A Simple Refinement to Cube Pruning for Syntax-Based Statistical Machine Translation

Wenduan Xu¹ and Philipp Koehn²

¹Computer Laboratory, The University of Cambridge

²School of Informatics, The University of Edinburgh wenduan.xu@cl.cam.ac.uk, pkoehn@inf.ed.ac.uk

Introduction

- Syntax-Based Statistical Machine Translation
 - Incorporating syntactic structures into statistically-oriented MT models
 - Provided promising translation quality gains for many language pairs
 - However, phrase-based translation models still dominate most language pairs in terms of decoding speed due to their simplicity compared with syntactic models
- Decoding Complexity
 - The complexity of syntax-based models introduce additional computational costs into parameter estimation (training) and translation search (decoding)
 - Exact dynamic programming computationally intractable due to exponential dynamic programming states
 - Frequent queries of large *n*-gram language models also introduce additional decoding runtime overhead
- Decoding with a Language Model
 - Induces a lexically exploded dynamic program where each state [X, i, j] is further augmented with two strings of length n 1, composed of the left and right boundary words of a translation hypothesis (n is the language model order)
 - Thus a language model context augmented state is represented as $[X, i, j, l_{1...n-1}, r_{k-n+2...k}]$ where k is the length of the translation hypothesis, $l_{1...n-1}$ and $r_{k-n+2...k}$ are the left and right n- 1 boundary words of that hypothesis, respectively
 - Decoding becomes practically infeasible with $\mathcal{O}\left(m^{3+4(n-1)}\right)$ complexity

Contributions

- We present a simple refinement of cube pruning based on a first full inside-outside parsing pass to generate inside and outside cost products to augment the second pass +LM decoding
- We demonstrate the effectiveness of our approach on a Chinese-English translation task with a hierarchical model and a English-German task with a string-to-tree model
- Boost decoding speed by 20% and 38% on average for two translation models, respectively, without compromising translation quality as measured by BLEU

Translation Models

- Model
 - Both translation models we consider are based on SCFGs as in (Chiang, 2007)

$$X \to \langle \gamma, \alpha, \sim \rangle$$

Example rule

$$X \to \langle X_1 \text{ xiede } X_2, X_2 \text{ written by } X_1 \rangle$$

- Rule Restrictions
 - To reduce the grammar size for the targetsyntax model
 - Impose restrictions to constituent target phrases by allowing up to seven source-side terminal/nonterminal symbols and discard rules with scope greater than three (Hopkins and Langmead, 2010)
 - These restrictions and the addition of linguistic labels on the target side reduces the total grammar size
 - Also reduces the problem of spurious ambiguity

Decoding

- Decoding without a Language Model
 - Decoding with only a SCFG-based translation model is isomorphic to monolingual bottom-up CKY parsing requiring an $\mathcal{O}\left(m^3\right)$ parsing algorithm
 - A dynamic programming state is identified by its target side nonterminal symbol and the input sentence span covered by it, e.g., [X, i, j]

Cube Pruning

- Originated from k-best parsing algorithms in Huang and Chiang, 2005, and applied to machine translation first in (Chiang, 2007)
- A heuristic algorithm used to speed up MT decoding with integrated language models
- The state-of-the-art algorithm which enables approximate dynamic programming and lazy language model querying throughout language model integrated decoding and achieves comparable translation quality as other non-lazy methods

Cube Pruning

The Cube Pruning Algorithm (Chiang, 2007)

1: **procedure** MainLoop $(H = \langle V, E \rangle)$

```
2: for X \in V in topological order do
 SelectK(X,k)
 4: procedure SelectK(X, k)
5: PriorityQueue \leftarrow \{\mathbf{h}_e(\mathbf{1}) \mid e \in BS(X)\}
 6: \mathbf{H}_{top-k} \leftarrow \emptyset
 7: PriorityQueue-temp \leftarrow \emptyset
 8: while |PriorityQueue-temp| < k and
               |PriorityQueue| > 0 do
         \mathbf{h}_e \leftarrow PriorityQueue.pop-min_{\perp}
           PriorityQueue-temp.push(\mathbf{h}_e)
          for \mathbf{h}'_e \in CreateNeighbours\left(\mathbf{h}_e\left(\mathbf{u}\right)\right) do
               if \mathbf{h}'_e \notin PriorityQueue then
                   PriorityQueue.push(\mathbf{h}'_e)
14: \mathbf{H}_{top-k} \leftarrow PriorityQueue-temp.pop-all.sort
15: procedure CreateNeighbours (h<sub>e</sub> (u))
16: N \leftarrow \emptyset
17: for i \leftarrow 1 ... |e| do
        \mathbf{h}_e' \leftarrow \mathbf{h}_e \left( \mathbf{u} + \mathbf{b}_i \right)
         if (\mathbf{u} + \mathbf{b}_i)_i \leq |\mathbf{H}_i| then
              N.insert\left(\mathbf{h}_{e}^{\prime}\right)
21: return N
```

- The pop-limit variable k on line 8 of the pseudocode controls the runtime cost of cube pruning
- It is a constant applied to every chart cell during decoding and potentially wasting decoding efforts for chart cells for which lower pop limits would suffice, since the search space is inherently nonuniform
- To exploit this nonuniformity, we propose to dynamically adjust the pop limit based on inside and outside cost estimates of target side nonterminals

Generalized Inside-Outside Semi-ring Parsing

 We use generalized inside and outside algorithms in the first pass -LM decoding

```
    procedure InsideParse (H = ⟨V, E⟩)
    for X ∈ V in topological order do
    for each incoming hyperedge e of X do
    for each antecedent node X<sub>i</sub> of X do
    ω ← ω · β (X<sub>i</sub>)
    β (X) ← max (β (X), β (X<sub>i</sub>) · ω · R<sub>e</sub>)
    procedure OutsideParse (H = ⟨V, E⟩)
    for X ∈ V do
    α (X) ← 0
    for each incoming hyperedge e of X do
    for each antecedent node X<sub>i</sub> of X do
    α (X<sub>i</sub>) ← max(α (X<sub>i</sub>), α (X) R<sub>e</sub> ∏ β (X<sub>j</sub>))
```

• In the second pass, cube pruning pop-limit parameter is augmented with

$$\mu = \alpha_X [i, j] \beta_X [i, j]$$

Experiments

 Decoding efficiency and translation quality comparisons on two large scale experiments, NIST08 Chinese-to-English test set (1357 sentences) and WMT10 newstest2009 test set (1004 sentences)

Example µ values for the Hiero model

References

- D. Chiang. 2007. Hierarchical phrase-based translation. Computational Linguistics, 33(2)
- M. Hopkins and G. Langmead. 2010. Scfg decoding without binarization. In Proc. EMNLP
- L. Huang and D. Chiang. 2005. Better k-best parsing. InProc. IWPT