Optimizing Index for Taxonomy Keyword Search

*
Bolin Ding
University of lllinois

bding3 @ uiuc.edu

Jiawei Han
University of lllinois

hanj@cs.uiuc.edu

ABSTRACT

Query substitution is an important problem in information
retrieval. Much work focuses on how to find substitutes for
any given query. In this paper, we study how to efficiently
process a keyword query whose substitutes are defined by
a given taxonomy. This problem is challenging because
each term in a query can have a large number of substi-
tutes, and the original query can be rewritten into any of
their combinations. We propose to build an additional in-
dex (besides inverted index) to efficiently process queries.
For a query workload, we formulate an optimization prob-
lem which chooses the additional index structure, aiming
at minimizing the query evaluation cost, under given index
space constraints. We show the NP-hardness of the problem,
and propose a pseudo-polynomial time algorithm using dy-
namic programming, as well as an %(1 —1/e)-approximation
algorithm to solve the problem. Experimental results show
that, with only 10% additional index space, our approach
can greatly reduce the query evaluation cost.

Categories and Subject Descriptors

H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing—Indexing methods

General Terms

Algorithms, Management, Performance

Keywords

Index, taxonomy, keyword search, materialization

*Part of the work was done when the authors visited Mi-
crosoft Research Asia. The work of Bolin Ding and Jiawei
Han was supported in part by the U.S. Army Research Lab-
oratory under Cooperative Agreement Number W911NF-
09-2-0053 (NS-CTA), and NSF 11S-1017362. The work of
Ruoming Jin was supported in part by NSF I15-0953950.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGMOD’12, May 20-24, 2012, Scottsdale, Arizona, USA.

Copyright 2012 ACM 978-1-4503-1247-9/12/05 ...$10.00.

Haixun Wang
Microsoft Research Asia
haixunw @ microsoft.com

Ruoming Jin’
Kent State University
jin@cs.kent.edu

Zhongyuan Wang
Microsoft Research Asia

zhy.wang @ microsoft.com

1. INTRODUCTION

Much work has been devoted to query rewriting or find-
ing query substitutions, that is, generating new queries to
replace a user’s original query [9, 16, 1, 17, 19]. This is
motivated by such a simple example: Suppose a user wants
to find IT companies in Seattle, and he issues query “IT
company, Seattle”. However, instead of “I'T company”, most
documents in the collection contain terms like “Microsoft
... Seattle”, “Amazon ... Seattle”, and “Google ... Seattle”.
Clearly, unless the system can automatically substitute the
term “I'T company” in the original query by the terms “Mi-
crosoft”, “Amazon”, etc, at query time, not many informa-
tive documents will be retrieved (even in google.com).

For a given word, we can use WordNet [4] to find its syn-
onyms or find terms that have concept-instance relationships
with the word. These are good candidates for query substi-
tutes. But WordNet does not contain information such as
Microsoft is an I'T company, or Kindle is a popular e-Reader.
Still, terms such as I'T company, Kindle, Microsoft are fre-
quently used in queries. Some recent work (e.g., [26, 21])
focuses on automatically discovering relationships among
terms by mining web pages and search engine click logs.
This enables us to find important concept-instance relation-
ship for large sets of terms. Table 1 shows a sample of this
kind of relationships generated by Probase [26].

In this paper, we assume that we already have complete
information of term substitutions, and we will focus on how
to efficiently process a keyword query by answering all of its
possible substitutes, and how to optimize the index structure
for this purpose. For a given query, it is likely that there
are many eligible substitutes. For example, for the query
“I'T company acquisition”, a document that talks about Mi-
crosoft buying Skype is apparently a good match, but this
means we need to consider hundreds of IT companies. As
another example, for the query “pet, disease”, possible sub-
stitutes of “pet” may include “cat”, “puppy”, “dogie”, etc,

while substitutes of “disease” could be “blastomycosis”, “coc-

cidia”, “colitis”, etc. A crossproduct of the two sets generates
a large set of eligible substitutes for the query.

As we mentioned, the concept-instance relationship is an
important source of query substitutes. The concept-instance
relationship defines a taxzonomy. The substitution relation-
ship is a transitive closure of the concept-instance relation-
ship. For example, if “puppy” is an instance of “dog”, and
“dog” is an instance of “pet”, then “puppy” could be a sub-
stitute of “pet”. If we treat each term as a node, and create
for each (concept, instance) pair, an edge from the concept
to the instance, then we can think of the taxonomy as a di-

rected tree or forest. For any node that representing a term,
its substitute could be any descendant of it in the tree. Fig-
ure 1 gives an example of a concept-instance taxonomy.

Contributions. We study indexing methods to efficiently
process taxzonomy keyword queries, or taxonomy queries for
short. A taxonomy query contains a set of terms. If for any
query term, a document either contains the term itself, or
contains any of its substitutes, then the document is in the
answer to the query. For example, a document containing
“cat” and “blastomycosis” is an answer to “pet, disease”, and
so is a document containing “pet” and “coccidia”.

We assume that each term is associated with an inverted
list (the list of documents containing this term) in the in-
verted index. A naive way of answering a taxonomy query
is to rewrite it as a set of boolean queries (combinations of
substitutes for all terms), answer each of them by intersect-
ing the inverted lists of terms in the query, and union the
results. This method is inefficient if terms have many substi-
tutes. In the taxonomy query “pet, disease”, for example, if
“pet” has 100 substitutes and “disease” has 100 substitutes,
there are 10000 substitute queries for “pet, disease”.

A more efficient method is as follows. For each query term
in a taxonomy keyword query, we first compute the union of
the inverted lists of all of its substitutes, so as to get a list
of documents each of which contains at least one substitute
of this term. We call this list of documents the result list of
the term. Then, we compute the intersection of the result
lists of all the query terms as the answer to the query.

There are two questions we need to answer. First, is it
worthwhile to materialize the result lists (i.e., precompute
and store them as an index)? Second, which terms should
we choose to materialize their result lists? To answer the
first question, we extracted and studied two months worth
of query log from Bing.com, and we find that a large ma-
jority (over 85%) of queries contain terms that have a large
number of substitutes, for example, “pet” and “I'T company”.
In other words, humans use “high-level” terms frequently in
their communication, and thus we can definitely benefit from
materializing the result list for these terms. But, we can-
not materialize result lists of all terms, because the space
requirement for index is an important issue. The server
farm that maintains the index of a search engine contains
thousands of machines. As we can see from the experimen-
tal results, materializing result lists for all terms requires
150%-200% additional space, and thus 2.5x-3x of number of
machines, which is not economically feasible.

The second question — which result lists we should choose
to materialize — is the key problem to be addressed in this
paper. Many factors are involved to decide the solution. For
example, result lists of popular terms are preferred over the
ones of rare terms, as popular terms are more frequently
queried. Furthermore, the structure of taxonomy offers us
more potential to get benefit from materializing result lists
of “mid-level” terms, as they can be utilized by more queries.

We propose and solve a workload-aware index optimiza-
tion problem. Given a space budget and a query workload
(a query log), we choose and precompute a subset of re-
sult lists, so that the space consumption is no more than
the budget, and the processing cost of this workload is min-
imized. This problem is shown to be NP-hard. We propose a
pseudo-polynomial time algorithm using dynamic program-
ming, and an (1 — 1/e)-approximation algorithm, which
works well in practice. More importantly, in experiments

on real datasets, we show that, with the materialized re-
sult lists carefully selected by our index optimization algo-
rithm, at the cost of only an additional of 10% space, the
processing cost can be dramatically reduced, almost to the
minimum possible processing cost (when all result lists are
materialized, with an additional of 150%-200% space). The
proposed algorithms are compared with the simple heuristic
which materializes result lists of highly frequent terms in the
workload to show their effectiveness.

Organization. Section 2 introduces the concept of tax-
onomy and formally defines taxonomy keyword queries and
their answers. In Section 3, we first introduce how we pro-
cess taxonomy queries and the associated cost models, and
then formalize our workload-aware index optimization prob-
lem. Section 4 presents our approaches to solve this index
optimization problem. Experimental results are reported in
Section 5, followed by discussion and extension of our tech-
niques in Section 6, and related work in Section 7.

2. TAXONOMY KEYWORD SEARCH

Unlike previous work that focuses on how to find substi-
tutes for an original query [9, 16, 1, 17, 19], we focus on
how to efficiently process a taxonomy keyword query whose
substitutes are defined based on a given tazonomy. In this
section, we formally define taxonomy and taxonomy keyword
queries, and discuss challenges of processing taxonomy key-
word queries

2.1 Taxonomy

A taxonomy (7, LC) consists of a universe of terms 7 and
a term-term concept-instance relationship C.

