — with SC Shared Memory?

Thread Thread

Shared Memory

Multiple threads, but acting on a sequentially consistent (SC)
shared memory:

the result of any execution is the same as if the
operations of all the processors were executed in
some sequential order, respecting the order
specified by the program

Leslie Lamport, 1979

p. 8

A Simple Hardware Example (SB)

At the heart of a mutual exclusion algorithm, e.g. Dekker’s,
you might find code like this, say on an x86.

Two memory locations x and y, initially 0

Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[y] (read y) MOV EBX←[x] (read x)

What final states are allowed?

What are the possible sequential orders?

p. 9

A Simple Hardware Example (SB)

At the heart of a mutual exclusion algorithm, e.g. Dekker’s,
you might find code like this, say on an x86.

Two memory locations x and y, initially 0

Thread 0 Thread 1

MOV [x]←1 (write x=1)
MOV EAX←[y] (read y=0)

MOV [y]←1 (write y=1)
MOV EBX←[x] (read x=1)

Thread 0:EAX = 0 Thread 1:EBX=1

p. 9

A Simple Hardware Example (SB)

At the heart of a mutual exclusion algorithm, e.g. Dekker’s,
you might find code like this, say on an x86.

Two memory locations x and y, initially 0

Thread 0 Thread 1

MOV [x]←1 (write x=1)
MOV [y]←1 (write y=1)

MOV EAX←[y] (read y=1)
MOV EBX←[x] (read x=1)

Thread 0:EAX = 1 Thread 1:EBX=1

p. 9

A Simple Hardware Example (SB)

At the heart of a mutual exclusion algorithm, e.g. Dekker’s,
you might find code like this, say on an x86.

Two memory locations x and y, initially 0

Thread 0 Thread 1

MOV [x]←1 (write x=1)
MOV [y]←1 (write y=1)

MOV EBX←[x] (read x=1)
MOV EAX←[y] (read y=1)

Thread 0:EAX = 1 Thread 1:EBX=1

p. 9

A Simple Hardware Example (SB)

At the heart of a mutual exclusion algorithm, e.g. Dekker’s,
you might find code like this, say on an x86.

Two memory locations x and y, initially 0

Thread 0 Thread 1

MOV [y]←1 (write y=1)
MOV [x]←1 (write x=1)

MOV EAX←[y] (read y=1)
MOV EBX←[x] (read x=1)

Thread 0:EAX = 1 Thread 1:EBX=1

p. 9

A Simple Hardware Example (SB)

At the heart of a mutual exclusion algorithm, e.g. Dekker’s,
you might find code like this, say on an x86.

Two memory locations x and y, initially 0

Thread 0 Thread 1

MOV [y]←1 (write y=1)
MOV [x]←1 (write x=1)

MOV EBX←[x] (read x=1)
MOV EAX←[y] (read y=1)

Thread 0:EAX = 1 Thread 1:EBX=1

p. 9

A Simple Hardware Example (SB)

At the heart of a mutual exclusion algorithm, e.g. Dekker’s,
you might find code like this, say on an x86.

Two memory locations x and y, initially 0

Thread 0 Thread 1

MOV [y]←1 (write y=1)
MOV EBX←[x] (read x=0)

MOV [x]←1 (write x=1)
MOV EAX←[y] (read y=1)

Thread 0:EAX = 1 Thread 1:EBX=0

p. 9

A Simple Hardware Example (SB)
Conclusion:

0,1 and 1,1 and 1,0 can happen, but 0,0 is impossible

p. 10

A Simple Hardware Example (SB)
Conclusion:

0,1 and 1,1 and 1,0 can happen, but 0,0 is impossible

In fact, in the real world:
we observe 0,0 every 630/100000 runs
(on an Intel Core Duo x86)

(and so Dekker’s algorithm will fail)

p. 10

A Simple Compiler Optimisation Example (MP)

Thread 1 Thread 2

data = 1

ready = 1 while (ready != 1) {};

print data

p. 11

A Simple Compiler Optimisation Example (MP)

In SC, message passing should work as expected:

Thread 1 Thread 2

data = 1

ready = 1 if (ready == 1)

print data

In SC, the program should only print 1.

p. 12

A Simple Compiler Optimisation Example (MP)

Thread 1 Thread 2

data = 1 int r1 = data

ready = 1 if (ready == 1)

print data

In SC, the program should only print 1.

Regardless of other reads.

p. 12

A Simple Compiler Optimisation Example (MP)

Thread 1 Thread 2

data = 1 int r1 = data

ready = 1 if (ready == 1)

print data

In SC, the program should only print 1.

But common subexpression elimination (as in gcc -O1 and
HotSpot) will rewrite

print data =⇒ print r1

p. 12

A Simple Compiler Optimisation Example (MP)

Thread 1 Thread 2

data = 1 int r1 = data

ready = 1 if (ready == 1)

print r1

In SC, the program should only print 1.

