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Abstract. Histopathology image analysis plays a very important role
in cancer diagnosis and therapeutic treatment. Existing supervised ap-
proaches for image segmentation require a large amount of high quality
manual delineations (on pixels), which is often hard to obtain. In this
paper, we propose a new algorithm along the line of weakly supervised
learning; we introduce context constraints as a prior for multiple instance
learning (ccMIL), which significantly reduces the ambiguity in weak su-
pervision (a 20% gain); our method utilizes image-level labels to learn an
integrated model to perform histopathology cancer image segmentation,
clustering, and classification. Experimental results on colon histopathol-
ogy images demonstrate the great advantages of ccMIL.

1 Introduction

High resolution histopathology images provide critical information for cancer di-
agnosis and analysis [1]. Some clinical tasks for the histopathology image analysis
may include [2]: (1) diagnosing the presence of cancer (image classification); (2)
segmenting images into cancer and non-cancer cells (image segmentation); (3)
clustering the tissue cells into various sub-classes. In this paper, we focus on the
segmentation task but our integrated framework essentially is able to perform
classification, segmentation, and clustering altogether.

Standard unsupervised image segmentation methods [3] may not work well
for the histopathology cancer images due to their complicated patterns. Most of
the existing supervised approaches [4] for tissue cell segmentations require de-
tailed manual annotations; this task is not only time-consuming but also intrin-
sically ambiguous, even for well-trained experts. Recent development in weakly-
supervised learning (WSL), more specifically multiple instance learning (MIL)
[5], uses coarse-grained labeling to aid automatic exploration of fine-grained in-
formation. In MIL, a training set consists of bags (images in our case); each bag
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consists of a number of instances (patches in our case); only bag-level labels are
given in training; the training algorithm then automatically explores instance-
level and bag-level models to best fit the given bag labels. Encouraging results
have been observed in medical image classifications [6]; in other medical applica-
tions, a multiple instance learning approach was adopted in [7] to detect accurate
pulmonary embolism among the candidates; in [8] a CAD system was proposed
for polyp detection with the main focus on supervised learning features, which
are then used in multiple instance regression; MIL-based histopathology image
classification was tackled in [9]. However, none of the above methods were target-
ed for image segmentation, which is also different from an integrated framework
of segmentation, clustering, and classification.

In this paper, we design an MIL-based histopathology image segmentation
formulation by proposing a new framework, contexts-constrained multiple in-
stance learning (ccMIL); it significantly reduces the ambiguity due to the inde-
pendence assumptions in the standard multiple instance learning. We observe
great improvement of ccMIL over competing methods. Our approach also differs
from existing formulations in machine learning in the following aspects: latent
conditional random fields algorithm [10] deals mostly with compositional com-
ponents of object models but not for segmentation; MIL on structured data was
proposed in [11] but we emphasize the contextual information of instances as a
prior here; multiple clustered instance learning (MCIL) [12] adopts the cluster-
ing concept into MIL but it takes the assumption of independent instances; a
context-based learning/segmentation framework was proposed in [13] but it is a
fully supervised approach.

2 Methods

Rich contextual information has important significance for accurate segmenta-
tion [13]. ccMIL aims to take into consideration such contextual information to
enhance the performance and achieve robustness. An integrated framework, mul-
tiple clustered instance learning (MCIL) [12], was recently proposed to perform
simultaneous image-level classification, pixel-level segmentation and patch-level
clustering. ccMIL inherits some aspects of MCIL but studies the contextual prior
in the MIL training stage to reduce the intrinsic ambiguity due to the nature
of weak supervision. We observe significant improvement of ccMIL over MCIL
in experiments, e.g. over 20% gain. Fig. 1 illustrates the distinction between
standard supervised learning, MIL, MCIL and ccMIL.