Concept-instance relationship. The concept-instance re-
lationship C is a partial order 7. For two terms t1 and t2,
we write t1 C t2 or to J t1, if ¢1 is an instance of ta (or to
is a concept of t1). For example, “JPEG” is an instance of
“file format”, and thus we write t; = “JPEG” C “file format”
= to. Table 1 lists some terms in our taxonomy and their
instances.

The taxonomy we use is known as Probase [26]. It con-
tains concept-instance relationships obtained from a web
corpus of 1.68 billion documents using syntactic patterns in-
cluding Hearst patterns [7]. From a sentence “. .. fruits such
as apple, banana, and blueberry ...,” e.g., we know that
“apple”, “banana”, and “blueberry” are instances of “fruit”,
where such as is one of the Hearst patterns. When a term
appears in a user’s query, we assume she/he may also be
interested in the instances of this term. So, instances are
possible substitutes for a query term. For details of how the
taxonomy is constructed, we refer the readers to 26, 13].

Substitution relationship. The substitution relationship
=< is defined to be the transitive closure of the relationship
C. For two terms ¢1 and t2, t1 is an substitute of t2, denoted
as t1 = to, iff t1 = t2, or t1 C to, or there exists ti,,..., ¢,
st. t1 Cty, C...Ct;, C t2. For example, “puppy” C “dog”
C “pet” implies “puppy” =X “pet”. When a user types “pet”,
we assume that she/he may be also interested in “puppy”.
Later in this paper, we also use S(¢) to denote all the
substitutes of the term t: S(t) = {t' € T | t' <X t}.
Taxonomy tree and substitution relationship. Given
a taxonomy (7, C), a directed graph is constructed by creat-
ing a node for each term ¢t € T, and a directed edge t — t’ iff

Concept | Typical Instances

actor Tom Hanks, Marlon Brando, ...
airline British Airways, Deltae, ...
chemical compound | carbon dioxide, phenanthrene, ...

disease AIDS, Alzheimer, chlamydia, ...
company IBM, Microsoft, Google, ...
file format PDF, JPEG, TIFF, ...

Table 1: Samples of concept-term relationship

t' C t. Abusing the notation a bit, we use (7, C) to denote
both the taxonomy and the resulting directed graph.

We will focus on the case that (7,C) is a directed tree
or forest in the major part of this paper, and discuss how
our techniques can be extended for general taxonomies in
Section 6.

Obviously, we have t1 =< tq iff t; is a descendant of ¢z in
the taxonomy tree (7,C), and S(¢) is essentially the set of
descendants of ¢, including ¢ itself, in the tree.

EXAMPLE 2.1. Figure 1 shows an example of taxonomy,
represented as a tree, where concept-instance relationship
C is represented as edges. In this taxonomy, term tz has
three instances: ts,te,to T to. The substitutes of a term
are its descendants, together with itself, in this tree. Term
to has seven instances: to,ts,...,tg =< t2, i.e., S(t2) =
{tz, t3, ... ,tg}‘

2.2 Taxonomy Keyword Queries

Inverted lists. Let D be a collection of documents, where
each document consists of terms from a vocabulary 7. We
assume that an inverted index is constructed for document
retrieval. For any term ¢ € T, the inverted list Z(t) C D is
the set of all documents containing the term t.

Result lists. The result list R(t) of a term t denotes the
set of documents containing any substitute of ¢.:

R(t) = |J Z(s). (1)

seS(t)

The intuition behind R(t) is, when a user refers to t, we
assume she may also be interested in all documents con-
taining any of its substitutes S(¢). For example, suppose
“Windows7” C “MS Windows” C “operating system”, when
“operating system” appears in the query, the user is also
interested in the documents containing “MS Windows” or
“Windows7”.

Answers to a taxonomy keyword query Now we for-
mally define the answer to a tazonomy keyword query q
as follows. Given a taxonomy query in the form of ¢ =

{t1,t2,...,tr}, we can find the answers to g as follows:
k k
R = (Re=| U Z(s) (2)

i=1 i=1 \seS(t;)

k
N I(sn) L ®)

{s1,.-1, sm}ES(t1)X...xS(ty) (i:l
Our goal is to evaluate R(q) as efficiently as possible.

2.3 Challenges

We introduce two naive approaches and their scalability
issues. The first approach retrieves Z(s) for each instance
s of each term t;, and evaluate the disjunctive normal form

as in (2). As an example, consider the taxonomy shown
in Figure 1. Given a query ¢ = {t2, t10, t17}, according to
Equation (2), we need to evaluate R(q) = R(t2) N R(t10) N
R(t17), which means we need to evaluate (Z(t2) UZ(t3)U. ..U
I(tg)) n (I(tlo) U I(tu) U...U I(t15)) n (I(tn) U I(tls) U
... UZ(t21). However, when some t¢; has a large number of
instances, that is, |S(¢;)| is large, evaluating the disjunctive
normal form becomes very inefficient, as we need to retrieve
a large number of inverted lists, and perform many union
operations.

In the other naive approach, we precompute and store
R(t) = Uses(r) Z(s) for all terms ¢’s in the offline stage; and
then in the online stage, we evaluate a taxonomy query ¢
= {t1, ..., tr} by intersecting the R(¢;)’s directly. This
approach does not need to evaluate unions of Z(s)’s during
query time, but an apparent drawback is that it requires
excessive amount of storage for R(¢)’s in a non-trivial tax-
onomy (7,C).

In the rest part of this paper, we introduce an approach
that precomputes R(t)’s for a selected set P of terms ¢’s. We
will discuss how to evaluate a taxonomy query g by taking
advantage of these precomputed lists, and how to select P.

3. PROCESSING TAXONOMY QUERY

In this section, we first propose a query processing model
for taxonomy queries and an associated cost model: we pro-
pose to precompute and store the result lists R(t)’s for a
subset of terms P C 7 offline, and discuss how (much) P
can improve the efficiency of online query processing. We
then introduce the problem of workload-aware index opti-
mization: given a query log Q and a space budget, how to
select the set P so that the query processing cost is mini-
mized.

3.1 Query Processing and Cost Model

Offline preprocessing. For each term t € T, we assume
Z(t), the inverted list of documents containing ¢, is precom-
puted and stored, as in most IR systems. However, it is too
space-consuming to also store result lists R(t)’s for all terms
in T, as the total size of R(t)’s is usually larger than the
total size of Z(t)’s. We select a subset of terms P C 7, and
precompute and store R(t) = Uges)Z(s) for each t € P.
We will define the problem of how to select P later in Sec-
tion 3.2.

Once P is fixed, we can compute R(t)’s for t € P by
merging lists together, from bottom to top, starting with
Z(t')’s.

We can use either linear lists or hash tables to implement
Z(t) and R(t), although both are called “lists”. This de-
termines how the query processing algorithm accesses these
sets.

In general, for a term set P C T, the total space we need
to materialize lists R(t)’s for all terms ¢ € P is proportional
to

space(P) = 3 [R(1)]. (4)

teP

Online query processing. For an online taxonomy key-
word query g = {t1,...,tr}, we want to take advantage of
the precomputed lists R(t)’s (for ¢ € P) as much as pos-

Figure 1: A taxonomy and P = {t3,t6, t10, t12,t17}

sible. Recall the query answer R(q) can be computed as
NE_ R ().

PROCESSQUERY (g, P)

1: For each t; € ¢ do:

2: L(t;) < PROCESSTERM(¢;, P).

In linear scan model:

3: Compute R(t;) from the set of lists L(¢;) (i =1,...,k).
4: Return R(q) = N1 R(t;).

Or, in hash lookup model: (initially, R(q) = @)

5: Compute R(t1) from the set of lists L(¢1).

6: For each d € R(t1) do

T For each L(t;) (i =2,...,k) check:
whether d € L for some list L € L(;);
8: If “yes” for all 4 = 2,...,k, R(q) + R(q) U {d}.

9: Return R(q).
PROCESSTERM(¢, P)
(Tt returns pointers to the lists Z(¢')’s and R(t')’s as L)

1: If t € P then return L£(t) < {R(t)};

2: Else: £L={Z(t)};

3: For each child ¢’ of t: £+ LU PROCESSTERM(t');
4: Return L(t) + L.

