A Universal Construction for transaction based

multi-process programs

Tyler Crain - Université de Rennes 1

The solution?

The problem

Sequential Code Lock based Code Software Transactional Memory (STM)
] Oermermr—tea T lock (&) M 7 ntamic{ [#orermersrmsec o

3 W U e T Y o 3 fock.(B) % Lock (B) 3 PV 2% 5 ot ama o P 3 P aat e o Y S

4 COON\ AT = N 4 ,—M—wv\ﬁ. 4 LAmERN o D el S 4 \I\Nw} 4 L aaa g a e N N

-1 A amnie P N o DK P S 5 5 Lock. (A) ¥ L i o ¥ o N P S, -3 Y e B ey e U

VRS S ot e o e U S, L [O AATI e AR 2 etV gt b s o\ L W\h}

/ [/
Z [

Corel ‘P" Corel /

g ¥ é

cOh .

“‘gfé} ée Corel CPY Core2 Locks are the most common , MC’oreI e ; Cor{el n transact;lon based

QO;; = 33 mechanism used to write] s e pr(l)gramg the grt(:gramﬁn o
ore o “9"’[‘ k£ . kb‘? multi-process code, but —ie e Eil yl neef i t; © Hllle;V at
ocC
> S A N J\ they are notoriously ~ STM 6} OERS O, weid (ealle
- > ? ? e transactions) he wants to be
2 2 Core3 Gt difficult to use correctly Core3 N tored ,
\ — " Y executed atomically. The
9 S o and suffer from problems e T é/ s)
: : > (O3 s e s mem—reed | underlying STM system
Running a sequential program on > o | | such as dead lock and o] e) o
: : takes care of all the difficult
a multi-core machine leaves blocked processes.

synchronization.
unused hardware. Y

Still some problems... ———————————————> Another solution

STM problem of aborts and blocking A STM universal construction
7 7 atomic { \L 7/ I atomic { \L
L e a P o L S RV o)
Z Atomic { 2 v gt x < At { Z . — l x
M’\-.-'\‘_ Wm
4 CO AT = N 4 O 4 * }
} I 5 5 Help!!
M gl ' b et i SN A e N oo DN S, /
5 n}wrt. | 1
1 =N = e G e i S JARY D oV o g W
| l } [€O\
AR 4 o ag = o o U } VAR aan W ¥ L g\ l | ~
L | _ /
l /) 4 . .
Corel CPY Unfortunately it is not that simple, most Corel CPV Core2 The proposed Universal Construction

SovadiN ; STM implementations do not guarantee Toewe NN £ e guarantees that every transaction
—— 5 P 1» progress. A process might be blocked or " D help! executes exactly once. The ideas of

~_ kj a transaction might be aborted infinitely <. 3T ‘j) aborts and blocked transactions are

STM due to conflicts with concurrent M unknown to the programmer. The main

: C0f63 r’ &'}m({orﬂ transactions. The programmer must be C:)re3 ﬁ z *&;}hﬁorﬂ implementation idea is that cores can
prarae e aware of and able to deal with this. A A;;:' help other cores commit their
tbertraricc) Aotaresrc) R / transactions, ensuring progress.

Research funded by

NE

A Universal Construction for transaction based multi-process programs is
another step towards the goal of making concurrent programming more
accessible. Synchronization is done using atomic read/write, {
fetch&increment, and compare&swap registers (no locks are used). A Theoretical Foundations of Transactional Memory
proof of correctness is given in the technical report. Ongoing work
includes developing an efficient implementation of the algorithm.