But common subexpression elimination (as in gcc -O1 and
HotSpot) will rewrite

print data =⇒ print r1

So the compiled program can print 0

p. 12

Relaxed Memory

Multiprocessors and compilers incorporate many performance
optimisations

(hierarchies of cache, load and store buffers, speculative execution,
cache protocols, common subexpression elimination, etc., etc.)

These are:

unobservable by single-threaded code

sometimes observable by concurrent code

Upshot: they provide only various relaxed (or weakly
consistent) memory models, not sequentially consistent
memory.

p. 13

What About the Specs?

Hardware manufacturers document architectures:

Intel 64 and IA-32 Architectures Software Developer’s Manual
AMD64 Architecture Programmer’s Manual
Power ISA specification
ARM Architecture Reference Manual

and programming languages (at best) are defined by
standards:

ISO/IEC 9899:1999 Programming languages – C
J2SE 5.0 (September 30, 2004)

loose specifications,

claimed to cover a wide range of past and future
implementations.

p. 14

What About the Specs?

Hardware manufacturers document architectures:

Intel 64 and IA-32 Architectures Software Developer’s Manual
AMD64 Architecture Programmer’s Manual
Power ISA specification
ARM Architecture Reference Manual

and programming languages (at best) are defined by
standards:

ISO/IEC 9899:1999 Programming languages – C
J2SE 5.0 (September 30, 2004)

loose specifications,

claimed to cover a wide range of past and future
implementations.

Flawed. Always confusing, sometimes wrong. p. 14

What About the Specs?

“all that horrible horribly incomprehensible and
confusing [...] text that no-one can parse or reason
with — not even the people who wrote it”

Anonymous Processor Architect, 2011

p. 15

In practice

Architectures described by informal prose:

In a multiprocessor system, maintenance of cache
consistency may, in rare circumstances, require
intervention by system software.

(Intel SDM, Nov. 2006, vol 3a, 10-5)

p. 16

x86

Intel/AMD/VIA

Scott Owens, Susmit Sarkar, Francesco Zappa Nardelli, ...
p. 17

A Cautionary Tale
Intel 64/IA32 and AMD64 - before August 2007 (Era of
Vagueness)

A model called Processor
Ordering, informal prose

Example: Linux Kernel mail-
ing list, 20 Nov 1999 - 7 Dec
1999 (143 posts)

Keywords: speculation, or-
dering, cache, retire, causal-
ity

A one-instruction program-
ming question, a microarchi-
tectural debate!

1. spin unlock() Optimization On Intel
20 Nov 1999 - 7 Dec 1999 (143 posts) Archive Link: "spin unloc
optimization(i386)"
Topics: BSD: FreeBSD, SMP
People: Linus Torvalds, Jeff V. Merkey, Erich Boleyn, Manfred
Spraul, Peter Samuelson, Ingo Molnar
Manfred Spraul thought he’d found a way to shave spin unloc
down from about 22 ticks for the "lock; btrl $0,%0" asm code
to 1 tick for a simple "movl $0,%0" instruction, a huge gain. Later
he reported that Ingo Molnar noticed a 4% speed-up in a bench-
mark test, making the optimization very valuable. Ingo also
added that the same optimization cropped up in the FreeBSD
mailing list a few days previously. But Linus Torvalds poured cold
water on the whole thing, saying:

It does NOT WORK!
Let the FreeBSD people use it, and let them get faster
timings. They will crash, eventually.
The window may be small, but if you do this, then sud-
denly spinlocks aren’t reliable any more.

p. 18

Resolved only by appeal to
an oracle:

that the piplines are no longer invalid and the buffers
should be blown out.
I have seen the behavior Linus describes on a hard-
ware analyzer, BUT ONLY ON SYSTEMS THAT
WERE PPRO AND ABOVE. I guess the BSD people
must still be on older Pentium hardware and that’s why
they don’t know this can bite in some cases.

Erich Boleyn, an Architect in an IA32 development group at Intel,
also replied to Linus, pointing out a possible misconception
his proposed exploit. Regarding the code Linus posted, Er
replied:

It will always return 0. You don’t need "spin
unlock()" to be serializing.
The only thing you need is to make sure there is a
store in "spin unlock()", and that is kind of true by
the fact that you’re changing something to be observ-
able on other processors.
The reason for this is that stores can only possibly
be observed when all prior instructions have retired
(i.e. the store is not sent outside of the processor until
it is committed state, and the earlier instructions are
already committed by that time), so the any loads,
stores, etc absolutely have to have completed first,
cache-miss or not.

He went on:
Since the instructions for the store in the spin unlock

p. 19

IWP and AMD64, Aug. 2007/Oct. 2008 (Era of Causality)

Intel published a white paper (IWP) defining 8 informal-prose
principles, e.g.

P1. Loads are not reordered with older loads
P2. Stores are not reordered with older stores

supported by 10 litmus tests illustrating allowed or forbidden
behaviours, e.g.

