
Theory for Transactional Memory

Srivatsan Ravi, T-Labs, TU Berlin

Context

We face an increasing demand for reliable globe-scale
services, the continuous rise of decentralized computing
systems, and the emerging challenges for exploiting
concurrency in multi-core processors. All computing systems
nowadays are concurrent.

Better understanding of fundamentals is needed!

What is Transactional Memory?

Exploit multi-core concurrency through an easy-to-use
programming interface.

Concurrent program as a sequence of transactions.

All or nothing semantics: Aborted transaction does not

“take effect”.

Tune concurrency by specifying “progress” conditions

that define when transactions are allowed to abort.

Correctness of Transactional programs and their inherent

limitations not well understood.

Moore’s law does not extend to

the CPU’s clock speed

anymore. The danger is that

computers turn into appliances

like washing machines. Do we

have an answer to this?

How to share a Sequential

Program? PODC '12 (BA)

There are many sequential implementations of

data structures (queues, trees, skip lists, hash

tables,…)

What if we use an automated “wrapper” that

turns a sequential data structure into a

concurrent one? The user runs the sequential

code and lets the wrapper care about

concurrency issues.

How? Locks, transactional memory…

 New correctness criterion: linearizability + local

serializability

 New efficiency metric: amount of concurrency

 Relative efficiency analysis for (seemingly)

incomparable synchronization techniques (e.g.,

transactional memory vs. fine-grained locking)

Locks vs Transactional Memory? Fine-grained

locking provides more concurrency than conflict-

resolving TMs.

TMs that ensure better progress not superseded

by locks.

Selected References
P. Kuznetsov, S. Ravi: On the Cost of Concurrency
in Transactional Memory. OPODIS 2011

V. Gramoli, P.Kuznetsov, S.Ravi: Sharing a
Sequential Program-Correctness and Concurrency
Analysis. Corr/abs/1203.4751

What is Transactional Memory?

Exploit multi-core concurrency through an easy-to-use
programming interface.

Concurrent program as a sequence of transactions.

All or nothing semantics: Aborted transaction does not

“take effect”.

Tune concurrency by specifying “progress” conditions

that define when transactions are allowed to abort.

Correctness of Transactional programs and their inherent

limitations not well understood.

What is Transactional Memory(TM)?

Exploit multi-core concurrency through an easy-to-use
programming interface.

Concurrent program as a sequence of transactions.

All or nothing semantics: Aborted transaction does not

“take effect”.

Tune concurrency by specifying “progress” conditions

that define when transactions are allowed to abort.

Correctness of Transactional programs and their inherent

limitations not well understood.

 Cost of progress,

OPODIS’11

Relaxed memory models: certain

synchronizations patterns incur

high fence cost (cache validation)

We derive inherent fence

complexity of transactional

memory based on its progress

properties: from progresiveness

(minimal progress with constant

Cost) to permissiveness (maximal

progress with linear cost).

Progressive implementations must

“protect” every object in the write

set of a transaction at some point

of time in the execution.

Read-after-write
(RAW) fence:
enforce the order

 write(X,1)

 fence()

 read(Y)

What is Transactional Memory(TM)?

Exploit multi-core concurrency through an easy-to-use
programming interface.

Concurrent program as a sequence of transactions.

All or nothing semantics: Aborted transaction does not

“take effect”.

Tune concurrency by specifying “progress” conditions

that define when transactions are allowed to abort.

Correctness of Transactional programs and their inherent

limitations not well understood.

What is Transactional Memory(TM)?

Exploit multi-core concurrency through an easy-to-use
programming interface.

Concurrent program as a sequence of transactions.

All or nothing semantics: Aborted transaction does not

“take effect”.

Tune concurrency by specifying “progress” conditions

that define when transactions are allowed to abort.

Correctness of Transactional programs and their inherent

limitations not well understood.

What is Transactional Memory(TM)?

Exploit multi-core concurrency through an easy-to-use
programming interface.

Concurrent program as a sequence of transactions.

All or nothing semantics: Aborted transaction does not

“take effect”.

Tune concurrency by specifying “progress” conditions

that define when transactions are allowed to abort.

Correctness of Transactional programs and their inherent

limitations not well understood.

Future Work

Understand which data structures are better suited to
which synchronization technique.

Future multi-core architectures will have support for
running short small transactions. Understand how
best to use this hardware support and derive lower
bounds for concurrent objects with access to such a
primitive with specific progress guarantees.

What is the weakest safety property for TMs that
allows aborted transactions to observe consistent
memory states?

.