Algorithm 1: PROCESSQUERY and PROCESSTERM

ExamMpPLE 3.1. Consider the taxonomy in Figure 1 and P
= {ts, t6,t10,t12,t17} (gray nodes in the figure). Assume we
want to evaluate the tazonomy query q = {t2,t10}. To com-
pute R(tz2), according its definition (1), R(tz2) = Ui_oZ(t;).
Since ts and tg are in P, we can get R(ts) and R(te) di-
rectly, and ignore their substitutes ta, ts, t7, and ts. Thus,
R(tg) = R(ts) U R(ta) U I(tg) U I(tg)‘ To compute R(tlo),
since tio is in P, we can get R(t1o) directly, and ignore its
substitutes t11 and t12. So ¢ = {t2,t10} can be evaluated as:
(R(tg) U R(ta) U I(tg) U I(tg)) N (R(tlo)).

From the above example, to evaluate R(t;), if t; € P,
we can directly retrieve R(t;) from the index; otherwise, we
retrieve Z(t;), and recursively check t;’s child t'—the union
of lists needed to compute R(t') for all children ¢"’s together
with Z(t;) is exactly R(t;). This is how PROCESSTERM() in
Algorithm 1 works. After PROCESSTERM(¢;) finishes, £; is
the set of pointers to lists (either Z(t') or R(¢') for a term)
that are needed to compute R(¢;). In Example 3.1, we have
L(t2) = {R(ts), R(ts),Z(t2), Z(to)} and L(t10) = {R(t10)}-

Later in this section, we will formally describe £(¢), which
is returned by PROCESSTERM, and how to compute R(¢;)
using lists in £(¢;)’s in both linear scan model and hash

lookup model. For this purpose, we introduce C(t,P) and
C(t,P):

Intuitively, any term ¢’ in C(t, P) is the closest descendant
of t on the path from ¢ to t' in P. In other words, for any
t' € C(t,P), there is no any other term in P as both t’s
descendant and t'’s ancestor. When PROCESSTERM touches
any term in C(t,P), it stops recursion and includes R(t)
in £. In Example 3.1, C(tlo,P) = {tlo} and C(tQ,P) =
{ts, te}. .

Furthermore, C'(t, P) records those terms that are substi-
tutes (descendants) of ¢ (in S(t)) but not covered by C(t, P).
When PROCESSTERM accesses those terms in C(t,P), it
adds Z(t) to £ and continue the traversal. In Example 3.1,
we have C(t2, P) = {t2,t9} and C(t10,P) = @. Finally, we
note that if ¢ itself in P, then C(¢, P) = {t} and C'(t,P) = 0.

Ct,P) = {{eP |t 2tAfrecP:t' <z =<t}, (5)
Ct,P) = S(t)—Usccw,pS(z). (6)
Given this, we can formally write £(t) and R(t) as follows:
L(t)={R() | t' € C(t,P}U{Z(t") | t" € C(t,P}, (T)
R(t) = (UrecwmR(E)) (Ut,,eg(t’P)I(t”)) . (8)

PROPOSITION 1. With the selection of C(t,P) in Equa-
tion (5) and C(t,P) in Equation (6), R(t) can be computed
as in (8) with the minimum number of union operations.

Depending on how lists Z(t) and R(t) are implemented, as
linear lists or hash tables, we mainly consider the following
two types of query processing algorithms, and quantify the
cost to process one query ¢ for a selection of term set P.
The linear scan model (lines 3-4 in PROCESSQUERY).
We first consider the model where elements in Z(t) and
(materialized) R(t) are stored as sorted linear lists, which
support sequential access of elements in Z(¢) and R(¢) in
certain order, and might be compressed. For a query ¢ =
{t1,t2,...,tx}, we evaluate R(q) in two steps:

(i) We first compute R(t;) for each t; € g, according to
(8): we scan the lists R(t')’s and Z(¢"")’s in L(t;), and merge
them into the sorted list R(¢;), with duplicates eliminated.
(ii) We then take the intersection of the sorted lists R(¢;)’s
(i=1,2,...,k), using the linear scan, as the answer R(q).

Since the total number of operations in (i) is proportional
to the number of elements we accessed in R(t')’s and Z(t"),
the cost of computing R(¢;) can be quantified as the total
size of lists involved in Equation (8), i.e.,

> IR+ Y

t'eC(t,P) t" €C(t,P)

costs(t,P) = IZ(M)[. (9)

The cost in (ii) is independent on the selection of P, so we
quantify the total cost of processing ¢ for a fixed P as:

costs(q,P) = Z costs (¢, P). (10)

ti€q

costs(q, P) is essentially the total number of elements we
need to access in the index structure to answer the query gq.
It can be noted that there could be lots of variants of the
above algorithm with different practical performance. How-
ever, we claim that Equation (10) captures the dominating
factor of the cost, because if only sequential accesses are al-
lowed for each list Z(¢) or R(t), to compute the result R(q),
we need to scan each element in Z(t) or R(t) at least once.

As Equation (10) is the total size of these lists we need to
access, it can be used to approximate the actual processing
cost for answering q.

The hash lookup model (lines 5-9 in PROCESSQUERY).
We then consider that model where each list Z(t) or R(¢)
is preprocessed in such a way that hash lookup (search in
O(1) time) is supported. In this model, we compute R(q)
as follows.

Given a query q = {t1,t2,...,tx}, we find the term ¢o
in ¢ whose instances (including itself) appear in the min-
imum number of documents, i.e., to = argmingeq |R(t:)].
W.l.o.g., suppose to = t1. We first compute R(¢1), by adding
each element in each R(t') or Z(¢") € L(¢1) into the hash
table R(t1) to eliminate duplicates. Then, for each element
(document ID) d in R(t1), we use hash lookups to check
whether it also appears in every other R(t;)’s—if yes, we in-
clude it into the query answer R(q). In particular, to check
whether d is in R(t;), according to (8), we need to check
whether it is in some R(¢') (for some ¢’ € C(¢;,P)) or in
some Z(t") (for some s’ € C(t;,P)). The number of hash
lookups we need to check whether each d is in R(t) is at
most

N(t,P) =|C(t,P)| +[C(t,P)|. (11)
And thus for all elements in R(¢1), we need at most

)= > N(t:,P) (12)

t;€q

costr(q, P) = |R(t1)]

hash lookups in total. Since the query processing cost in
this model is dominated by the number hash lookups, we
now use costy, (g, P) to quantify the processing cost.

It can be noted that, on average, we may not need as
many hash lookups as in Equation (12), because once we
find a candidate does not exist in R(t;), we do not need
to verify its existence in other lists any more. However,
Equation (12) is usually proportional to the actual number
of hash lookups needed, and thus characterizes the cost of
query processing.

Binary search and other query processing models.
There is another type of query processing algorithms based
on binary search. As shown in the experiments in [3], they
perform similar to the ones based on hash lookup. So we
can also quantify their cost using Equation (12). Detailed
analysis is omitted.

3.2 Problem of Index Optimization

We introduce the workload-aware index optimization prob-
lem. The goal is to select P to minimize the query processing
cost for a workload of queries Q, subject to space budget.

Given a space budget By, we precompute and store R(t)’s
for a subset of terms P C 7, s.t. they consume no more
than By space, and the cost of processing queries in Q can
be minimized. More specifically, we are interested in the
expected query processing cost of Q, i.e., for a randomly-
picked query from Q, the expected cost to process it. This
cost can be computed as the (weighted) average of costs for
all queries in Q:

costexp(Q, P)

Z cost(q, P) - w(q), (13)

4€Q
where cost(q, P) could be either costs(q,P) in (9)-(10) or
costy(q,P) in (11)-(12), depending on the query processing
model we are using, and w(q) is the frequency of query gq.

We note that the cost function (13) may involve the car-
dinalities |R(t)|’s and |Z(¢)|’s as in (9). We need to pre-
compute these cardinalities (without actual construction of
lists R(t)’s) to obtain the value of the cost function for a
selection of P. This is done at the time when the inverted
index {Z(t)’s} is constructed: when a term ¢ in a document
is scanned, besides adding the document ID into Z(¢), for
each ancestor ¢’ of ¢ in the taxonomy, increase the counter
for |R(t")| by one.

Problem statement (INDEXSELECTION)

In the INDEXSELECTION problem, suppose we have a collec-
tion of documents D for which a taxonomy (T,C) is prede-
fined. Given a query log @ and a space budget By, our goal
is to find a subset of terms P C T, and the objective is to

minimize COStexp(Q,P)

s.t. space(P) < By, PCT.
THEOREM 2. The INDEXSELECTION problem is HP-hard,
where |T| is the size of the input to the problem.

