
1

From Transactions to Dataflow
and Back Again

Mikel Luján

Advanced Processor Technologies Group

University of Manchester

http://www.cs.manchester.ac.uk/apt

2

From Transactions to Dataflow
and Back Again

M. Ansari, C. Kotselidis, B. Khan, M. Horsnell, K.
Jarvis, S. Khan, D. Goodman, C. Seaton, C. Kirkham,

I. Watson & M. Lujan

Advanced Processor Technologies Group

University of Manchester

http://www.cs.manchester.ac.uk/apt

3

Multi-cores

APT Group and Manchester

4

Asynchronous Systems

Advanced Processor Technologies

Networks-

on-Chip
Sw/Hw/ML

Mikel Lujan

Gavin Brown

Ian Watson

Multi-Core

Chips

Low-

Power

Systems

Neural Systems

Engineering

Steve Furber

Jim Garside

Dave Lester

GAELS

Jim Garside

Steve Furber

3D VLSI

V. Pablidis

Virtualization

nn A. Rawsthorne

5

 Multi-cores == Terror Movie?

 Business volume
 Hardware $200K millons
 Software $2K billons

6

Roadmap for today

 APT Group Intro & Need for SW/HD co-design
 Lee’s algorithm

 Understand the problem
 Parallel implementations

 Different choices
 Lessons

 Transactional Memory
 Basic concept
 Lee with transactions

 Performance analysis
 Improving performance
 Teraflux

7

Circuit Routing

8

Definitions

 Grid: a three dimensional

 Layer: is the combination of a conductive layer
and non-conductive one

 Via: connection among the different layers

 Cell: a point in the grid

 Route: a set of contiguous cells that reach
from the source cell to the destination cell

 Obstacle: one cell (or set of cells) that cannot
belong to any route

9

Problem definition

 Input:
• Description of the board

• List of cell pairs
- (source, destination)

 Output:
• list of routes

 Program:
• Automatically generate the routes so that the

routes do not contain cells in common while offering
the best “electrical properties”.

10

D

S

Lee’s algorithm

11

What kind of routes can we
guarantee to have found?

12

Example of routes:
 disallowed vs allowed

13

Lee’s algorithm (pseudo code)

Grid grid

for i in list of routes {

 expand (from source to destination)

 traceBack (from destination to origin)

 cleanup(expansion)

}

14

Roadmap for today

 APT Group Intro & Need for SW/HD co-design
 Lee’s algorithm

 Understand the problem
 Parallel implementations

 Different choices
 Lessons

 Transactional Memory
 Basic concept
 Lee with transactions

 Performance analysis
 Improving performance
 Teraflux

15

My turn – Parallel Lee

Grid grid

ListOfRoutes myRoutes // subset of routes

for my_i in myRoutes {

 acquire lock(grid)

 expand(from origin to destination)

 traceBack (from destination to origin)

 cleanup(expansion)

 release lock(grid)

}

16

Our turn – Towards Parallel Lee v2.0

Grid grid

for i in list of routes {

 expand (from source to destination)

 traceBack (from destination to origin)

 cleanup(expansion)

}

17

Our turn – Parallel Lee v2.0

Grid grid
VectorOfLocks vector
SynchronizedQueueOfRoutes queue, queueForLongRoutes

while (thereAreMoreRoutes & IAmActive) {
 nextRoute (queue)
 determine to which grid partition route belongs // coordinates
 if route fits within partition{
 acquire lock(vector, coordinates for partition)
 expand (from source to destination)
 traceBack(from destination to origin)
 clenup (expansion)
 release lock(vector, coordinates for partition)
 }
 else {
 add route to queueForLongRoutes
 }
 // decide whether IAmActive still, grow partition & swap
 // queue andqueueForLongRoutes

}

18

Your turn – Towards Parallel Lee v3.0

Grid grid

for i in list of routes {

 expand (from source to destination)

 traceBack (from destination to origin)

 cleanup(expansionGrid)

}

19

A pause for reflection

 Parallel programming -> easy/complex

 Deadlock/livelock

 Composing parallel libraries

 Message passing vs. shared memory

 Memory model (SC, relaxed)

 Can we offer these abstractions to expert
software developers? To high productivity
ones?

20

Roadmap for today

 APT Group Intro & Need for SW/HD co-design
 Lee’s algorithm

 Understand the problem
 Parallel implementations

 Different choices
 Lessons

 Transactional Memory
 Basic concept
 Lee with transactions

 Performance analysis
 Improving performance
 Teraflux

21

Transactional Memory
Hype – Big Promises

 Composition

 Easy to use as a single global lock

 As efficient as fine grain locking

22

One transaction in databases?

