
Scalable Telemetry Classification for Automated
Malware Detection

Jack W. Stokes1, John C. Platt1, Helen J. Wang1, Joe Faulhaber2, Jonathan
Keller2, Mady Marinescu2, Anil Thomas2, and Marius Gheorghescu2

1 Microsoft Research, Redmond WA 98052, USA,
{jstokes,jplatt,helenw}@microsoft.com,

2 Microsoft Corp., Redmond WA 98052, USA
{joefa,jkeller,mady,anilth,mariusg}@microsoft.com

Abstract. Industry reports and blogs have estimated the amount of
malware based on known malicious files. This paper extends this anal-
ysis to the amount of unknown malware. The study is based on 26.7
million files referenced in telemetry reports from 50 million computers
running commercial anti-malware (AM) products. To estimate the un-
detected malware, a classifier predicts the underlying nature of unknown
files recorded in the telemetry reports. The telemetry classifier predicts
that 69.6% (4.27 million) of the unknown files are malicious. Assuming
the unknown files predicted to be malicious by the classifier are malware,
the telemetry classifier also allows us to estimate the efficacy of the AM
system indicating that signatures detected 82.8% (20.6 million) of the
malicious files. We have validated our system by conducting a longitu-
dinal study to measure the false positive and false negative rates over a
period of thirteen months.

Keywords: malware classification, telemetry, sample collection, pre-
filter

1 Introduction

The anti-malware (AM) industry faces two significant problems in the battle
to protect their customers’ computers from being infected by malware. First
these companies are paradoxically confronted by the challenge of trying to dis-
cover malware in huge amounts of telemetry data while only having samples (i.e.
copies) of a small fraction of the unknown files hosted on their users’ computers.
Typically, commercial AM products transmit telemetry reports from a large per-
centage of their client computers when users try to download or install known
or potential malware. Although our company receives over 100,000 new file sam-
ples every day which need to be analyzed, we had previously collected samples
from only 3.1% of the files referenced in the set of telemetry reports received
in October 2010. Ideally, AM companies would have a copy of every unknown
executable file observed on their clients’ machines. In this scenario, analysts
clearly cannot investigate each new file manually, and anti-malware companies

2

must automate detection of these threats. Researchers have described systems
showing great promise on automatically detecting malware [4], [6], [32]. However,
in-depth analysis can be time consuming. In some cases, Anubis [4] can require
several minutes to analyze each file [2]. Each month, we receive telemetry reports
corresponding to tens of millions of files that were not detected as being mali-
cious by the AM system’s signature detector. Even with distributed processing
and only analyzing new, incoming files, clearly these in-depth malware detection
systems will struggle to analyze all of the new, potentially malicious files. Second
the companies cannot accurately measure the performance of their systems in
detecting the amount of malware in the ecosystem. Consumers often see claims
that an anti-malware product detects X% of malware, and industrial reports
provide a glimpse of the amount of malware detected on user’s machines [13],
[24]. However these estimates are based on detections of known malware. What
is missing is the true detection rate, including the unknown files, found in the
wild. While it is impossible to measure this malware detection rate exactly, we
seek a better estimate of the amount of malware in this study.

To address these problems, we propose a lightweight telemetry report clas-
sifier shown in Figure 1. AM clients transmit telemetry reports to the backend
system running the telemetry classifier. Each report contains metadata, includ-
ing file and machine identifiers, associated with the installation or scan of an
untrusted portable executable (PE) file including application binaries, screen
savers, drivers, and Active X controls. Unlike previous work, we assume that
the majority of the executable files cannot be accessed directly since they are
either located on remote computers or the installations were blocked by the sig-
nature detector. To help manage the collection and analysis of unknown files, the
telemetry classifier assigns a probability that the file associated with the report
is malicious solving two problems. The reports can be ranked to determine which
files are more likely to be malicious for collection from the remote users’ com-
puters. In addition, the telemetry classifier output allows the system to prefilter
the queue of unknown files for timely processing by an in-depth malware analy-
sis system. Files with the highest malware probability are collected or analyzed
first. Recently, several systems have been proposed for prefiltering (i.e. ranking)
samples for in-depth analysis [18], [26], [34], but these systems require a sample
of the file for classification and clustering on the results of static analysis. In our
system, the AM client can perform both static and dynamic analysis of the file
on the remote computer, and we use this telemetry information for prefiltering.
Although we only utilize a simple behavior feature in this study, more sophis-
ticated dynamic execution features could also be detected and reported by the
client. Furthermore, the performance of the signature detectors can be measured
by the telemetry classifier. Unlike previous work, our estimates include unknown
files which have not been previously detected. Using the proposed system, we
estimate the percentage of malicious files encountered in a large sample of 26.7
million telemetry reports, each corresponding to a unique file, received from a
population of over 50 million computers.