Message Passing (MP)
Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV EAX←[y] (read y=1)

MOV [y]←1 (write y=1) MOV EBX←[x] (read x=0)
Forbidden Final State: Thread 1:EAX=1 ∧ Thread 1:EBX=0

p. 20

P3. Loads may be reordered with older stores to different
locations but not with older stores to the same location

Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[y] (read y=0) MOV EBX←[x] (read x=0)
Allowed Final State: Thread 0:EAX=0 ∧ Thread 1:EBX=0

p. 21

P3. Loads may be reordered with older stores to different
locations but not with older stores to the same location

Store Buffer (SB)
Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[y] (read y=0) MOV EBX←[x] (read x=0)
Allowed Final State: Thread 0:EAX=0 ∧ Thread 1:EBX=0

W
rite B

uffer

W
rite B

uffer

Shared Memory

ThreadThread

p. 21

Litmus Test 2.4. Intra-processor forwarding is allowed
Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[x] (read x=1) MOV ECX←[y] (read y=1)
MOV EBX←[y] (read y=0) MOV EDX←[x] (read x=0)
Allowed Final State: Thread 0:EBX=0 ∧ Thread 1:EDX=0

Thread 0:EAX=1 ∧ Thread 1:ECX=1

p. 22

Litmus Test 2.4. Intra-processor forwarding is allowed
Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[x] (read x=1) MOV ECX←[y] (read y=1)
MOV EBX←[y] (read y=0) MOV EDX←[x] (read x=0)
Allowed Final State: Thread 0:EBX=0 ∧ Thread 1:EDX=0

Thread 0:EAX=1 ∧ Thread 1:ECX=1

W
rite B

uffer

W
rite B

uffer

Shared Memory

ThreadThread

p. 22

Problem 1: Weakness
Independent Reads of Independent Writes (IRIW)

Thread 0 Thread 1 Thread 2 Thread 3

(write x=1) (write y=1) (read x=1) (read y=1)

(read y=0) (read x=0)

Allowed or Forbidden?

p. 23

Problem 1: Weakness
Independent Reads of Independent Writes (IRIW)

Thread 0 Thread 1 Thread 2 Thread 3

(write x=1) (write y=1) (read x=1) (read y=1)

(read y=0) (read x=0)

Allowed or Forbidden?

Microarchitecturally plausible? yes, e.g. with shared store
buffers

W
rite B

uffer

Thread 1 Thread 3

W
rite B

uffer

Thread 0 Thread 2

Shared Memory p. 23

Problem 1: Weakness
Independent Reads of Independent Writes (IRIW)

Thread 0 Thread 1 Thread 2 Thread 3

(write x=1) (write y=1) (read x=1) (read y=1)

(read y=0) (read x=0)

Allowed or Forbidden?

AMD3.14: Allowed

IWP: ???

Real hardware: unobserved

Problem for normal programming: ?

Weakness: adding memory barriers does not recover SC,
which was assumed in a Sun implementation of the JMM

p. 23

Problem 2: Ambiguity

P1–4. ...may be reordered with...

P5. Intel 64 memory ordering ensures transitive visibility of
stores — i.e. stores that are causally related appear to
execute in an order consistent with the causal relation

Write-to-Read Causality (WRC) (Litmus Test 2.5)
Thread 0 Thread 1 Thread 2

MOV [x]←1 (W x=1) MOV EAX←[x] (R x=1) MOV EBX←[y] (R y=1)

MOV [y]←1 (W y=1) MOV ECX←[x] (R x=0)

Forbidden Final State: Thread 1:EAX=1 ∧ Thread 2:EBX=1

∧ Thread 2:ECX=0

p. 24

Problem 3: Unsoundness!
Example from Paul Loewenstein:
n6

Thread 0 Thread 1

MOV [x]←1 (a:W x=1) MOV [y]←2 (d:W y=2)
MOV EAX←[x] (b:R x=1) MOV [x]←2 (e:W x=2)
MOV EBX←[y] (c:R y=0)
Allowed Final State: Thread 0:EAX=1 ∧ Thread 0:EBX=0 ∧ x=1

Observed on real hardware, but not allowed by (any
interpretation we can make of) the IWP ‘principles’.

(can see allowed in store-buffer microarchitecture)

p. 25

Problem 3: Unsoundness!
Example from Paul Loewenstein:
n6

Thread 0 Thread 1

MOV [x]←1 (a:W x=1) MOV [y]←2 (d:W y=2)
MOV EAX←[x] (b:R x=1) MOV [x]←2 (e:W x=2)
MOV EBX←[y] (c:R y=0)
Allowed Final State: Thread 0:EAX=1 ∧ Thread 0:EBX=0 ∧ x=1

In the view of Thread 0:
a→b by P4: Reads may [...] not be reordered with older writes to the same location.
b→c by P1: Reads are not reordered with other reads.
c→d, otherwise c would read 2 from d
d→e by P3. Writes are not reordered with older reads.
so a:Wx=1 → e:Wx=2

But then that should be respected in the final state, by P6: In a multiprocessor system, stores to

the same location have a total order, and it isn’t.

