
Programming Language

Maintenance & Evolution

Raoul-­‐‑Gabriel Urma	

Alan Mycroft

raoul.urma@cl.cam.ac.uk

alan.mycroft@cl.cam.ac.uk

Projects

Current Work

1

Programming languages evolve over time. New features are added to
match new needs of developers and to make programming simpler.
However, developers do not always adopt such features at the same
rate. At the same time, some features become obsolete because newer
features make them redundant. However, they often remain in future
versions of the language in order to maintain backward compatibility. As
a result, language designers are left with a programming language that
is increasingly more complex to maintain and understand.

2
 3
Discovering Language Idioms
A Platform for Studying
Language Features

Automated Adapter

Generations

for(int i = 0; i < array.length; i++)

{

 Object o = array[i];

}

for(Object o : array)

{

}

Map.put(k,v1);

Map.put(k,v2);

Map.get(k); // v2

Multimap.put(k,v1);

Multimap.put(k,v2);

Multimap.get(k); // {v1, v2}

Map.put(k,v)

=

Multimap.removeAll(k);

Multimap.put(k,v);

Empirical studies are critical to understand how
programming language features are used in
practice. They provide answers to questions
that help programming languages to evolve.

However, conducting such studies can be
difficult and time consuming. For example,
analyzing the usage frequency of a specific
language feature or idiom requires writing
complex static analysis and reporting tools.

We are working on a new platform that
automates the analysis of language features in
Java. It comprises a corpus of open-source
software, a source code query language as well
as an automated reporting tool.

In the long run we aim to extend this platform
to be language agnostic.

Java introduced a more compact loop form
to help programmers iterate over
collections. This is an example of a
language idiom that was built in the
language to help code readability and make
life simpler for programmer.

We intend to develop a technique that
discovers such idioms. This way
contributing to evolving programming
languages closer to programmers’ needs.

Migrations between classes is difficult. In fact,
a legacy class may not be quite compatible
with its replacement. Consequently, the
operations of the legacy class can differ from
its replacement and their properties can be
different. As a result, such refactoring is time
consuming and require programmers to be
extremely careful in order to preserve semantic
behaviour of the transformed program.

We are working on a method that dynamically
extracts common properties and highlights
differences between a legacy class and its
replacement in order to help such migrations.
Java 1.4

Java 5.0

An Empirical Study of Variance

in Object-Oriented languages

Java Corpus Tools

Variance constructs were introduced to increase the flexibility of object-
oriented programming languages supporting generics. There are two
approaches to specifying variance: declaration-site variance, which is
simple but restrictive, and use-site variance, which is more flexible but
more complex. However, it remains unclear how programmers use the
flexibility provided by variance, and whether they use it at all.

We undertake three studies to understand how programmers use
variance in real programs:

-  Investigation of Covariant Arrays in Java

-  Investigation of wildcards (use-site variance) in Java

-  Investigation of declaration-site variance in C# and Scala

Corpus of Java software

Annotation
Processor

Query
Language
Report

We are working on a prototype of our project to create a platform for
studying language features. It is based on a corpus (5M loc) of Java
software, an annotation processor to analyse the AST of the software
and a query language that reports how Java features are used.

In further work, we intend to pre-index the source code of the
software ahead of time for fast query response.