 ACID
• Atomicity: is the property which guarantees that

every operation has been performed or none at all
(never halfway)

• Consistency: is the property which guarantees that
read and written values are coherent

• Isolation: is the property which guarantees that one
transaction will not be affected by another
transaction

• Durability: is the prosperity which guarantees persistent data

23

Transactional Memory - Syntax

synchronized(foo) {

 x++;

 y++;

 z++;

}

atomic {

 x++;

 y++;

 z++;

}

24

Locks - Example

T1:

synchronized(foo) {

 x++;

 y++;

 z++;

}

T2:
synchronized(foo) {
 x++;

 y++;

 z++;

}

25

Locks – Example two

T1:

synchronized(foo) {

 x++;

 y++;

 z++;

}

T2:
synchronized(foo) {
 a++;

 b++;

 c++;

}

26

Transactional Memory – Example two

T1:

atomic {

 x++;

 y++;

 z++;

}

T2:
atomic {
 a++;

 b++;

 c++;

}

27

Sets and conflict detection

 {y, z} read set
 {x} write set

 Transaction Tx1 will have a

conflict with another parallel
executing transaction
IFF the intersection of the

sets is not empty

Which ones?

Tx1:

atomic {

 x = y + z;

}

28

Transactional Memory - Requirements

 To be able to store the read set and the write
set

 To be able to computer the intersection of the
sets

 When one Tx executes optimistically -> to be
able of restore the state of the program and
computer architecture to the state before the
transaction started

29

TM Implementations (landscape)

 Granularity

 Conflict detection (eager vs. lazy)

 Speculative state (write operations)

 Software (DSTM2, RSTM, tinySTM, TL2,
DiSTM, etc.)

 Hardware (TCC, LogTM, Rock,…) & Haswell

 Hybrid (Rock, Intel Research, Microsoft
Research)

30

Roadmap for today

 Multi-core: ubiquitous and future trends
 Lee’s algorithm

 Understand the problem
 Parallel implementations

 Different choices
 Lessons

 Transactional Memory
 Basic concept
 Lee with transactions

 Performance analysis
 Improving performance
 Teraflux

31

Lee’s algorithm (pseudo code)

Grid grid

for i in list of routes {

 expand (from source to destination)

 traceBack (from destination to origin)

 cleanup(expansion)

}

32

Transaccional Lee (pseudo code)

Grid grid

forall routes { // work queue

 atomic{

 expand (from source to destination)

 traceBack (from destination to origin)

 cleanup(expansion)

 }

}

33

Can we improve it?

 Privatization

34

Transactional Lee (privatization)

Grid grid

forall routes { // work queue
 atomic{
 Grid local
 expansion (from source to destination)
 // read global & write local
 traceBack (from destination to origin)
 // read local & write global
 // NO: cleanup(expansion)
 }
}

35

We’ll look at the performance later

 But, have we reached the optimum?

36

Routes: disallowed vs allowed

37

Transactional Lee (privatization)

Grid grid

forall routes { // work queue
 atomic{
 Grid local
 expansion (from source to destination)
 // read global & write local
 traceBack (from destination to origin)
 // read local & write global
 // NO: cleanup(expansion)
 }
}

38

Transactional Lee (early release)

Grid grid

forall routes { // work queue
 atomic{
 Grid local
 expansion (from source to destination)
 // ER: read global & write local
 traceBack (from destination to origin)
 // read local, compare with global &
 // write global
 // NO: cleanup(expansion)
 }
} // We are not advocating for early release

39

Roadmap for today

 Multi-core: ubiquitous and future trends
 Lee’s algorithm

 Understand the problem
 Parallel implementations

 Different choices
 Lessons

 Transactional Memory
 Basic concept
 Lee with transactions

 Performance analysis
 Improving performance
 Teraflux

40

Experiment: abstract TM

#Iterations 305 227 14

1st Iteration 79 118 697

Failed
attempts

89534 53838 374

Lee-TM Lee-TM

privatization

Lee-TM

early release

 1506 routes
 Routes shorted in increasing order
 Algorithm tries to avoid “spaghetti” routes

41

Experiment: abs. TM (pending routes)

42

Experiment: abs. TM
(#iterations vs. #processors)

43

Experiment abss TM
(#executed transactions)

44

Experiment with DSTM2 on 8-core AMD

0

50

100

150

200

250

300

350

400

0 2 4 6 8 10

Threads

T
im

e
 (

s
) Coarse

Medium

TM

TM-ER

45

Experiment with our HardwareTM

46

Roadmap for today

 APT Group Intro & Need for SW/HD co-design
 Lee’s algorithm

 Understand the problem
 Parallel implementations

 Different choices
 Lessons

 Transactional Memory
 Basic concept
 Lee with transactions

 Performance analysis
 Improving performance
 Teraflux

47

Transactional Lee: a closer look (DSTM2)