PROOF. (SKETCH) We reduce KNAPSACK to INDEXSE-
LECTION. An instance of KNAPSACK is: given n items with
weights {w;} and values {v;}, we want to select a subset of
items with total weight < By, so that the total value is max-
imized. In the linear scan model, we construct an instance of
INDEXSELECTION: There are n queries in Q = {q1,...,¢n},
and each query ¢; = {t;} (t; # t; for i # j). For term t;,
we have S(t;) = {tz,t }, and S(t5) = {t;} (¢; §Z {t1,...,tn}).
Let |Z(t:)| = wi, |Z(t;)] = vi, and Z(t;) 2 I(1) (so |R(t:)| =
w;). To complete the proof, we need to prove that, with the
same By in two problems, the optimal solution to KNAPSACK
is OPT if and only if the optimal solution to INDEXSELEC-
TION is >.7 (wi + v;) — OPT. A similar reduction from
PARTITION can be done for the hash lookup model and we
omit the details for the space limit. [

4. INDEX OPTIMIZATION

A naive algorithm

A simple solution for INDEXSELECTION is to include the top-{
most frequent terms into P, where [is selected to be the max
one so that the space budget By is not violated. Here, the
frequency of a term ¢t means the total frequency of queries in
Q that contain ¢. Intuitively, if a term ¢ appears more often
in Q, we get more benefit from materializing R(¢), and thus
we include it into P earlier.

This naive algorithm, however, is usually sub-optimal.
There are two basic reasons. First, frequency is not the
only criteria to quantify the benefit of including a term into
P. For example, a term ¢ may have low frequency but it
is a substitute of many other frequent terms; in this case,
we still can benefit a lot by materializing R(t). Second, the
benefit of materializing R () is not additive but dependent
on the terms already in P. In other words, for example, the
benefit of including ¢ into P when P = & is different from
the benefit when P = {t1}.

Overview of our algorithms

To get the optimal solution for INDEXSELECTION, a straw-
man approach is to enumerate all subsets of 7 as P, which
needs O(2V) time, where N = |T| is the total number of
terms in the taxonomy.

We first introduce how to use dynamic programming to
get the optimal solution in O(N - By - 2") time, where h is
the height of the taxonomy. It is still an exponential-time
algorithm (recall the NP-hardness of INDEXSELECTION in
Theorem 2). However, since h is usually small in practice,
this dynamic programming algorithm works reasonably well.

Interestingly, we find benefit function, which evaluates the
processing performance gain of materializing R(t)’s for terms
in P, has a nice property, “diminishing returns”, or submod-
ularity: i.e., the benefit of including ¢ into Py when Py = P,
is always no less than the benefit when Py = Ps, if P; C Ps.
Thanks to this property, a fast greedy algorithm with prov-
able approzimation ratio can be designed, as we show next.

In the rest of this section, we first formally define the ben-
efit function in Section 4.1, and introduce and analyze the
two index optimization algorithms, dynamic programming
and greedy, in Sections 4.2 and 4.3, respectively.

4.1 Benefit Function

For the ease of discussion and analysis, before introducing
the two algorithms, we first derive a benefit function gain by
rewriting the cost function (costexp) in INDEXSELECTION.
The linear scan model. From (9)-(10), we rewrite (13)
as:

COStexp Q P Z ZCOStS t P ()
geQ teq
= Z (costs(t,P)- Z w(Q))
teT qeQ:teq
= Z costs (¢, P) - ws(t, Q), (14)
teT

where ws(t,Q) = 3 co.c, w(q) is the frequency of ¢ and
costs(t,P) = Zt’eC(t,P) IRt + Zt“eﬁ(t,P) |Z(t")|, as in
(9), is the number of elements to access to compute R(t).

The hash lookup model. For a query g = {t1,...,tx}, let
C(q) = |R(t1)| be the number of candidates. From (11)-(12),

COStexp(Q, P) Z ZC P) - w(q)
q€Q teg
=> (N(t P)- Y C(q)‘w(q)>
teT qeEQ:tEq
teT

where we have wy(t, Q) = >° .,c,C(q) -w(q) and N'(t, P)
= |C(t,P)| + |C(t,P)| as in (11) is the max number of hash
lookups needed to check whether a candidate is in R(¢).

Function gain. The cost functions in Equations (14) and
(15) are in the same form. Now we define the benefit function
gain(Q, P) for the purpose of our optimization:

gain(Q, P) = costexp(Q, &) — costexp(Q, P). (16)

Obviously, minimizing costexp(Q, P) is equivalent to maxi-
mizing gain(Q, P). According to (14)-(15), we define:

gain(t, P) = cost, (¢, &) — costs (¢, P), or (17)
gain(t,P) = N(t,2) — N(¢,P). (18)

for the two models, and thus, we have

gain(Q,P) Zgam (t,P)
teT

w(t, Q) = ws(t, Q) or wy(t, Q), respectively.

w(t, Q), where (19)

4.2 Dynamic Programming Algorithm

For a taxonomy (7,C), we introduce the dynamic pro-
gramming algorithm to maximize gain(Q,P). For a set of
terms P and a term ¢’, let P + ¢’ denote P U {t'}. Let A(t)
be the set of ancestors of ¢ in the taxonomy plus ¢ itself.

We first suppose all terms in 7 are ordered as the pre-
order traversal sequence: T = {t1,t2,...,tn} (N = |T]).
Refer to Figure 1 for example. Given this, the straightfor-
ward dynamic programming considers each term (starting
from the last ¢x) has two options, including it in P or ex-
cluding it. For the former, it needs to solve the case for
T = {t1,t2,...ty—1} with budget Bo — [R(tn)|}; and for
the latter, it needs to solve the case for 7 = {t1,t2,...tn—1}
with budget By. Recursively, it can produce the optimal
results with time complexity O(2"). Clearly, this is pro-
hibitively expensive and inefficient as there are too many
sub-problems being reused.

Subproblem definition. An observation which forms the
basis of dynamic programming is as follows: For any term
t; € P, the materialization of R(t;) only benefits the nodes
on the path going from t; up to the term whose direct ances-
tor (in the tazonomy tree) is in P. For instance, in Figure 1,
R(t12) only benefits itself, and R(t3) benefits itself and both
to and t7.

However, how to utilize this property to define and reuse
subproblems in dynamic programming is not trivial. This
is because for a term (e.g., t21 in Figure 1), the choice of
whether adding it into P is not only related to its closest
ancestor (t17 w.r.t. t21) in P; but also, the choice on this
term and the ones on its cousins (t20, t19, and t1s w.r.t.
t21) are correlated as they share a set of common ancestors
({t17,¢1} in this example).

We introduce two lemmas below which help define the
subproblems in the dynamic programming.

LEMMA 3. Let A(t;) be the set of ancestors of t; in the
taxzonomy plus t;. Numbering nodes in T in the order as the
pre-order traversal, a property of this numbering is: for any
two consecutive t;—1 and t;, we have A(t;—1) D A(t;) —{t:}.

In general, for any set P C 7 of terms, define:
Againp (t') = gain(Q, P +t') — gain(Q, P). (20)

Here let us order the terms in a set P as a subsequence
of T, P = {ti17ti27~~~7tim} (’il < < im). Let P; =
{tiy, ..., ti;} be the first j terms in P. We can rewrite
gain(Q,P) =

Againg (ti;) + Againp, (i) + ... + Againp (Li,,)-

Recall our observation that the materialization of R(¢;)
only benefits ¢; itself up to the term whose direct ances-
tor in P. So as long as the choices (whether or not to be
included in P) on the ancestors are made, the marginal ben-
efit of materializing R(¢;) is fixed. We can prove this claim
formally in Lemma 4. Details are in Appendix A.1.

tz 1} C T lf
Agampu(i)

LEMMA 4. For any P, P" C {ti, ta, ..
P nAt) =P nAt), then Againp, (t)

From Lemmas 3-4, for P C {t1,...,ti—1}, let Si—1 =PnN
A(ti—1) be the set of ti—1’s ancestors, including t;—1 itself,
which are included in P, and then the value of Againp (t;) is
determined by S;—1, for any fized i. The reason is as follows.
From Lemma 3, we know that, if S;—1 = PNA(t;—1) is fixed,
then P N A(t;) is also fixed. So from Lemma 4, Againp (t;)
is uniquely determined by S;—1 for fixed i.

Therefore, we can write Againp(t;) as Againg, | (¢;) with
Si—1 defined above. We will introduce how to compute the
value of Againp (t;) = Againg, | (t;) for both the linear scan
model and the hash lookup model in Appendix A.1.

