N
o
Ny

N

William Sonnex

2. Deforesting rev (xs # [n])

revy, xsn = T[rev (xs #

[1=T[ln

| [1- [n]

Fixanew rev, : [a] > a - |a

_ [
=g T I]rev (xs {(c +s) > C
B { [1- Tlrev [n]]
XS
(c

i ¢cs) o T|rev (c

(c :: cs) = (revy xsn) # [c]

Speculative
3 Deforestation

2.5 UNIVERSITY OF

ci B

], s.t.

revy xsn £ rev (xs # [n])

Deforest the definition of rev,:

&% CAMBRIDGE

[n]] Expand (#)

| = [n]

[1 - T[[n]
—p X5 {(c : ¢s) = T[rev (cs 1+ [n]) 4 [

) }l

- {(C :cs) » T[(revy xsn) # |

|

(cs [n])})”

(cs # [n]))]]}

Tlrev (-)]

floats inside

Expand rev

]]}

Apply definition
revy Xsn
2 rev (xs # [n])

Finish

1 Optimized recursive definition for revy xsn

3. Factoring revy xs ninto n ::

[] - n:

rev, Xs = xs{

(c :: cs)

=, Trev xs

Deforestation found rev (xs # [n]) -
Constant context factoring finds revy, xsn -» n :: (rev xs)

n: (rev, xs) £ revy xsn l

(rev xs)

>Tevy, XS n

First, speculate the constant context C using a dynamic approach,

enumerate inputs to revy, xs n:
(revy xsn)|xs » [] =5 [n]
(| H_I]_ . al |Allaren =2 _
revy Xsn :xs :a_ = [n,a co0C=mn:
(revy xsn)|xs & [a, b]] =3 |n, b, al

Fix a new rev, : [a] — [a] s.t.

Expand revy

- { [] }
=B X5 (c :: cs) » (revy xsn) # [c]

) |]-on:]
~ V(i es) - (n:: (rev, xs)) # [c]

. [1-n
"B X5\ (¢ cs) o n i ((revy xs) # [c])
o (111

—n (xs {(C i cs) o (rev, xs # [C])})

[1-1]
- (rev, xs # [c])

[] }l

Apply definition
n:: (rev, xs)
= Trevy Xsn

Expand (#)

(n s —)

floats outside

l
1

to find
rev, =, rev

Cancel outn :: _—

Function definitions

— bs }

i ¢cs) > ¢ i (cs # bs)

[] -] }
(reves) # |e]

(List append) as ¥ bs = as {(c []
(List reversal) rev ds = ds {(e ©es) o
(Natural number ey x{ 05y }
addition) Yy = s(z) > s(z +y)

1. Introduction

* Deforestation is a function simplification technique
invented by Philip Wadler

It optimises functional programs by removing intermediary
results e.g. map g (map f xs) -»>map (g o f) xs

We have developed extensions to yield simpler results,
not for runtime, but for program verification and ATP

These extensions we have collectively named “factoring”,
as they factor out a context from a recursive function,

i.e. uh - f(ug), factoring f out of uh to yield ug

In this poster we present only “constant context” factoring

4. Deforesting rev (rev xs)

With factoring we can now calculate: rev (rev xs) -» xs

Fixanew id, : [a] » a - |a], s.t.

id, xs 2 rev (rev xs)

= T[rev (rev xs)]

Expand rev

= Hrev (xs {(e :: es) L] (_r)e[v] es) # [e]})ﬂ Tlrev (-)]

floats inside
:xs{ [1 - Tlrev[]] }
(e ::es) > T|[rev ((Té’v es) [e])]] l Apply

deforestation
of DoTlerlll
B (e :: es) » Trevy (reves) €]

Apply factoring

B [1- Tlrev (1]
—a XS (e .. es) N TI[e .. (rev (rev es))]] Apply definition

id, xs
_ |] = Tlrev|[]] 2 rev (rev xs)
= XS {(e i es) - Tle :: (id,. es)]]} l
Finish deforestation

B [] -]
—B X3 {(e es) = e (id, es)} l

Factor result

= XS

5. Deforesting x + x

Factoring can also remove variable repetition, asin x + x

Fix a new double x s.t.
double x 2 x + x 1 Expand (+)

— x{ 0-x } Substitute pattern
s(z) = s(z + x) l matched values for x

Factoring finds

0-0 }
l z+5s(z) - s(z+z)

= 1s(2) - S(z + S(z))

X

double x £ x + x

0-0
- X S(z) — S(s(double z))

|
{ 0-0
|

s(z) - S(S(z z))} l Apply definition

LsEven(x + x), traditionally difficult, becomes trivial.

length (rev xs) -» length xs)

— Other results of
' just constant
context factoring

length (xs # xs) > double (length xs)

elemn (xs # [m]) »n=mVelemnxs

count n (insertsort xs) -» count n xs
— Results of our

take (length xs) (rev xs) - rev xs full method

treesort xs > insertsort xs

