

Running a sequential program on

a multi-core machine leaves

unused hardware.

A Universal Construction for transaction based

multi-process programs

Research funded by

Tyler Crain - Université de Rennes 1

It is now very clear that multi-core and multi-processor machines are the present and future of computing. It is also

no secret that writing multi-process programs is very difficult. We try to address this problem by providing efficient

abstractions to make multi-process programming easier.

A Universal Construction for transaction based multi-process programs is

another step towards the goal of making concurrent programming more

accessible. Synchronization is done using atomic read/write,

fetch&increment, and compare&swap registers (no locks are used). A

proof of correctness is given in the technical report. Ongoing work

includes developing an efficient implementation of the algorithm.

Lock based Code Sequential Code Software Transactional Memory (STM)

STM problem of aborts and blocking A STM universal construction

Unfortunately it is not that simple, most

STM implementations do not guarantee

progress. A process might be blocked or

a transaction might be aborted infinitely

due to conflicts with concurrent

transactions. The programmer must be

aware of and able to deal with this.

The problem The solution?

Still some problems… Another solution

The proposed Universal Construction

guarantees that every transaction

executes exactly once. The ideas of

aborts and blocked transactions are

unknown to the programmer. The main

implementation idea is that cores can

help other cores commit their

transactions, ensuring progress.

Locks are the most common

mechanism used to write

multi-process code, but

they are notoriously

difficult to use correctly

and suffer from problems

such as dead lock and

blocked processes.

In transaction based

programs the programmer

only needs to define what

blocks of code (called

transactions) he wants to be

executed atomically. The

underlying STM system

takes care of all the difficult

synchronization.