Based on the above discussion, for each term t; and a fixed
budget B, we can partition all the possible choices of P on
the terms {¢1, ..., t;—1}, whose number is in the order of
O(2"71), into the equivalent classes defined by S;_1, whose
number is in the order of O(2"). Here, h is the height of
the taxonomy and is much less than |7|. More formally, the
subproblem is defined as: finding the best solution P(i) C
{t1,t2,...,t;} which uses space B with P(i) N A(t;) = Si.
Algorithm description. We are ready to introduce our
dynamic programming algorithm in this space of subprob-
lems. Let OPT;(B,S;) be the value of the best partial solu-
tion P (i) C {t1, t2, ..., t;}, among those which spend space
B, ie., Y icp IR(t)] = B, and with P(i) N A(t:) = Si. We
can derive the following recursion for OPT; (B, S;):

OPT»L'(B, SZ) = max (21)

Si—1: S;—1NA(t;)CS;
()P‘Ti_l(B7 Si—l) if t; §é Si,
OPTZ'71(B — |R(t7,)|, Sl‘fl) + Againsi_l (tz) if t; € S;.

And the initial condition is: OPT1(B,S1) =

0 B = 0, S1 =9
Againg({t1}) B =[R(t1)|,51 = {t:} (22)
—0o0 otherwise.

Here, —oco means that the other settings of (B,S1) are in-
valid.

LEMMA 5. Equations (21)-(22) can correctly compute the
optimal solution for the INDEXSECTION problem.

PRrROOF. The initial condition (22) is obviously correct
from the definition. The recursion (21) considers two cases:
if t; ¢ S;, both the space consumption and the solution
value are unchanged; and if ¢; € S;, it needs additional
|R(ti)| space, and increases the benefit of the solution P (%)
by Againp(;_1)(t;) = Againg, _ (ti), which depends only on
Si—1. (21) essentially enumerates all settings of S;—1 to get
the best P(¢). O

The dynamic programming algorithm to compute recur-
sions (21)-(22) can be implemented as Algorithm 2 in a back-
ward way: start from OPT1(B,S1), using OPT;(B,S;) to
update OPT;41(B’, Si11). Lines 5-6 consider the case ;11
¢ Siy1 as in the first case of (21), and lines 7-8 consider the
case ti+1 € Sit+1 as in the second case of (21).

THEOREM 6. Algorithm 3 correctly gets the optimal solu-
tion to the INDEXSELECTION problem in O(N - Bo - 2" - h)
time and O(N - By - 2™) space, where N is the total number
of terms in T, and h is the height of the tazonomy tree.

PrOOF. The correctness is from Lemma 5 and the above
discussion. To store OPT;(B, S;) for all settings of (i, B, S;),

Input: Terms T, query log Q, and space budget By.
1: Initialize OPT1(B, S1) according to (22).
2: Initialize OPT;(B, S;) as —oo for any ¢ > 1 and B.
3: Fori=1to N —1do
For B =0 to By do
For each subset S; in A(t;) do
If ()PTZ(B7 SZ) # —o0 then
Sit1 < Si N A(tig1),
B’ + B;
OPTZ'+1(B/, Si+1) — HlaX{OPTi+1(B,, Si+1)7
OPT,(B,S;:)};
Sit1 = (S VA1) U {tit1},
B’ <~ B+ |[R(tit1)l;
OPT¢+1(B/, S¢+1) «— maX{OPTi+1 (B/, SiJrl),
()PTZ'(B7 Sz) + Againsi (ti+1)};
9: Return max{OPTn(B,Sn) | B < Bo,Sn C A(tn)}-

Algorithm 2: DYNAMICPROGRAM

we need O(N - By -2") space, as 1 <i < N, 0 < B < By, and
S; could be any subset of a term’s ancestors in the taxonomy
tree. As for the time complexity, the cost of each iteration of
lines 4-8 is dominated by the computation of Againg. (ti41)
(discussed in Appendix A.1) and S;1, both of which need
O(h) time. And there are totally O(N-By-2") iterations. [

We note that Algorithm 2 is a pseudo-polynomial time
algorithm, even when the tree height h is a constant, be-
cause By may not be polynomially-bounded in N. How-
ever, for fixed h, if applying the rounding-scaleup idea for
the KNAPSACK problem [25], we can modify DYNAMICPRO-
GRAM to yield an FPTAS (fully polynomial-time approxi-
mation scheme) for the INDEXSELECTION problem. It gets
an (1 + €)-approximation with running time polynomial in
N and 1/e
Implementation. Based on similar rounding-scaleup ideas,
in practice, we can scale down the space budget Bmax
| Bo/«| and consider terms (whether or not to be included
into P) with heights no larger than hAmax in the taxon-
omy. Bmax and hAmax are selected s.t. the O(N - Bmax
2hmax) gpace is affordable. Also, the space consumption
of each term ¢t is scaled down as b(t) < [|R(t)|/a], and
let space(P) = >, _p b(t). We apply Algorithm 2 on this
scaled-down instance, and can get an approximate solution
to INDEXSELECTION, while reducing its time complexity to
O(N - Bumax - 2" - huax).

4.3 Submodularity and Greedy Algorithm

The complexity of the dynamic programming algorithm in
Section 4.2 could be prohibitive when By is large. Now we
introduce a simpler but more efficient algorithm, which pro-
vide an approximate solution to the INDEXSELECTION prob-
lem. It is based on two properties of the function gain(Q, P).

(i) gain(Q, P) is submodular, i.e., demonstrates "diminish-
ing returns”, w.r.t. P. The benefit of including a term ¢’ into
P decreases as P grows. Formally, fixing O, iff P; O Po,

Againg (') = gain(Q,P1 +t') — gain(Q, P1)
<Againp, (t') = gain(Q, P2 +t') — gain(Q, P2).

(ii) gain(Q, P) is monotone, i.e., we can always get benefit
from including additional terms into P. Formally, fixing Q,
gain(Q,P1) > gain(Q,P2), iff P D Ps.

LEMMA 7. For any fized t, gain(t,P) in (17)-(18) w.r.t.
P is submodular and monotone for both the linear scan and

Input: Terms T, query log Q, and space budget By.

1: Initially, let P < (.

2: While space(P) < By do:

3 to < arg max;¢p (val(t) — gaun(Q,PKiB%aun(Q,P)).

4 P+« PU{t}

5: Return the better one of P — {to} and {to} as the solu-
tion.

Algorithm 3: GREEDYSELECT

the hash lookup model. And thus gain(Q,P) in (19) w.r.t.
P (for any fized Q) is submodular and monotone in both
models.

PrOOF. The monotonicity is easy to be verified. After
precomputing R(t') and adding ¢’ into P, when the query
processing algorithm reaches t', it can retrieve R(t’) directly,
instead of going down to the children of ¢’ to retrieve more
lists (refer to line 1 of PROCESSTERM in Algorithm 1). So
from (17)-(18), (9), and (11), fixing ¢, the value of gain(¢, P)
can only increase if we adding any term ¢’ into P.

For the submodularity of gain, refer to Appendix A.2. [

From the submodularity and the monotonicity of the func-
tion gain(Q, P) (fixing Q), the greedy algorithm GREEDYSE-
LECTION (Algorithm 3) works well. We assume that |R(t)] <
By for every t € T (i.e., never include a term ¢ into P with
|R(t)| > Bo). Initially, let P be empty. In each iteration of
lines 2-4, we pick the term to with the unit value

val(t) = Againe(t) _ gain(Q, P + 1) — gain(Q, P)
- ROI R(0)]

to be the max among all terms that are not in P yet, and
put to into P. We repeat this greedy selection until the
space needed for terms in P reaches the budget Bo, i.e.,
> iep R(t)] > Bo. Eventually, let to be the last selected
term, and we return the best of P — {to} and {to} as our
the solution Py.

THEOREM 8. Suppose P* is the optimal solution to the
INDEXSELECTION problem, and Pq is the solution returned
by GREEDYSELECT, we have gain(Q,Po) > (1 — 1/e) -
gain(Q,P*). It needs O(N?-h) time and O(N) space, where
N is the number of terms, and h is the height of the taxon-
omy.

