
A Two-Tiered Index Architecture for Scalable RDF Processing

Sairam Gurajada and Martin Theobald {gurajada,mtb} @ mpi-inf.mpg.de

“Vincent ’Onofrio”
Vincent_donofrio

Law_&_order_criminal_intent

tv_show Chris_not

h

Sex_and_the_city

The_thirteenth_floo

r

“1999” movie

matrix

has_name

starred_in starred_in

released_in is_a

is_a released_in

is_a

is_a starred_in

starred_in

similar_plot_as

Who acted in a “tv-show” as
well as in a “movie”?
Vincent Donofrio is one answer

?x

?name

?y

tv_show

?z

movie

has_name

starred_in starred_in

is_a is_a

RDF (Graph structured knowledge base) SPARQL Query

Introduction

Motivation

How to scale RDF System?
• Over 30 Billion triples in the linked data cloud
• Distributed Approach

Challenges
• Minimize inter-node communication by effective partitioning and

replication approaches
• Parallel query processing and effecient load balancing

Existing Approaches

• Distribute the triples by applying hashing on Subject or Object
Inefficient to answer path queries, but Efficient load balancing

• Use graph clustering algorithms on large RDF graph and
distribute the triples with 1 or 2-hop replication

 Poor load balancing, but efficient in processing path queries?

SQL Query
Processor

Subject Property Object

SPARQL to SQL
Convertor

RDF Triple Store – Relational Model

Problem Statement
• A Partitioner P partitions the RDF graph G into (G1, G2, G3... Gk)
• A query Q which requires multiple (m per say) partitions to answer

is split in to (Q1, Q2,... Qm)
• Let Ri be the set of results returned by executing Qi

independently on partition Gi .
• During join operation ,
 - Ri results are shiped to partition Rj (Ri < Rj) and joined to form
 result set Rij (<< Ri and << Rj)
 - Tuples Communicated: Ri

• How to optimize the number of tuples communicated in a

join operation? which requries filtering out some of the
tuples in Ri that do not participate in the join operation

 Our Idea is to have a “Two-Tiered Index archiecture”
 Tier 1 : Super graph index contains the summary of original
 graph
 Tier 2 : Original graph index

• Queries are first posed to Super graph index which directs the

search over regular graph index at cluster nodes

• How to build Super Graph (Summary graph) from RDF graph?
• Indexing approaches for Super Graph and regular RDF graph
• Can the state of the art single site RDF systems can be used locally

at each slave?
• How to design a replicator for two-tiered index architecture
•

References:
1) Jiewen Huang, Daniel J. Abadi, Kun Ren: Scalable SPARQL Querying of

Large RDF Graphs. PVLDB 4(11): 1123-1134 (2011)
2) Thomas Neumann, Gerhard Weikum: The RDF-3X engine for scalable

management of RDF data. VLDB J. 19(1): 91-113 (2010)
3) Lei Zou et al. gStore: answering SPARQL queries via subgraph matching,
VLDB 2011
4)Sairam Gurajada, P. Sreenivas Kumar: On-line index maintenance using
horizontal partitioning. CIKM 2009: 435-444

Architecture

Current work

MPI2 :Message Passing Interface @ MPI

Large (RDF)

Graph

Node1

In-memory

RDF Store

Node 2

In-memory

RDF Store

Node N

In-memory

RDF Store

.........

Query Processor
Super Graph

Index
Partitioner/

Replicator

2

1

