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Challenge
• Devise probabilistic models of

natural images

• Want to encode (statistical)

prior knowledge about images

Applications
• Image restoration, e.g. denoising,

deblurring, super-resolution, etc.

• Feature extraction

Research
• Improving parametric image models

• Learning model parameters from data

• Evaluating quality of image models

• Sampling-based inference

Current State
• Learned application-neutral image models

with good statistical properties and

good results in image restoration tasks

• Extension with integrated noise estimation

• Transformation in-/equivariant extension

• Rotation in-/equivariant image descriptor

Next Steps
• More adaptive image models

• Model image formation process

• Combine discriminative and

generative approaches

Probabilistic
  Image Models

vi

■ Basic goal:
•Capture “important” properties of natural 

images in a probabilistic model
RN ·M 3 x ⇠ p(x)

prior
e.g. MRF

image
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Properties of Natural Images
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Figure 1. Internal Statistics of a Single Natural Image. (a) Small image patches tend to recur within the source image, and across
its coarser scales; (b)-(c) The empirical Density(dist , |grad |) of patches and the number of “similar” patches, NN (dist , |grad |), as
a function of the mean gradient magnitude |grad | in the patch, and the spatial distance dist from the patch location (Red signifies high
values, Blue signifies low values); (d) The logNN (n, |grad |) shown for various image scales (n = 0, .., 6).

tion purpose, the patches were chosen large and on clearly
repetitive structures. However, when much smaller (5 ⇥ 5)
image patches are used, such patch repetitions occur abun-
dantly within and across image scales, even when we do not
visually perceive any obvious repetitive structure in the im-
age. Glasner et al. [9] empirically showed that most of the
patches in a natural image have many similar patches at the
same image scale, and at coarser images scales. In this sec-
tion we provide a formal parametric quantification of the
degree of internal recurrence of small 5⇥ 5 patches.

Most of the patches in a natural image are rather smooth,
and only a small percent contain important image details
(edges, corners, etc.) These differences are expressed in
different spatial gradient magnitudes in patches. We ob-
serve that smooth patches recur much more frequently in
the image than detailed patches. We further observe that an
image patch is much more likely to recur near itself than far
away. Therefore, our experiments (and plotted graphs) are
expressed in terms of the “mean gradient magnitude” |grad |
of a patch, and the “spatial distance” dist to the patch.

Our experiments were conducted on the 300 images
of the Berkeley Segmentation Database

1 (BSD). For
each image patch p, we estimated its empirical density
within an image neighborhood N

dist

of radius “dist”
around the patch, using Parzen window estimation [12]:
density(p; dist) =

P
pi2N

dist

Kh(kp� pik2
2

)/area(N
dist

),
where pi are all the image patches within a spatial neigh-
borhood N

dist

, and Kh(·) is a Gaussian kernel2. Averaging
these individually-computed patch densities over the set of
all patches with the same gradient magnitude |grad |, we
obtain the following average density:
Density(dist , |grad |) = Meanpjof |grad|density(pj , dist).

The average number of “good Nearest Neighbors” NN

within a distance dist from the patch, is defined as:
NN (dist , |grad |) = Density(dist , |grad |) · area(N

dist

)

(1)
Note that the Parzen estimation does not distinguish be-

1www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench
2Although L2-norm may not be an optimal measure for patch similar-

ity, it is often used in existing patch-based applications. Since we want to
show how quantifying internal patch statistics improves such applications,
we follow the L2 convention.

tween 10 perfectly similar patches, and 100 partially similar
patches. We loosely refer to these as 10 good NNs. Fig. 1.b
displays the empirical density Density(dist , |grad |) and
the number of “similar” patches NN (dist , |grad |), both as
a function of the mean gradient magnitude |grad | of the
patch, and the spatial distance dist from the patch location.
(In both maps, red signifies high values, blue signifies low
values.) Observing these maps, we note that:
(i) Smooth patches recur very frequently, whereas highly
structured patches recur much less frequently.
(ii) A patch tends to recur densely in its closest vicinity
(small dist), and its frequency of recurrence decays rapidly
as the distance from the patch increases (see the zoomed-
in part in Fig.1.b). Namely, patches in a natural image are
likely to reside in clusters of similar patches. This explains
why denoising algorithms, such as Non-Local Means [4]
and BM3D [5] work well, despite the fact their patch search
is restricted to small neighborhoods around each patch.
(iii) Various patch-based applications require obtaining
enough similar patches for every image patch (e.g., Super-
Resolution [9], denoising [4], etc.) From Fig. 1.c we note
that for a fixed number of similar patches (NN = const),
patches of different gradient content need to search for near-
est neighbors at different distances. For smooth patches, it
suffices to search locally, whereas the higher the gradient
magnitude, the larger the search region becomes. In fact,
one can observe that the level-sets in Fig. 1.c (which corre-
spond to a fixed number of Nearest Neighbors), have expo-
nential shapes (e.g., see the white and black curves, which
corresponds to a level-sets of NN = 9 and NN = 64). In
other words, the distance dist in which the nearest neighbor
search should be performed grows exponentially with the
gradient content of the patch |grad |.

By empirically fitting an exponential function to the
level-set curves (for many fixed NNs), we obtained the fol-
lowing exponential relation between dist and |grad |:

dist(|grad |) = �
1

+ �
2

· exp(|grad |/10) ,
where �

1

and �
2

depend on the fixed NN (are second order
polynomials of

p
NN ):

�
1

(NN ) = 5 · 10�3

NN + 0.09
p
NN � 0.044

�
2

(NN ) = 7.3 · 10�4

NN + 0.3235
p
NN � 0.35.

978

Self similarity

[Zontak &
Irani ’11]
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Two Possible Paths
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■ Generative
• model
• train on natural images

✔application neutral
✘ learning & inference is 

more difficult
➡Hope to gain general 

insights
➡Beyond generative case

■ Discriminative
• model
• train on input/output pairs

✘ application specific
✔ learning & inference are 

generally easier
✔can lead to better 

performance

p(x) p(x|y)

Uwe Schmidt, Qi Gao, Stefan Roth: A Generative Perspective on MRFs in Low-Level Vision | CVPR 2010 |

MRF Sampling – Example
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High-order MRF

with 3�3 cliques
Pairwise MRF

Uwe Schmidt, Qi Gao, Stefan Roth: A Generative Perspective on MRFs in Low-Level Vision | CVPR 2010 |

MMSE-based Inpainting
■ Conditional sampling of “corrupt” pixels

31
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MRF Base Model
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■ Fields of Experts (FoE) [Roth & Black ’05, ’09]
• Includes various pairwise & high-order MRFs

Image

Parameters

Vector of nodes
in clique c  c

Expert function

i = 1, . . . , N

⇥ = {Ji,↵i}

Linear filter

 e.g.
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Locally Equivariant Feature Activation

12

30

210

60

240

90

270

120

300

150

330

180 0

30

210

60

240

90

270

120

300

150

330

180 0

Stefan Roth, Rank Prize Symposium, 26–29 March 2012

Models
of

natural images

Applications
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Denoising

Super-
Resolution

Deblurring

Recognition &
Detection➡Thu.

TC =
�
C · S(k,l)
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“Convolutional”
transformations

� MRFs

Rotate
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Differences and similarities in images
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■

■ Equivariant Histogram of Oriented Features (EHOF)
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