
University of Cambridge

Coeffects: Programming languages for rich environments

University of Cambridge, {name.surname}@cl.cam.ac.uk

Tomas Petricek with Dominic Orchard and Alan Mycroft

Computer Laboratory

Motivation: Modern software challenges

 Applications today run in diverse environments, such as mobile

phones or the cloud. Different environments provide different

capabilities, data with meta-data or other resources.

 Applications access information and resources of the environment.

Such context-dependent interactions are often more important

than how the application affects or changes the environment.

 Tracking and verifying how computations affect the environment

can be done in a unified way using monadic effect systems, but no

such mechanism exists for tracking and verifying how computa-

tions access and rely on the context.

Example: Mobile online store application

Flat coeffects for distributed programming

Use monoid of resource names with union to track required resources.

Required resources {products,categories} are split between the scope

where a function is declared and the scope where it is called (using Δ).

Structural coeffects for provenance tracking

For every variable, the context records whether its value is allowed to come

from an untrusted source, such as user input.

The last two parameters of hashKey must be secure thus the last argument

of storeUser and global variable serverKey cannot depend on user input.

Effect systems

 Track or infer information

about what the computation

does to the environment

 Information σ, such as set of

performed memory operations,

attached to the result

 Propagate information for-

ward to the overall result

 Modeled as morphisms α → β

where is a monad

Coeffect systems

 Track or infer information

about what the computation

requires from the environment

 Information σ, such as set of

accessed resources, attached to

the variable context

 Propagate information back-

ward to the initial input

 Modeled as morphisms α → β

where is a comonad

Coeffect systems

Core calculus for tracking context-dependence that can

be used as basis for type systems and semantics of con-

text-dependent computations.

Flat coeffect types

Uses annotations that form a symmetric, idempotent

monoid (R, ⊕, 0) with operation Δ that represents

splitting of requirements in a lambda abstraction.

let validate(input) =

 (input ≠ null) && (input.ForAll(isLetter))

let displayProduct (name) =

 if validate(name) then

 let product = lookup(name, access products)

 generateProductPage(product)

 else generateEmptyPage()

During compilation, we want to infer what environment capabilities

the application requires and check that it will use them correctly:

 Cross-platform and versioning. The ForAll library function used

in validate is only available when compiling program to .NET or

JVM, but cannot be translated to SQL and executed in database.

 Tracking resource usage. The construct access product obtains

connection to a database of products, thus displayProducts can be

only executed on the server node, running in the cloud.

 Provenance and security. For security and auditing purposes, we

want to know how data flow through the program. For example, the

result of displayProduct relies only the argument and the database.

Structural coeffect types

Generalization that captures fine-grained structure with

information corresponding to variables. Uses ring-like

structure (R, ⊗, ⊕, 0). Structural rules specify how

variable manipulation affects the context structure.

let getCategory(name) =

 let id = lookupProduct(name, access products)

 lookupProductCategory(id, access categories)

let storeUser name password salt =

 writeUser(user, hashKey(password, salt, serverKey))