Percentage of All Transactions that were

Successful (Committed) Transactions

0

10

20

30

40

50

60

70

80

90

100

Time

P
e
rc

e
n

ta
g

e

48

Control (auto-tune) number of transaction

 TM applications can exhibit different phases
with different levels of parallelism

 Relation between the number of transaction
executing without conflicts and the amount of
parallelism available in an application utilizable

Constant

Time

E
P

Periodic

Time

E
P

Random

Time

E
P

49

How can we make it work?

 Use TCR as an approximation to the amount of
parallelism available

 Transaction Commit Rate (TCR)
• NumCommittedTx/NumTotalTx (in a give period of time)

• If is high -> allow more parallel executing transactions

• If is low -> allow fewer parallel executing transactions

50

Results
(execution time improvement)

Contention
Manager

Simple Adjust

Exponential Interval

Exponential Adjust Exponential Combined Average

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

Aggressive 0.94 1.24 0.94 1.06 0.92 1.13 1.00 1.07 1.01 1.25 1.07 1.10 1.08 1.18 1.03 1.04 1.07

Backoff 0.82 0.74 1.63 2.47 0.84 0.87 1.39 2.73 0.76 0.90 1.41 3.00 0.89 0.91 1.41 2.47 1.45

Eruption 0.72 1.14 1.12 1.42 0.82 1.13 1.03 1.39 0.81 1.21 0.95 1.49 0.83 1.21 0.93 1.52 1.11

Greedy 1.20 1.08 1.00 1.34 0.99 0.98 1.00 1.26 1.14 1.04 1.00 1.36 1.08 0.99 0.94 1.33 1.11

Karma 1.12 1.04 1.05 1.31 1.02 1.21 1.05 1.30 1.18 1.13 1.04 1.41 1.05 1.13 1.03 1.41 1.16

Kindergarten 1.12 1.18 0.99 1.06 1.13 1.07 0.91 1.02 1.30 1.22 0.99 1.05 1.35 1.14 0.99 1.01 1.10

Polka 0.96 1.23 0.97 1.08 1.01 1.03 0.94 1.09 1.07 1.09 1.08 1.24 1.04 1.02 0.92 1.14 1.06

Priority 1.32 1.09 1.05 0.98 1.13 0.95 1.04 0.98 1.21 1.08 1.04 1.00 1.23 1.05 1.04 0.98 1.07

 < 0.9

 0.9 - 1.0

 1.0 - 1.1

 > 1.1

51

Results
(improvement #used cores)

Contention Manager Resource utilization (%)

Aggressive 46

Backoff 82

Eruption 59

Greedy 57

Karma 53

Kindergarten 44

Polka 41

Priority 41

 SimpleAdjust with 8 initial threads

Scheduling vs. Aborts: Example

• T1 and T2 execute
concurrently

• T1 conflicts with T2

• T1 aborts

• T1 restarts (immediately)

• T1 conflicts with T2 again

• T1 aborts again

• T1 restarts (immediately)

• T1 conflicts with T2 again

• …

T2 T1

…

Steal-on-Abort

 In general, difficult to predict first
conflict/abort

 Once observed, simple to avoid next
conflict/abort
• Do not execute T1 & T2 concurrently

 Steal-on-abort design:
• Automatically make scheduling decisions to avoid

conflicts:
- On abort, transaction stolen by aborter

- Aborted transaction released after stealer commits

• Additionally, attempt to improve performance:
- Thread whose transaction is stolen obtains another

transaction to execute. May commit, improving
performance.

Performance

0

2000

4000

6000

8000

10000

12000

14000

16000

1 2 4 8

Threads

T
ra

n
s
a
c
ti

o
n

s
/s

e
c
o

n
d

Non-SOA

SOA

Wasted Resources

0

20

40

60

80

100

120

2 4 8

Threads

W
a

s
te

d
 w

o
rk

 (
%

)

Non-SOA

SOA

56

Roadmap for today

 Multi-core: ubiquitous and future trends
 Lee’s algorithm

 Understand the problem
 Parallel implementations

 Different choices
 Lessons

 Transactional Memory
 Basic concept
 Lee with transactions

 Performance analysis
 Improving performance
 Teraflux

57

Transactional Memory

 Transactional Memory is not a silver bullet.
 But, provides both a concurrent programming

abstraction which is much simpler than
traditional techniques; and

 A more relaxed coherence semantics. Program
state must be coherent at the start and end
of transaction.