ProoOF. From Lemma 7, P on line 5 is at least as good
as the solution obtained from Algorithm 1 in [11], so from
[11], we have gain(Q,P) > 1(1 — 1/e) - gain(Q,P*). Also
from the submodularity, gain(Q,P — {to}) + gain(Q, {to}) >
gain(Q,P). So we have at least one of gain(Q, P — {to}) and
gain(Q, {to}) no less than $(1—1/e)-gain(Q, P*). As we as-
sume Vt € T : |R(t)| < Bo, {to} could also be a solution. So
the approximation ratio follows. For the space complexity,
we need only O(1) space for each term ¢ in GREEDYSELECT.
As for the time complexity, the iteration of lines 2-4 repeats
at most N times, and in each iteration, we need O(N - h)
time to select the best to (we will discuss in Appendix A.1
about how to compute Againp () in O(h) time). O

We note that, in practice, GREEDYSELECT is much more
efficient than O(N? - h), because lines 2-4 usually repeat
much less than N times (it stops as soon as space(P) > By).
That is also the reason why we do not apply Algorithm 1

in [11], which needs exactly N iterations. In our problem,
to has to be selected in at least ©(N - h) time and N is
large, so early termination on line 2 improves the practical
performance a lot.

In fact, from the submodularity of gain(¢, -) and [23], there
is an (1 — 1/e)-approximation algorithm with running time
O(N?) [23]. Note that an O(N*)-time algorithm is too slow
in our context, as N could be very large in practice. So we
will only test GREEDYSELECT in the experiments.

S. EXPERIMENTS

We evaluate our index optimization techniques for tax-
onomy keyword queries using real datasets. There are two
baselines: Nolnd, which does NOT materialize R(t) for any
term (P = @), and Allind, which materializes R(t)’s for all
terms (P = 7). In our taxonomy query processing model,
these two methods consume the minimal and maximal possi-
ble space, respectively. Given a space budget By, the naive
algorithm introduced at the beginning of Section 4 is de-
noted as Naive, the DYNAMICPROGRAM algorithm in Sec-
tion 4.2 is denoted as DP, and the GREEDYSELECT algo-
rithm in Section 4.3 is denoted as Greedy, in the following
experiments.

To have the DYNAMICPROGRAM algorithm work in prac-
tice, we set parameters Bmax and hmax (discussed at the end
of Section 4.2) as: Bmax = 400 and hmax = 7. We found this
is the best setting (minimal processing cost) for our dataset.

Algorithms are coded in C# and evaluated on a 48GB
64-bit 2.67TGHz PC. All index structures are stored in the
memory.

Datasets. Our techniques take i) a taxonomy (7,LC), ii)
a query log Q, and iii) a collection of documents D as the
input, for the purpose of index optimization (i.e., selecting
the term set P for materializing result lists R(¢)’s).

i) We use a taxonomy automatically extracted from a cor-
pus of 1.68 billion web pages, using algorithms proposed in
[26, 21]. This taxonomy contains 279,109 terms, with term-
term concept-instance relationship predefined.

ii) The query log is extracted from queries to search engine
Bing.com from Sept 2007 to Feb 2010, denoted as Qo, and
we only keep the ones with frequency larger than 300. We
have 1,260,526 different queries which appear totally more
than 6 billion times. To test how our index optimization
techniques work for future (unseen) queries, i.e., the ones
not in the query log, we also extract 6 query workloads,
denoted as 91, 92, ..., Q¢, from Mar, Apr, May, Jun, Jul,
and Aug, respectively, later in 2010.

iii) With a sample from Bing.com’s web page corpus as
the collection of documents, we build the inverted index,
i.e., Z(-), on these pages for all terms in our taxonomy.
The inverted lists Z(¢)’s contain a total of 10,282,150 entries
(40MB memory). To test the scalability of our index opti-
mization techniques, we also extract a larger sample whose
inverted index has a total of 250M entries (1GB memory).
If we compute and materialize all the result lists R(¢)’s, we
need 150%-200% memory in additional to the inverted index
(250%-300% in total).

Measures. We record the time and the number of (linear
scan or hash lookup) operations needed to process workloads
of queries. When we compare different index optimization
techniques, we usually normalize the time and the number
of operations to the ones in Nolnd (i.e., P = & does not

7 aive a

05 DP wzzmmm 05 DP wzzmmm

) Greedy - Greedy
0.25 0.25
0.1 0.1
0.05 0.05

0.02 0.02

0% 2% 6% 10% 30% 60% 160% 0% 2% 6% 10% 30% 60% 160%
Space Budget Space Budget

(a) # Operations (ratio) (b) Processing time (ratio)

Figure 2: Linear scan model: varying space budget

DP

0.5 Greedy 05
0.25
0.25 01
0.05

0.1
0.02
0.05 0.01

6% 10% 3

o 6% 10% 30% 60% o
Space Budget

Space Budget

09

% 6

160%
(a) # Operations (ratio) (b) Processing time (ratio)

Figure 3: Hash lookup model: varying space budget

materialize any R(t)), so in this case, a ratio in (0,1] is
reported.

Exp-I: Varying space budget By. Our first experiment
is to test the proposed index optimization techniques for
different space budgets. We use the 40MB inverted index
and vary the space budget By from 2% x 40MB to 160%
x 40MB. We use Qg for both index optimization and re-
porting query processing time/# operations. Materializing
all R(t)’s needs 160% additional memory in this case. The
result is reported in Figures 2-3, respectively, for the linear
scan and the hash lookup model. When the space budget is
0%, all methods are reduced to Nolnd, and when it is 160%,
all are reduced to Alllnd.

It can be seen that Greedy is always the best in terms
of both processing time and number of operations. DP is
usually the second best one. Its performance is very close
to Greedy when By is small, but deteriorates when By in-
creases. The reason is that, to make DP work in practice,
we have scaled By down to Bmax (as discussed at the end of
Section 4.2), so the larger By is, the more precision loss we
have. Naive is worst than DP when By is small and better
than DP (still much worse than Greedy) when By is large.

From this experiment, we can see that, using only 10% ad-
ditional space, Greedy reduces the processing time downto
4.32% of Nolnd in the linear scan model (9.93%, in the hash
lookup model), while DP reduces to 7% (25.36%) and Naive
reduces to 14.13% (32.64%). The query processing perfor-
mance of Greedy is very close to the best we can do: with
the all R(t)’s materialized, Alllnd improves performance to
3.36% (1.87%) but consumes 160% additional space.

In the rest part, we fix space budget By to be 10% of
the size of inverted index. So Naive, DP, and Greedy all
use 10% additional space below. And when the two models
show similar trends, we will only report results for linear
scan model.

Exp-II: Handling future queries. We then fix the query
workload for index optimization to be Qp, and use later
query workloads Qj,..., Qs to report processing time. In
other words, at the time of index optimization, we do not

03 Alllnd —— DP —o— 03 Allind —s— DP —o—

0.25 Naive —<— Greedy —o— 0.25 Naive —x— Greedy —o—

0.2 0.2 /\\/\
0.15 m 0.15

0.1 0.1 Mi/;"
b—6—o— o —5— w

005¢—o0—o— o o —4 0.05‘
Mar Apr May Jun Jul Aug Mar Apr May Jun Jul Aug

—— v~V —~v——Y

(a) # Operations (ratio) (b) Processing time (ratio)

Figure 4: Linear scan model: future queries

06 Alllnd —>— DP —e— 06 Alllnd —v— DP —e—

05 Naive —<— Greedy —e— 05 Naive —x— Greedy —e—
04 L o —eo—o—o—f% 04
e Ty

0.3 0.3

00— —o—e——0 ¢ (>

0.14 ;01 >
b y

Mar Apr May Jun Jul Aug Mar Apr May Jun Jul Aug

(a) # Operations (ratio) (b) Processing time (ratio)

Figure 5: Hash lookup model: future queries

know what queries will come in the future. The purpose of
this experiment is to show that the performance of our in-
dex optimization techniques are stable when handling future
queries.

As shown in Figures 4-5, the performance of our tech-
niques to optimize the index is very stable. Greedy is usually
very close to the best possible one Allind (note Allind needs
160% additional space, while others needs only 10%). In
fact, the large workload of queries Qo could be a good ap-
proximation to the distribution of future queries for a long
time, and this is why our index optimization techniques per-
form well on future queries although they are based on his-
torical queries. Fortunately, such a large query workload is
usually available in practice. In Figure 5(b) we note some
variation of processing time from May to Jul, which may in-
dicate changes of the query distribution during those three
months.

Exp-III: Varying size of inverted index. We use the
1GB inverted index and its subsets with sizes from 480MB
to 48MB (randomly pick subsets of documents). After ran-
domly partitioning Qo, we use 90% queries to optimize index
and the rest 10% to test the performance of the index op-
timized using different techniques. The results are reported
in Figure 6. The performance of our index optimization
techniques (i.e., the improvement over Nolnd) are almost
unchanged in datasets of different sizes, and Greedy, which
uses 10% additional space, is always very close to Alllnd,
which uses 150%-200% additional space. Results for the
hash lookup model are similar.

