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The solution?
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Still some problems... ———————————————> Another solution

STM problem of aborts and blocking A STM universal construction
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A Universal Construction for transaction based multi-process programs is
another step towards the goal of making concurrent programming more
accessible. Synchronization is done using atomic read/write, {
fetch&increment, and compare&swap registers (no locks are used). A Theoretical Foundations of Transactional Memory
proof of correctness is given in the technical report. Ongoing work
includes developing an efficient implementation of the algorithm.