 We are interested in Transactional Memory as
a key component of a computational model

My personal baggage with Parallel Systems

 Undergraduate: Shared Memory vs. Message Passing Programming
• Equivalent, pain developing and debugging, performance (memory

allocator, cache coherence)

 PhD: High Productivity for HPC
• Java and OO for Numerical Linear Algebra

• Recover lost performance with compilation techniques
• Advisor: John Gurd (Manchester Dataflow)

 Sun Microsystems DARPA High Productivity Computing System
project
• Runtime software for Petascale System (order of 106 hardware

threads)

• PGAS, GUPS & Global address space vs. Cache Coherence

 Transactional Memory in Manchester
• Software, Hardware, Distributed, Scheduling, Applications …

• Work with Ian Watson & Chris Kirkham (Manchester Dataflow)

 Teraflux: my first project with Dataflow I suppose it was unavoidable!
58

59

The TERAFLUX Project

Exploiting Dataflow Parallelism in Teradevice Computing

 What is it about?
• Many-cores (1000+ cores or Teradevices)
• General purpose computing
• Dataflow (data driven execution)
• Reliability

 Funded by the EU Seventh Framework
• University of Siena (co-ordinator)
• Barcelona Supercomputing Centre
• CAPS Enterprise
• Hewlett Packard
• INRIA
• Microsoft (Israel)
• THALES
• University of Cyprus
• University of Augsburg
• University of Manchester

60

What is the fuss with Dataflow?

 Computation Model:
• Computation is described as a graph

• Edges describe unidirectional data dependencies

• Nodes represent computation (side-effect free
computation)

• Execution follows data driven
- A node is “fired” once all its input data is ready

- Parallel execution is natural: multiple nodes can execute in
parallel as long as their input data is available

 Relation with pure procedures (side effect
free computation, nothing shared),…

 What was wrong with the Manchester
Dataflow?

Google MapReduce on data-centres
OSDI’04

61

62

Is Dataflow the silver bullet?

 A flexible and efficient way of exploiting
parallelism

 Maybe its ‘time has come’ in the many core era
• Consider MapReduce, NLA, GPUs, FPGAs

 But is it general purpose?
• Is certainly good at irregular (i.e. general purpose)

parallelism where other approaches fail

• But a big weakness is (with its underlying side effect
free connections) an inability to deal well with
shared mutable state

• Transactional memory provides a good mechanism
for updating shared mutable state (Isolation and
Atomicity)

63

Dataflow plus Transactions

 A major aim of the TERAFLUX project is to
investigate the introduction of Transactional
Memory into Dataflow
• Computational Model vs Programming Environment

• Hardware Support

• Fault-tolerance

• Applications

 I’m just giving you
• a high level overview & motivation

• a description and perspective of work-in-progress in
Manchester

Prototyping in Scala

 Scala
• High Productivity Developers

• Combines functional programming with OO

 We have extended Scala with Transactional syntax and have
provided a Software Transactional Memory
• http://apt.cs.man.ac.uk/projects/TERAFLUX/MUTS

• Manchester University Transactions for Scala (MUTS)

 We have implemented a new Dataflow library

 We are investigating means of generating automically dataflow
execution. Developer does not create threads

• Reimplementation of the Scala parallel collection using
dataflow plus transactions

• Analysis for Lee-TM of benefits of Dataflow plus transactions

 We are investigating how a subset of Scala and the “right” type
system can simplify the software development

64

Many-core Architecture in Manchester

 Contributing to the memory model

 Investigating how to simplify coherency & consistency
by using Dataflow and TM computational model
• No “traditional” cache coherence across the chip, but globally

accessible address space

 Investigating how to scale hardware TM
• Can dataflow simplify the TM implementation?

 Investigating relation between hardware Dataflow
scheduler and hardware TM

 How to simulate large many-cores? NoCs 2012

 How to make TM compatible with fault-tolerance
mechanism proposed by our partners.

 MCTS for GO game and other applications
 65

Summary

 Dataflow plus Transactions seems to be a
promising new approach to extend the power of
the Dataflow model to include shared state

 What is it about?
• Many-cores (1000+ cores or Teradevices)
• General purpose computing
• Dataflow (data driven execution)
• Reliability

DF+TM = efficient general
purpose parallel computational model?

66

67

More Information

 http://www.teraflux.eu
 http://www.cs.manchester.ac.uk/apt/projects/TM
 http://www.cs.wisc.edu/trans-memory/

 Transactional Memory. Harris, Larus & Rajwar, 2010.