Exp-IV: Comparing linear scan processing model
and hash lookup model. We report the actual average
query processing time for the linear scan model and the hash
lookup model for comparison. With the same setting as Exp-
III, we focus on only 480MB and 1GB invert indexes. The
results are reported in Figure 7. Similar to results in [3] (on
list intersection), the linear scan model is a bit better than
the hash look up model. In both models, Greedy is always
the best and shows significant improvement over Nolnd, us-
ing only additional 10% memory.

ni Allind T———7 D
0.5 . Naive wwwwm Greedy
0.25

0.1
0.05

0.02
0.01

480M
Size of Inverted Index

100M 20 480
Size of Inverted Index

(a) # Operations (ratio) (b) Processing time (ratio)

Figure 6: Linear scan model: varying size of dataset

Gr

480M 1G
Size of Inverted Index

480M 1G
Size of Inverted Index

(a) Linear scan model (b) Hash lookup model

Figure 7: Average processing time (ms) per query

Exp-V: Varying amount of queries for optimization.
We first randomly partition Qg into ten groups. Fixing one
group for testing the performance of index, we will use an-
other different 1, 2, 4, 6, or 8 groups for optimizing the
index. The results are shown in Figure 8. We can observe a
slight improvement of Greedy when using 80% queries for op-
timization over its own performance when using less queries.
This indicates the more queries used for optimization, the
better.

Exp-VI: Cost of index optimization and construc-
tion. Here we report the time needed to select P by Naive,
DP (Algorithm 2), and Greedy (Algorithm 3) in Figure 9(a) —
it is mainly affected by the space budget. The time needed
to construct R(t)’s (for t € P) is mainly determined by
the size of the inverted index, so fixing P, we report the
additional construction time in Figure 9(b). We focus on
the linear scan model and trends in the hash lookup model
are similar. As discussed at the end of Section 4.3, our
GREEDYSELECT in Algorithm 3 enables early termination,
but will use more and more time when By increases. This
can be found in Figure 9(a). Once P is selected, the cost
for constructing R(t)’s for ¢ € P is just linear to the size of
inverted index. The performance of both is quite affordable,
since offline index reorganization is much less frequent than
online query processing.

6. DISCUSSION AND EXTENSIONS

Handling general taxonomy

The major part of this paper focuses on a taxonomy tree.
However, we note that our processing model for taxonomy
queries and the index optimization schema can be also used
when the taxonomy is a DAG or even contains synonym rela-
tionship. In those cases, the dynamic programming method
in Algorithm 2 does not work any more, but the GREEDYS-
ELECT algorithm, i.e., Algorithm 3 still works, with the
same approximation ratio. This is because we can prove
that gain(Q,P) is still a submodular function and mono-
tone w.r.t. P in general taxonomies. Further testing of the

0.25

AllNd T———7
Naive wwww— Gre

0.1

0.05

10% 20% 40% 60% 80%
Percentage of Training Workload

1 20% 40% 60% 80%
Percentage of Training Workload

0.02

(a) # Operations (ratio) (b) Processing time (ratio)

Figure 8: Linear scan model: varying the amount of
queries used for index optimization

6 5
10 Naive —>— 3x10 Addional preprocess ¢
10

5 DP 4
Greedy —o— 9x10
4 &
10 3x10*

3 &
10
/./V’// 9x10° o

10?

3x10°
10

2% 6% 10% 30% 60% 48M 100M 200M 480M 1G
Space Budget Size of Inverted Index

(a) Optimization time (ms) (b) Construction time (ms)

Figure 9: Index optimization and construction

performance of the optimized index on more general tax-
onomies is interesting future work.

Handling updates of inverted index and query log

When the document corpus is updated, we need to update
both the inverted lists Z(¢)’s and the result lists R(¢)’s. As-
suming the selection of P is fixed, these two types of lists can
be updated at the same time: if a document ID is inserted
to (or removed from) Z(t), we insert it into (or remove it
from) R(t') for all the ’s ancestors ¢'’s in the term set P.

When the updates of inverted index and query distribu-
tion (estimated from query log) is significant enough, we
may also need to update the selection of P for better perfor-
mance of the index. When the term set P is re-selected, we
need to re-compute the whole index structure, which could
be expensive. However, from Exp-II in Section 5, we note
that our index optimization techniques (i.e., the selection of
P) is quite stable for future queries. So the re-selection of
P can be done less frequently than the updates of inverted
index, e.g., once per month. Determining when to update
P could be very interesting future work.

Other union/intersection operations

Our index optimization schema can be applied with different
list union and list intersection algorithms embedded into our
processing model (besides the simple linear scan and hash
lookup models introduced in Section 3.1). For different algo-
rithms (e.g., those discussed in [3]) and processing models,
we only need to seek different cost functions which approxi-
mate their actual performance precisely enough, and, in the
meantime, satisfy properties in Lemma 4 or 7. Then, our
index optimization algorithms introduced in Section 4 can
be used to select a good P for materializing result lists.

Top-k taxonomy keyword queries

We do not consider the ranking of documents returned from
taxonomy queries in this work. However, the optimized in-
dex structure can be directly applied in top-k retrieval for
a user-specified scoring function, if we sort documents in

inverted lists and result lists according to their relevance
and assume the cost of retrieving the top-k is proportional
to the number of documents in the complete answer to a
taxonomy query. As the strength of substitutions (e.g., dis-
tance between a term and its instances) may be considered
in scoring and ranking, it could be interesting future work to
utilize that for further improving the index’s performance.

7. RELATED WORK

Techniques introduced in this work take a taxonomy in the
input to optimize the index structure and to process taxon-
omy queries. Such a taxonomy could be constructed manu-
ally through experts and community efforts, as in WordNet
[4], Cyc [14], and Freebase. With the advantage of freshness
and informativeness, automatic taxonomy construction has
been extensively studied recently, for example, in [20, 22,
18, 21, 26]. WikiTaxonomy [18] and YAGO [22] may be the
most notable efforts, which attempt to derive a taxonomy
from Wikipedia categories. With more web data, Probase
[26] aims at building a unified taxonomy of worldly facts.

To the best of our knowledge, the concept of tazonomy
keyword queries proposed in our work is new. Based on sim-
ilar philosophy, there are works on how to use posting list
payloads to speedup boolean keyword queries, such as [15,
12, 5]. For example, given a query log and a space bud-
get, [5] studies how to select some pairs of terms to encode
their co-occurrence (e.g., the list of documents containing
both terms in a pair). The goal is to minimize the query
processing time for this query log while the additional space
needed is no more than the given budget. It is important to
note that both the semantics of queries and the index opti-
mization framework in [5] are completely different from ours
(they materialize term co-occurrence for some pairs while we
materialize R(t)’s for some terms), so techniques in [5] can-
not be applied to our problem, and vice versa.

The idea of materializing additional information for some
terms in the taxonomy is also applied in [2]. However, [2] and
our work focus on different query models. In their model,
a query is one term in the taxonomy, together with a set
of indexable predicates on token strings; and a candidate
answer is any token in the documents that is connected to a
substitute of the query term. Candidates are scored and the
top-k are returned. In our model, a query is a set of terms,
and a candidate answer is any document that contained at
least one substitute of every term in the query.

The basic operators in our query processing model are still
list union and intersection. There are a lot of works on the
worst-case complexity of these two operators (refer to [3] for
a review). Differently, our work aims to reduce the latency
of (taxonomy) query processing for a typical query workload
by optimizing the index. And those works can be applied as
operators in our query processing model, after modification
to the cost function of our index optimization.

Our index optimization problem can be also thought as
a view selection problem in query processing in traditional
databases: given a workload of queries (Q in our problem),
the goal is to select a set of views (R(t)’s) to materialize,
so that the processing cost for the given query workload is
minimized while the space consumption is no more than a
given budget (B). The view selection problem is very hard
(inapproximable if P # NP) in general [10], but there exist
efficient (approximate) solutions for several different special
settings and cases, for example [8, 6], and ours.

We also note that people from IR community have stud-
ied ontology-based information retrieval model, such as [24].
Different from ours, their work mainly focus on effective re-
trieval model, e.g., adapting the classic vector-space model
[24], for precise scoring, but not on the efficiency issues.