(can see allowed in store-buffer microarchitecture) p. 25

Problem 3: Unsoundness!
Example from Paul Loewenstein:
n6

Thread 0 Thread 1

MOV [x]←1 (a:W x=1) MOV [y]←2 (d:W y=2)
MOV EAX←[x] (b:R x=1) MOV [x]←2 (e:W x=2)
MOV EBX←[y] (c:R y=0)
Allowed Final State: Thread 0:EAX=1 ∧ Thread 0:EBX=0 ∧ x=1

Observed on real hardware, but not allowed by (any
interpretation we can make of) the IWP ‘principles’.

(can see allowed in store-buffer microarchitecture)

So spec unsound (and also our POPL09 model based on it).

p. 25

Intel SDM and AMD64, Nov. 2008 –

Intel SDM rev. 29–35 and AMD3.17

Not unsound in the previous sense

Explicitly exclude IRIW, so not weak in that sense. New
principle:

Any two stores are seen in a consistent order by
processors other than those performing the stores

But, still ambiguous, and the view by those processors is left
entirely unspecified

p. 26

Why all these problems?
Recall that the vendor architectures are:

loose specifications;

claimed to cover a wide range of past and future
processor implementations.

Architectures should:

reveal enough for effective programming;

without revealing sensitive IP; and

without unduly constraining future processor design.

There’s a big tension between these, compounded by internal
politics and inertia.

p. 27

Fundamental Problem

Architecture texts: informal prose attempts at subtle loose
specifications

Fundamental problem: prose specifications cannot be used

to test programs against, or

to test processor implementations, or

to prove properties of either, or even

to communicate precisely.

p. 28

Inventing a Usable Abstraction
Have to be:

Unambiguous

Sound w.r.t. experimentally observable behaviour

Easy to understand

Consistent with what we know of vendors intentions

Consistent with expert-programmer reasoning

Key facts:

Store buffering (with forwarding) is observable

IRIW is not observable, and is forbidden by the recent
docs

Various other reorderings are not observable and are
forbidden

These suggest that x86 is, in practice, like SPARC TSO. p. 29

x86-TSO

Lock

W
rite B

uffer

W
rite B

uffer
Shared Memory

Thread Thread

TPHOLs 2009, Scott Owens, Susmit Sarkar, and Peter Sewell
C. ACM 2010, Sewell, Sarkar, Owens, Zappa Nardelli, Myreen

p. 30

Contrast this Abstract Model with the Real Design

Lock

W
rite B

uffer

W
rite B

uffer

Shared Memory

Thread Thread ⊇beh

6=hw

Force: Of the internal optimizations of x86 processors, only
per-thread FIFO write buffers are visible to programmers.

Still quite a loose spec: unbounded buffers, nondeterministic
unbuffering, arbitrary interleaving

p. 31

x86 ISA: Locked Instructions

Thread 0 Thread 1

INC x INC x

p. 32

x86 ISA: Locked Instructions

Thread 0 Thread 1

INC x (read x=0; write x=1) INC x (read x=0; write x=1)
Allowed Final State: [x]=1

Non-atomic (even in SC semantics)

p. 32

x86 ISA: Locked Instructions

Thread 0 Thread 1

INC x (read x=0; write x=1) INC x (read x=0; write x=1)
Allowed Final State: [x]=1

Non-atomic (even in SC semantics)

Thread 0 Thread 1

LOCK;INC x LOCK;INC x

Forbidden Final State: [x]=1

p. 32

x86 ISA: Locked Instructions

Thread 0 Thread 1

INC x (read x=0; write x=1) INC x (read x=0; write x=1)
Allowed Final State: [x]=1

Non-atomic (even in SC semantics)

Thread 0 Thread 1

LOCK;INC x LOCK;INC x

Forbidden Final State: [x]=1

Also LOCK’d ADD, SUB, XCHG, etc., and CMPXCHG

p. 32

x86 ISA: Locked Instructions

Compare-and-swap (CAS):

CMPXCHG dest←src

compares EAX with dest, then:

if equal, set ZF=1 and load src into dest,

otherwise, clear ZF=0 and load dest into EAX

All this is one atomic step.