2.1 Contexts-Constrained Multiple Instance Learning (ccMIL)

In ccMIL, learning examples are represented by a bag of instances. In our case,
a histopathology image is a bag and each patch sampled from an image is an
instance. Patches with cancer tissues are treated as positive instances and the
ones without cancer tissues are negative. A bag is labeled as positive (cancer
image) if the bag contains at least one positive instance.
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Fig. 1. Distinct learning goals between supervised learning, MIL, MCIL and ccMIL.
ccMIL makes an important step over MIL by studying the contextual prior information
among the instances to reduce the instance-level ambiguity due to weak-supervision.

We are given a training set X , and xi is the ith bag in X . Each bag consists
of a set of m instances i.e. xi = {xi1, . . . , xim}; each xi is also associated with
a label yi ∈ Y = {−1, 1}. Assume there are K clusters (cancer types), then
each instance xij has a corresponding label ykij ∈ Y = {−1, 1}, k ∈ {1, . . . ,K},
that denotes whether the instance belongs to the kth cluster. If this instance
belongs to one of the K clusters, that is ykij = 1, then this instance is considered

as positive. Note that, this ykij is not known during training. A bag is labeled
positive if at least one of its instances belongs to one of the K groups:

yi = max
j

max
k

(ykij). (1)

The goal of ccMIL is to split the positive instance into K groups by learning
K instance-level classifiers hk(xij) : X → Y for K clusters, using only bag labels
yi, such that maxj maxk h

k(xij) = yi.
We combine AnyBoost[14–16] framework, the same as MIL-Boost [15], to

solve hk(xij). First loss function L(h) (details are given in the next subsection)
is introduced to find the optimal weak classifier response hkt : X → Y that most
reduces the loss on the training data. We train hkt by minimizing the training
data error weighted by |wk

ij |: hkt = argminh
∑

ij 1(h(xkij) 6= yki )|wk
ij |; while wk

ij ≡
−∂L(h)

∂hk
ij

. A differentiable softmax function gl(vl) is given to approximate the max

over v = {v1, . . . , vm}. It is defined as follows:

gl(vl) ≈ max
l

(vl) = v∗,
∂gl(vl)

∂vl
≈ 1(vi = v∗)∑

l 1(vl = v∗)
, m = |v|. (2)

There are a number of approximations for g. We choose GM model [16], that is

gl(vl) = ( 1
m

∑
l v

r
l )

1
r , based on the experiment results. In order to optimize the

loss function L, we must get pi, which is defined as the maximum over pkij , the

probability of an instance xij belonging to the kth cluster: pkij = σ(2hkij), where

hkij = hk(xij). Using the softmax g in place of the max, we can get pi as:

pi = gj(gk(pkij)) = gjk(pkij) = gjk(σ(2hkij)), σ(v) =
1

1 + exp (−v)
. (3)
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So, the weights wij can be written as wk
ij = −∂L(h)

∂hk
ij

= −∂L(h)
∂pi

∂pi

∂pk
ij

∂pk
ij

∂hk
ij

. Thus, we

can train the weak classifier hkt by optimizing weighed error |wk
ij |, and finally, get

a strong classifier: hk ← hk + αt
khkt , where αt weighs the weak learners relative

importance.

2.2 Loss Function and Solving Process of ccMIL

The key to ccMIL is a formulation for introducing the contextual information as
a prior for MIL.

Now we define two functions LA(h) and LB(h) as:

LA(h) = −
n∑

i=1

wi(1(yi = 1) log pi + 1(yi = −1) log (1− pi)), and (4)

LB(h) =

n∑
i=1

wi

∑
(j,m)∈Ei

vjm ‖ pij − pim ‖2, (5)

where wi is the weight of the ith training data (the ith bag). Ei denotes the
set of all the neighboring instance pairs in the ith bag. vjm is the weight on
a pair of instances (patches) j and m related to the distance (on the image,
denoted as djm) between them. Higher weights are put on those closer pairs. In
our experiment, we chose: vjm = exp(−djm).