8. CONCLUSION

We introduce a new query type, taxonomy query, for the
purpose of flexible query substitution. We propose process-
ing models for taxonomy queries, and introduce how to build
an additional index (besides the inverted index) to support
efficient query processing. In particular, we study the prob-
lem of how to optimize this additional index based on a
workload of queries, with the goal of minimizing query pro-
cessing cost, and propose algorithms with performance guar-
antees. Our index optimization techniques are tested using
real datasets and are shown to be effective and robust.

9. REFERENCES

[1] H. Cao, D. Jiang, J. Pei, Q. He, Z. Liao, E. Chen, and
H. Li. Context-aware query suggestion by mining
click-through and session data. In KDD, 2008.

[2] S. Chakrabarti, K. Puniyani, and S. Das. Optimizing
scoring functions and indexes for proximity search in
type-annotated corpora. In WWW, 2006.

[3] B. Ding and A. C. Konig. Fast set intersection in memory.
PVLDB, 4(4), 2011.

[4] C. Fellbaum. WordNet: An Electronic Lexical Database.
MIT Press, 1998.

[5] M. Fontoura, M. Gurevich, V. Josifovski, and
S. Vassilvitskii. Efficiently encoding term co-occurrences in
inverted indexes. In CIKM, 2011.

[6] N. Hanusse, S. Maabout, and R. Tofan. A view selection
algorithm with performance guarantee. In EDBT, 2009.

[7] M. A. Hearst. Automatic acquisition of hyponyms from
large text corpora. In COLING, 1992.

[8] C. Heeren, H. V. Jagadish, and L. Pitt. Optimal indexing
using near-minimal space. In PODS, 2003.

[9] R. Jones, B. Rey, O. Madani, and W. Greiner. Generating
query substitutions. In WWW, 2006.

[10] H. J. Karloff and M. Mihail. On the complexity of the
view-selection problem. In PODS, 1999.

[11] A. Krause and C. Guestrin. A note on the budgeted
maximization of submodular functions. Technical Report
CMU-CALD-05-103, 2005.

[12] R. Kumar, K. Punera, T. Suel, and S. Vassilvitskii. Top-k
aggregation using intersections of ranked inputs. In WSDM,
2009.

[13] T. Lee, Z. Wang, H. Wang, and S. Hwang. Web scale
taxonomy cleansing. In VLDB, 2011.

[14] D. B. Lenat. Cyc: A large-scale investment in knowledge
infrastructure. Commun. ACM, 38(11), 1995.

[15] X. Long and T. Suel. Three-level caching for efficient query
processing in large web search engines. World Wide Web,
9(4), 2006.

[16] Q. Mei, D. Zhou, and K. W. Church. Query suggestion
using hitting time. In CIKM, 2008.

[17] D. Metzler, S. T. Dumais, and C. Meek. Similarity
measures for short segments of text. In ECIR, 2007.

[18] S. P. Ponzetto and M. Strube. Deriving a large-scale
taxonomy from wikipedia. In AAAI 2007.

[19] F. Radlinski, A. Z. Broder, P. Ciccolo, E. Gabrilovich,

V. Josifovski, and L. Riedel. Optimizing relevance and
revenue in ad search: a query substitution approach. In
SIGIR, 2008.

[20] R. Snow, D. Jurafsky, and A. Y. Ng. Semantic taxonomy

induction from heterogenous evidence. In ACL, 2006.

[21] Y. Song, H. Wang, Z. Wang, H. Li, and W. Chen. Short
text conceptualization using a probabilistic knowledgebase.
In IJCAI 2011.

[22] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core
of semantic knowledge. In WWW, 2007.

[23] M. Sviridenko. A note on maximizing a submodular set
function subject to a knapsack constraint. Oper. Res. Lett.,
32(1), 2004.

[24] D. Vallet, M. Fernédndez, and P. Castells. An ontology-based
information retrieval model. In ESWC, 2005.

[25] D. Williamson and D. Shmoys. The Design of
Approzimation Algorithms. Cambridge University Press,
2011.

[26] W. Wu, H. Li, H. Wang, and K. Zhu. Probase: A
probabilistic taxonomy for text understanding. In
SIGMOD, 2012.

APPENDIX
A.1 How to Compute Again

To introduce how to compute Againp (t'), let Againk (') =
gain(t,P + t') — gain(¢t,P). And thus, from (19) and (20),
Againp (t') = ZteTAgamP(") - w(t, Q).

The linear scan model. We have

Again (t') = costs (t, P) — costs(t, P U {t'})

= > [R@I- > IRE)

zEC(L,P) 2/ €C(t,P+t)

+ Y Zwl- Y 1Tl (23)

yeC(t,P) y'€C(t,P+t/)

i) If ¢’ is not a descendant of ¢, we cannot benefit from
materializing R (t") for computing R(¢). In this case, we
have C(t,P) = C(t,P +t') and thus Againh(¢') = 0.

ii) If ¢’ is a descendant of ¢, but 3z € P s.t. ' < 2 < ¢,
then similar to i), we have Againh (') = 0.

iii) If ¢’ is a descendant of t and iz € P s.t. ¢/ < z < t,

then we have C(t,P) — C(t,P +t') = C(¢,P) and
C(t,P+1t")—C(t,P) = {t'}. So in this case,
Againt (1) = Againts(t'). (21)

In a special case, if P does NOT contain any descendant
of t’, then C(t,P) = @ and C(¢t,P +¢') = {t'}, so

Againp (') = =[R(t)[+ D> [Z(y)|. (25
ves(#)

From cases 1)-iii), we have

Againg (t') = Z

t: t/ <t<A(t)NP

Again;) -w(t,Q), (26)

/

where ¢t < A(t') NP means that t < x for any @ € AN
(if A(')NP = @, it is true). Note that ¢’ <t < A(t') N
is essentially equivalent to the condition of the case iii).

In the special case where P does NOT contain any de-
scendant of ¢, Againk (') can be computed as (25). Let
S = A(t') N P. The value Againp(t’) is determined by S
and t'. So we can write Againp (t') as Againg(t').

Lemma 4 follows from the above discussion, because from
the numbering of nodes in 7, P’ and P do NOT contain any
descendant of ¢;. We can compute the r.h.s. of (25) for each
term ¢’ in preprocessing, and then computing Againg (') as
(26) needs O(h) time, where h is the height of the taxonomy
tree, when Againg(t')’s value is needed in Algorithm 2.

AR AR

(a) Case 1) (b) Case ii) (c) Case iii)

Figure 10: Cases when computing Againh (') (white
nodes are not in P, and gray ones are in P +t)

To compute Againp(t) in O(h) time in Algorithm 3, we
need to maintain Againk (') for each term ¢. As P is up-
dated with one more term added, there are O(h) terms t'’s

whose Againg(t')’s need to be updated. When Againp (t), is
needed, it can be computed as (24) and (26) in O(h) time.

The hash lookup model. In this model, everything stays
unchanged except that (23) and (25) are replaced with:

Againg (t') = costy, (t, P) — costy, (t, P U {t'}) (27)
=|C(t,P)| — |Ct,P +t")| + [C(t,P)| — |C(t,P +t')|.
—14|S(t], (28)

respectively. And all the discussion stays the same.

and Againk(t') =

A.2 Submodularity of Function gain

To prove that gain(¢,P) w.r.t. P is submodular for any
fixed ¢, we only need to prove that, for any x,t' ¢ P s.t.
x # t', we have Againp_ ,(t') < Againp (t').

Now let us re-examine the cases i)-iii) as in A.1.

") If ¢’ is not a descendant of ¢, from the analybis of i), we

already have Againp_ ,(t') = Againp (t') = 0.

ii’) If ¢’ is a descendant of ¢, but there exists z € P C P+x
s.t. t' < z < t, then from the analysis of ii), we also
have Againp, ,(t') = Againk (t') = 0.

iii’) If ¢’ is a descendant of ¢ and there does NOT exist
z€ Pst. t' <z =<tbutt <z <t then from ii),
Againg (') = 0, and from iii), Againp (') > 0.

iii”) The rest case is: t’ is a descendant of ¢ and there does
NOT exist z € P+ x st. t < 2z < t. In this case,
considering iii) and (24), we only need to prove

Againgﬂs(t') < Againg(t').
In fact, from (23), in the liner scan model, we have
—|R(t")| + costs(t', P + x)
< —[R(#)| + costs(t', P) = Againis (t).

And similarly, in the hash lookup model, we have

AgalnP+m()

Again;ﬂc(t') =-1+N({,P+2)
< —14+N(',P) = Againh(t).

From the above four cases, we can conclude that gain(t, P)
w.r.t. P is submodular for any fixed ¢. Since gain(Q,P) is
the weighted sum of gain(¢,P)’s, it is also submodular.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