Can use to solve consensus problem...

p. 33

x86 ISA: Memory Barriers

MFENCE memory barrier

(also SFENCE and LFENCE)

p. 34

Simple x86 Spinlock
The address of x is stored in register eax.

acquire: LOCK DEC [eax]
JNS enter

spin: CMP [eax],0
JLE spin
JMP acquire

enter:

critical section

release: MOV [eax]←1

From Linux v2.6.24.7

NB: don’t confuse levels — we’re using x86 LOCK’d instructions in implementations of Linux

spinlocks.
p. 35

Reasoning above x86-TSO

Theorem 1 Any program that uses the spinlock correctly (and
is otherwise race-free) will behave as if executed on an SC
machine
Proof: via the x86-TSO axiomatic model

Scott Owens, ECOOP 2010

p. 36

Only the Common-Case Story

What about

mixed-size accesses

non-aligned accesses

self-modifying code

string instructions and non-temporal instructions

other memory types

interactions with virtual memory

interactions with interrupts

...

and hardware transaction support?

p. 37

POWER and ARM

Susmit Sarkar, Luc Maranget, Jade Alglave, Derek Williams

p. 38

Message Passing (MP) Again

MP Pseudocode

Thread 0 Thread 1

x=1 r1=y

y=1 r2=x

Initial state: x=0 ∧ y=0

Allowed?: 1:r1=1 ∧ 1:r2=0 Test MP: Allowed

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

po
rf

po

rf

p. 39

Message Passing (MP) Again

MP Pseudocode

Thread 0 Thread 1

x=1 r1=y

y=1 r2=x

Initial state: x=0 ∧ y=0

Allowed: 1:r1=1 ∧ 1:r2=0 Test MP: Allowed

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

po
rf

po

rf

POWER ARM

Kind PowerG5 Power6 Power7 Tegra2 Tegra3 APQ8060 A5X

MP Allow 10M/4.9G 6.5M/29G 1.7G/167G 40M/3.6G 96k/14M 61k/152M 437k/185M

p. 39

Message Passing (MP) Again

MP Pseudocode

Thread 0 Thread 1

x=1 r1=y

y=1 r2=x

Initial state: x=0 ∧ y=0

Allowed: 1:r1=1 ∧ 1:r2=0 Test MP: Allowed

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

po
rf

po

rf

Microarchitecturally: writes committed, writes propagated,
and/or reads satisfied out-of-order

p. 39

Enforcing Order with Barriers

MP+dmb/syncs Pseudocode

Thread 0 Thread 1

x=1 r1=y

dmb/sync dmb/sync

y=1 r2=x

Initial state: x=0 ∧ y=0

Forbidden: 1:r1=1 ∧ 1:r2=0

MP+dmbs ARM

Thread 0 Thread 1

MOV R0,#1 LDR R0,[R3]

STR R0,[R2] DMB

DMB LDR R1,[R2]

MOV R1,#1

STR R1,[R3]

Initial state: 0:R2=x ∧ 0:R3=y ∧ 1:R2=x

∧ 1:R3=y

Forbidden: 1:R0=1 ∧ 1:R1=0

MP+syncs POWER

Thread 0 Thread 1

li r1,1 lwz r1,0(r2)

stw r1,0(r2) sync

sync lwz r3,0(r4)

li r3,1

stw r3,0(r4)

Initial state: 0:r2=x ∧ 0:r4=y ∧ 1:r2=y

∧ 1:r4=x

Forbidden: 1:r1=1 ∧ 1:r3=0

p. 40

Enforcing Order with Barriers

MP+dmb/syncs Pseudocode

Thread 0 Thread 1

x=1 r1=y

dmb/sync dmb/sync

y=1 r2=x

Initial state: x=0 ∧ y=0

Forbidden: 1:r1=1 ∧ 1:r2=0

MP+dmbs ARM

Thread 0 Thread 1

MOV R0,#1 LDR R0,[R3]

STR R0,[R2] DMB

DMB LDR R1,[R2]

MOV R1,#1

STR R1,[R3]

Initial state: 0:R2=x ∧ 0:R3=y ∧ 1:R2=x

∧ 1:R3=y

Forbidden: 1:R0=1 ∧ 1:R1=0

MP+syncs POWER

Thread 0 Thread 1

li r1,1 lwz r1,0(r2)

stw r1,0(r2) sync

sync lwz r3,0(r4)

li r3,1

stw r3,0(r4)

Initial state: 0:r2=x ∧ 0:r4=y ∧ 1:r2=y

∧ 1:r4=x

Forbidden: 1:r1=1 ∧ 1:r3=0

POWER ARM

Kind PowerG5 Power6 Power7 Tegra2 Tegra3 APQ8060 A5X

MP Allow 10M/4.9G 6.5M/29G 1.7G/167G 40M/3.6G 96k/14M 61k/152M 437k/185M

MP+dmbs/syncs Forbid 0/6.9G 0/34G 0/252G 0/12G 0/8.3G 0/10G 0/2.2G

MP+lwsyncs Forbid 0/6.9G 0/34G 0/220G — — — —

p. 40

Enforcing Order with Dependencies

Test MP+dmb/sync+addr’: Forbidden

Thread 0

a: W[x]=1

b: W[y]=&x

c: R[y]=&x

Thread 1

d: R[x]=0

dmb/sync
rf

addr

rf

MP+dmb/sync+addr′ Pseudocode

Thread 0 Thread 1

x=1 r1=y

dmb/sync

y=&x r2=*r1

Initial state: x=0 ∧ y=0

Forbidden: 1:r1=&x ∧ 1:r2=0

p. 41

Enforcing Order with Dependencies

Test MP+dmb/sync+addr: Forbidden

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

dmb/sync
rf

addr

rf

MP+dmb/sync+addr Pseudocode

Thread 0 Thread 1

x=1 r1=y

dmb/sync r3=(r1 xor r1)

y=1 r2=*(&x + r3)