Then, we can define loss function as:

L(h) = LA(h) + λLB(h). (6)

LB(h) imposes an effective contextual constraints (in a way smoothness prior)
over the instances to remove the ambiguity in training; it encourages the nearby
image patches to share similar class types. λ is the weight of the additional
item that reflects the importance of relationship between the current instance
and its context (neighbors). The overall classification function obtained with
the new formulation is thus robust to noise and able to achieve more accurate
segmentation results.

According to the new loss function we compute the weight wk
ij as following:

wk
ij = −∂L(h)

∂hkij
= −∂L(h)

∂pi

∂pi
∂pkij

∂pkij
∂hkij

. (7)

∂L(h)

∂hkij
=
∂LA(h)

∂hkij
+ λ

∂LB(h)

∂hkij
=
∂LA(h)

∂pi

∂pi
∂pkij

∂pkij
∂hkij

+ λ
∂LB(h)

∂pkij

∂pkij
∂hkij

. (8)

∂LA(h)

∂pi
=


− wi

pi
if y = 1;

wi

1− pi
if y = −1,

∂LB(h)

∂hkij
= wi

∑
(j,m)∈Ei

2vjm(pkij − pkim).

(9)
Details of ccMIL are demonstrated in Algorithm 1. K is the number of cancer

types, and T is the number of weak classifiers in Boosting.
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Algorithm 1 ccMIL

Input: Bags {X1, . . . , Xn}, {y1, . . . , yn},K, T
Output: h1, . . . ,hK

for t = 1→ T do
for k = 1→ K do

Compute weights wkij = − ∂L(h)

∂hkij
= −( ∂LA(h)

∂pi

∂pi
∂pkij

∂pkij

∂hkij
+ λ ∂LB(h)

∂pkij

∂pkij

∂hkij
)

Train weak classifiers hkt using weights |wkij |
hkt = argminh

∑
ij 1(h(xkij) 6= yki )|wkij |

Find αt via line search to minimize L(.,hk, .)
αkt = argminαL(.,hk + αhkt , .)
Update strong classifiers hk ← hk + αkt h

k
t

end for
end for

3 Experiments

ccMIL is a general approach for common cancer types, including colon, prostate,
and breast cancer. Without loss of generality, colon histopathology images are
chosen in our experiments to illustrate its effectiveness. We collected the im-
age dataset in Department of Pathology of Zhejiang University in September
2010. The images are obtained from the Nano Zoomer 2.0HT digital slice s-
canner produced by Hamamatsu Photonics with a magnification factor of 40.
In this dataset, 30 non-cancer (NC) images and 53 cancer images are included.
The cancer images can be medically divided into four cancer types according to
their morphological characteristics. These four cancer types are Moderately or
well differentiated tubular adenocarcinoma (MTA), Poorly differentiated tubu-
lar adenocarcinoma (PTA), Mucinous adenocarcinoma (MA), and Signet-ring
carcinoma (SRC). To ensure the ground truth of the image dataset, images are
carefully studied and labeled by experts. Specifically, each image is independent-
ly labeled by two pathologists, the third pathologist moderates their discussion
until they get an agreement on the result. All images are labeled as cancer images
or non-cancer images. For cancer images, cancer tissues are further annotated
and corresponding cancer type is identified for the evaluation.

We combine all the images to generate three different subsets: binary, multi1,
and multi2. Each subset contains 60 different histopathology images. binary con-
tains 30 non-cancer and 30 MTA cancer images. It is used to test the capability
of cancer image detection. multi1 and multi2 mean two or more types of cancer
images as well as non-cancer images are contained. They can reveal the ability
of pixel-level segmentation. In particular, multi1 consists of 30 NC, 15 MTA, 9
PTA and 6 SRC; multi2 consists of 30 NC, 13 MTA, 9 PTA and 8 MA. Settings
are made as following. First we down-sample the images by 5 times, and then
extract 64 × 64 patches from each image. The parameters in algorithm are set
as: r = 20, K = 4, T = 200. r controls sharpness and accuracy in GM model of
softmax function. The λ used in the loss function is set to 0.01 according to the
results of cross validation. We assume the initial distribution is uniform so that
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Fig. 2. Image Types: (a): The original images. (b): The instance-level results (pixel-
level segmentation and patch-level clustering) for image-level supervision + K-means,
(c): pixel-level full supervision, (d): MCIL, (e): ccMIL, (f): The instance-level ground
truth labeled by three pathologists. Different colors stand for different types of cancer
tissues. Cancer Types: from top to bottom: MTA, MTA, PTA, NC, and NC.