Initial state: x=0 ∧ y=0

Forbidden: 1:r1=1 ∧ 1:r2=0

NB: your compiler will not understand this stuff!

p. 41

Enforcing Order with Dependencies

Test MP+dmb/sync+ctrl: Allowed

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

dmb/sync
rf

ctrl

rf

MP+dmb/sync+ctrl

Thread 0 Thread 1

x=1 r1=y

dmb/sync if (r1 == 1)

y=1 r2=x

Initial state: x=0 ∧ y=0

Allowed: 1:r1=1 ∧ 1:r2=0

Fix with ISB/isync instruction between branch and second
read

p. 41

Enforcing Order with Dependencies

Read-to-Read: address and control-isb/control-isync
dependencies respected; control dependencies not respected

Read-to-Write: address, data, and control dependencies all
respected

(all whether natural or artificial)

p. 41

Core Semantics

Unless constrained, instructions can be executed out-of-order
and speculatively

i1 i2 i3 i4 i5

i6

i8

i7

i9

i10

i13

i11 i12

p. 42

Iterated Message Passing and Cumulative Barriers

WRC-loop Pseudocode

Thread 0 Thread 1 Thread 2

x=1 while (x==0) {} while (y==0) {}

y=1 r3=x

Initial state: x=0 ∧ y=0

Forbidden?: 2:r3=0

p. 43

Iterated Message Passing and Cumulative Barriers

Test WRC: Allowed

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: W[y]=1

d: R[y]=1

Thread 2

e: R[x]=0

rf
po

rf
porf

WRC Pseudocode

Thread 0 Thread 1 Thread 2

x=1 r1=x r2=y

y=1 r3=x

Initial state: x=0 ∧ y=0

Allowed: 1:r1=1 ∧ 2:r2=1 ∧ 2:r3=0

p. 43

Iterated Message Passing and Cumulative Barriers

Test WRC+addrs: Allowed

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: W[y]=1

d: R[y]=1

Thread 2

e: R[x]=0

rf
addr

rf
addrrf

WRC+addrs Pseudocode

Thread 0 Thread 1 Thread 2

x=1 r1=x r2=y

*(&y+r1-r1) = 1 r3 = *(&x + r2 - r2)

Initial state: x=0 ∧ y=0

Allowed: 1:r1=1 ∧ 2:r2=1 ∧ 2:r3=0

p. 43

Iterated Message Passing and Cumulative Barriers

Test WRC+dmb/sync+addr: Forbidden

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: W[y]=1

d: R[y]=1

Thread 2

e: R[x]=0

rf
dmb/sync

rf
addrrf

WRC+dmb/sync+addr Pseudocode

Thread 0 Thread 1 Thread 2

x=1 r1=x r2=y

dmb/sync r3 = *(&x + r2 - r2)

y=1

Initial state: x=0 ∧ y=0

Forbidden: 1:r1=1 ∧ 2:r2=1 ∧ 2:r3=0

p. 43

Iterated Message Passing and Cumulative Barriers

POWER ARM

Kind PowerG5 Power6 Power7 Tegra3

WRC Allow 44k/2.7G 1.2M/13G 25M/104G 5.9k/7.2M

WRC+addrs Allow 0/2.4G 225k/4.3G 104k/25G 0/4.0G

WRC+dmb/sync+addr Forbid 0/3.5G 0/17G 0/158G 0/4.0G

WRC+lwsync+addr Forbid 0/3.5G 0/17G 0/138G —

ISA2 Allow 3/91M 72/26M 1.0k/3.8M 4.9k/1.0M

ISA2+dmb/sync+addr+addr Forbid 0/2.3G 0/8.3G 0/55G 0/4.0G

ISA2+lwsync+addr+addr Forbid 0/2.3G 0/8.3G 0/55G —

p. 43

Independent Reads of Independent Writes

Test IRIW+addrs: Allowed

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: R[y]=0

Thread 2

d: W[y]=1 e: R[y]=1

Thread 3

f: R[x]=0

rf
addr

rf
addr

rf

rf

IRIW+addrs Pseudocode

Thread 0 Thread 1 Thread 2 Thread 3

x=1 r1=x y=1 r3=y

r2=*(&y+r1-r1) r4=*(&x+r3-r3)

Initial state: x=0 ∧ y=0 ∧ z=0

Allowed: 1:r1=1 ∧ 1:r2=0 ∧ 3:r3=1 ∧ 3:r4=0

Like SB, this needs two DMBs or syncs (lwsyncs not enough).
p. 44

Storage Subsystem Semantics

Have to consider writes as propagating to each other thread

No global memory

p. 45

Load Buffering (LB)

Test LB: Allowed

Thread 0

a: R[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: W[x]=1

po
rf rf

po

LB Pseudocode

Thread 0 Thread 1

r1=x r2=y

y=1 x=1

Initial state: x=0 ∧ y=0

Allowed: r1=1 ∧ r2=1

Fix with address or data dependencies:
POWER ARM

Kind PowerG5 Power6 Power7 Tegra2 Tegra3 APQ8060 A5X

LB Allow 0/7.4G 0/37G 0/258G 1.5M/3.6G 124k/14M 53/162M 1.3M/185M

LB+addrs Forbid 0/6.9G 0/34G 0/216G 0/12G 0/8.3G 0/10G 0/2.2G

LB+datas Forbid 0/6.9G 0/34G 0/252G 0/4.1G 0/3.5G 0/1.6G 0/2.2G

p. 46

Coherence

Reads and writes to each location in isolation behave SC
CoRR1: rf,po,fr forbidden

Test CoRR1

Thread 0

a: W[x]=2 b: R[x]=2

Thread 1

c: R[x]=1

rf
po

rf

CoRW: rf,po,co forbidden

Test CoRW

Thread 0

a: R[x]=2

b: W[x]=1

c: W[x]=2

Thread 1

po
corf

CoWR: co,fr forbidden

Test CoWR

Thread 0

a: W[x]=1

b: R[x]=2

Thread 1

c: W[x]=2

po
co

rf

CoWW: po,co forbidden

Test CoWW: Forbidden

Thread 0

b: W[x]=2

a: W[x]=1

copo

CoRW1: po,rf forbidden

Test CoRW1: Forbidden

Thread 0

b: W[x]=1

a: R[x]=1

rfpo

p. 47

Another Cautionary Tale: PPOAA/PPOCA

Test PPOAA: Forbidden

Thread 0

a: W[z]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: W[x]=1

e: R[x]=1

f: R[z]=0

dmb/sync
rf

addr

rf

addrrf

p. 48

Another Cautionary Tale: PPOAA/PPOCA

Test PPOAA: Forbidden

Thread 0

a: W[z]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: W[x]=1

e: R[x]=1

f: R[z]=0

dmb/sync
rf

addr

rf

addrrf

POWER ARM

Kind PowerG5 Power6 Power7 Tegra2 Tegra3 APQ8060 A5X

PPOCA Allow 1.1k/3.4G 0/43G 175k/157G 0/12G 0/8.3G 231/159M 0/2.2G

PPOAA Forbid 0/3.4G 0/40G 0/209G 0/12G 0/8.3G 0/10G 0/2.2Gp. 48

Under the Hood

1. read docs

2. experiment

3. build formal models

4. tools to compare their predictions vs experiment

5. work with designers

6. prove facts about compilation

7. goto 2

(Papers in POPL09, TPHOLs09, CAV10, POPL11, PLDI11,
POPL12, PLDI12, CAV12)

p. 49

DEMO

p. 50

Java and C11/C++11

Mark Batty, Suresh Jagannathan, Scott Owens, Susmit Sarkar,
Jaroslav Ševčík , Viktor Vafeiadis, Tjark Weber, Francesco

Zappa Nardelli

p. 51

Data-Race Freedom as a Definition
H/W memory models define (albeit loosely) the behaviour of
all programs, and we have theorems that race-free programs
behave SC. Instead, for PLs can define:

programs that are race-free in SC semantics have SC
behaviour

programs that have a race in some execution in SC
semantics can behave in any way at all

Sarita Adve & Mark Hill, 1990

p. 52

Data-Race Freedom as a Definition
Core of C11 and C++11 [Boehm & Adve, PLDI 2008]. Pro:

Simple! ‘Programmer-Centric’

Strong guarantees for most code

Allows lots of freedom for compiler and hardware
optimisations

Con:

programs that have a race in some execution in SC
semantics can behave in any way at all

Undecidable premise.

Imagine debugging: either bug is X ... or there is a potential race in
some execution

No guarantees for untrusted code

restrictive. Forbids those fancy concurrent algorithms

need to define exactly what a race is (in libraries?) p. 52

Java
Java has integrated multithreading, and it attempts to specify
the precise behaviour of concurrent programs.

By the year 2000, the initial specification was shown:

to allow unexpected behaviours;

to prohibit common compiler optimisations,

to be challenging to implement on top of a
weakly-consistent multiprocessor.