the prior weight wi for the ith bag is set as the same value. Our method is not
focusing on feature design, so generic features for object classification are used
here, including L∗a∗b∗ Color Histogram, Local Binary Pattern, and SIFT. The
weak classifier we use is Gaussian function. Experimental results are reported
in a 5-fold cross validation. All the methods in the following experiments are
conducted under the same experimental settings.

Pixel-level Segmentation. We tested subset multi2 with different methods to
measure pixel-level segmentation. Fig. 2 shows the segmentation results. ccMIL
significantly improves results by reducing the intrinsic training ambiguity com-
pared to other weakly supervised methods. For example, ccMIL can correctly
recognizes noises and small isolated areas in cancer images and achieve cleaner
boundaries, which can be observed from the segmented results of MTA and PTA
cancer images in the figure. Moreover, due to the guidance of contextual infor-
mation, ccMIL reduces the possibility of extracting noises as a positive instance
from a non-cancer image and further improves the accuracy of cancer detection.

For the quantitative evaluation of the segmentations, F-measure is used here
to evaluate the segmentation. the F-measure values of image-level supervision,
MCIL and ccMIL are 0.312, 0.601 and 0.717. ccMIL improves F-measure by 20%,
compared with the closet competing method.
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(a)binary (b) multi1 (c) multi2 (d) F-measure

Fig. 3. ROC curves for different learning methods (binary, multi1 and multi2) and
(d) the segmentation F-measure of pixel-level full supervision.

For comparing with supervised approaches, we implemented two methods:
(1) one utilizes supervision in the image level by treating all the pixels in the
positive and negative bags as positive and negative instances respectively, and
(2) one with the full pixel-level supervision (require laborious labeling work).
The advantage of ccMIL over the image-level supervision is proved by both
segmented images and F-measure evaluation. As for full pixel-level supervision,
in order to compare the performance, we used varying numbers (1, 5, 7, 10) of
images of pixel-level fully supervision, and calculated the corresponding values of
F-measure. The figure is plotted in Fig. 3.d, from which, it can be concluded that
ccMIL is able to achieve comparable results (the value of F-measure is around
0.7).

Patch-level Clustering. We also obtained the clustering results of the same
test data mentioned in pixel-level segmentation and the results are shown in
Fig. 2. ccMIL achieves less noisy clustering results than MCIL. Also, it revises
the error caused by MCIL, which can be observed from the results obtained from
the two MTA images in Fig. 2.

Image-level Classification. Bag-level classification, that is cancer and non-
cancer images classification, is compared in this experiment also. Seven meth-
ods, namely MI-SVM, mi-SVM, Boosting, MIL-BOOST, MKL (multiple kernel
learning as a widely used image categorization technique), MCIL, and ccMIL,
are compared in this experiment with the same features and parameters (we do
not put all the references due to the space limit). Fig. 3 shows the receiver oper-
ating characteristic (ROC) curves in the three subsets. The results demonstrate
the practicality of ccMIL.

4 Conclusion

We have introduced the contexts constraints to the multiple instance learning
framework for segmentation and observe significant improvement (20%) over the
closest competing method. In addition, ccMIL is able to perform segmentation,
clustering, and classification in a principled framework while achieving compa-
rable results in segmentation with full pixel-level supervision approaches.
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