Superseded around 2004 by the JSR-133 memory model.
The Java Memory Model, Jeremy Manson, Bill Pugh & Sarita Adve, POPL05

p. 53

Java: JSR-133

Goal 1: data-race free programs are sequentially
consistent;

Goal 2: all programs satisfy some memory safety and
security requirements; (no reads out of thin air)

Goal 3: common compiler optimisations are sound.

p. 54

Java: JSR-133 — Unsoundness

The model is intricate, and fails to meet Goal 3.: Some
optimisations may generate code that exhibits more
behaviours than those allowed by the un-optimised source.

As an example, JSR-133 allows r2=1 in the optimised code
below, but forbids r2=1 in the source code:

x = y = 0

r1=x r2=y

y=r1 x=(r2==1)?y:1

HotSpot optimisation
−→

x = y = 0

r1=x x=1

y=r1 r2=y

Jaroslav Ševčík & Dave Aspinall, ECOOP 2008

p. 55

C11 and C++11
(replacing decades of unfounded reliance on POSIX library
spec)

normal loads and stores

lock/unlock

atomic operations (load, store, read-modify-write, ...)
seq cst

relaxed, consume, acquire, release, acq rel

Idea: if you only use SC atomics, you get DRF guarantee
Non-SC atomics there for experts.

Informal-prose spec., originally flawed in various ways — fixed
following formalisation work by Mark Batty

p. 56

Compiling Down?

verified compilation scheme from C/C++11 to x86-TSO

verified compilation scheme from C/C++11 to POWER

verified compiler (CompCertTSO) from Clight-TSO to
x86-TSO

p. 57

Computer Science?

p. 58

The End

Thanks!

Jade Alglave, Mark Batty, Luc Maranget, Scott Owens, Susmit
Sarkar, Derek Williams, Francesco Zappa Nardelli...

p. 59

	Who Needs to Know?
	�ontfamily {yfrak}selectfont Large {}color {black}{The Golden Age, 1945--1959}
	�ontfamily {yfrak}selectfont Large {}color {black}{Programs}
	�ontfamily {yfrak}selectfont Large {}color {black}Multiprocessors
	�ontfamily {yfrak}selectfont Large {}color {black}The Ghost of Multiprocessors Past
	�ontfamily {yfrak}selectfont Large {}color {black}The Ghost of Multiprocessors Present
	Multiprocessors --- with SC Shared Memory?
	A Simple Hardware Example (SB)
	A Simple Hardware Example (SB)
	A Simple Hardware Example (SB)
	A Simple Hardware Example (SB)
	A Simple Hardware Example (SB)
	A Simple Hardware Example (SB)
	A Simple Hardware Example (SB)

	A Simple Hardware Example (SB)
	A Simple Hardware Example (SB)

	A Simple Compiler Optimisation Example (MP)
	A Simple Compiler Optimisation Example (MP)
	A Simple Compiler Optimisation Example (MP)
	A Simple Compiler Optimisation Example (MP)
	A Simple Compiler Optimisation Example (MP)

	Relaxed Memory
	What About the Specs?
	What About the Specs?

	What About the Specs?
	In practice
	A Cautionary Tale
	
ormalsize IWP and AMD64, Aug.~2007/Oct.~2008 (Era of Causality)
	Problem 1: Weakness
	Problem 1: Weakness
	Problem 1: Weakness

	Problem 2: Ambiguity
	Problem 3: Unsoundness!
	Problem 3: Unsoundness!
	Problem 3: Unsoundness!

	
ormalsize Intel SDM and AMD64, Nov.~2008 --
	Why all these problems?
	Fundamental Problem
	Inventing a Usable Abstraction
	x86-TSO
	Contrast this emph {Abstract} Model with the Real Design
	x86 ISA: Locked Instructions
	x86 ISA: Locked Instructions
	x86 ISA: Locked Instructions
	x86 ISA: Locked Instructions

	x86 ISA: Locked Instructions
	x86 ISA: Memory Barriers
	Simple x86 Spinlock
	Reasoning above x86-TSO
	Only the Common-Case Story
	Message Passing (MP) Again
	Message Passing (MP)
Again
	Message Passing (MP)
Again

	Enforcing Order with Barriers
	Enforcing Order with Barriers

	Enforcing Order with Dependencies
	Enforcing Order with Dependencies
	Enforcing Order with Dependencies
	Enforcing Order with Dependencies

	Core Semantics
	Iterated Message Passing and Cumulative Barriers
	Iterated Message Passing and Cumulative Barriers
	Iterated Message Passing and Cumulative Barriers
	Iterated Message Passing and Cumulative Barriers
	Iterated Message Passing and Cumulative Barriers

	Independent Reads of Independent Writes
	Storage Subsystem Semantics
	Load Buffering (LB)
	Coherence
	Another Cautionary Tale: PPOAA/PPOCA
	Another Cautionary Tale: PPOAA/PPOCA

	Under the Hood
	DEMO
	Data-Race Freedom as a Definition
	Data-Race Freedom as a Definition

	Java
	Java: JSR-133
	Java: JSR-133 --- Unsoundness
	C11 and C++11
	Compiling Down?
	Computer Science?