3

Anti-Malware

Client

Telemetry

Report

Classifier

In-Depth

Malware

Analysis

System

Malware

Analyst

Request Samples of

Suspicious Files

Ranked

File Samples

Telemetry

Reports

Signatures

Estimate of

Malicious Files

This Work

Fig. 1. Classifying malware on the backend based on metadata reports generated by
anti-malware clients.

A key aspect of this work is to investigate whether individual telemetry re-
ports can be accurately classified to predict if an unknown file residing on a
remote client is malicious or benign. Previous work [22], [30] proposes various
types of malware classifiers, but these systems assume access to the PE file.
Recently, commercial products including Symantec’s AM products [7], [8] and
Microsoft’s Internet Explorer have started using reputation data to detect mal-
ware or benign files and consider files which have been frequently observed, but
not detected as malicious, to be benign. The approach followed in this paper
does not rely on file prevalence information. This choice was made explicitly
to identify polymorphic and zero-day attacks. In addition, the earlier file-based
studies were conducted on small training sets; while these preliminary efforts
were promising, it was unclear if the results scale with large numbers of labeled
data. In this study, we use over 253 thousand, labeled telemetry reports to train
and test the telemetry classifier.

To handle the large number of reports used for training, the system utilizes
several technically significant components. The telemetry classifier uses a limited
combination of features (Section 2) derived from the telemetry data including
static features from the binary file and one, simple behavioral feature indicating
what action caused the report to be generated. Among these, using tri-grams
of the file’s locality sensitive hash is a novel implementation which scales well.
Excluding this feature from our model decreases the accuracy by over 18% (Sec-
tion 4). We use a feature selection algorithm based on 2x2 contingency tables
and the mutual information criterion to create the datasets (Section 3). Next we
describe several algorithms used to train both linear and non-linear classifiers
for analyzing the telemetry reports and highlight several machine learning algo-
rithms for the security community (Section 4). Logistic regression trained with
the L-BFGS algorithm and including L1 and L2 regularization performs best for
our task. A boosted decision tree algorithm trained with the MART criteria also

4

Feature Description

File Name Name of the PE file
Original File Name File name in the original report
File Name Matches Does the file name in this report match the file name
Original? in the original report?
File Type What type of file is it?
Signer Name What organization signed the file?
Signing Authority What certificate authority issued the signature?
Signature Type Was the file signed or not? If signed, is the signature legitimate or invalid?
Description What is the description of the file in the header?
Organization Manufacturer of the binary file
Version Version number of the binary file
LS Hash Locality sensitive hash
Behavior Feature Represents the simple behavior that caused the report to be generated

Table 1. Summary of the telemetry report attributes and additional data aggregated
by the backend system.

performs well. Lastly, an approximation to the SVM using L-BFGS optimization
is competitive and can require much less time to train compared to exact meth-
ods (e.g. sequential minimal optimization). We validate the telemetry classifier
in a thirteen month longitudinal study to measure the false positive and false
negative rates of the samples received one month after training.

We implemented the lightweight telemetry classifier and used it to estimate
the number of malicious executable files (Section 5). The telemetry classifier pre-
dicts that 69.6% (4.27 million) of the unknown files involved in the reports are
malicious. Although biased on the computers which sent the telemetry, this esti-
mate gives a better sense of the total amount of malware. The telemetry classifier
also allows us to estimate the efficacy of the signature detector. Assuming all of
the unknown files predicted to be malicious by the classifier are indeed malware,
the telemetry classifier indicates that signatures detected 82.8% (20.6 million)
of the malicious files. A summary of the contributions of this paper includes:

– A large-scale system to classify anti-malware telemetry reports is proposed and
implemented, and the results are presented. Using tri-grams of locality sensitive
hashes is a novel feature for the system.

– The number of malicious executable files and the effectiveness of a suite of anti-
malware products are estimated from a sample of 26.7 million telemetry reports
received from over 50 million computers.

– We demonstrate that the lightweight telemetry classification system can be used to
prioritize files for sample collection and prefilter these samples for more in-depth
analysis.

– Training classifiers based on six different algorithms including logistic regression

with L-BFGS optimization and L1 and L2 regularization as well as an approxima-

tion of the linear SVM are highlighted for the security community.

2 Telemetry Metadata and Features

This study is based on a large collection of telemetry reports received from a
suite of commercial anti-malware products. Our company manufactures these

5

security products which detect and remove spyware (e.g. Windows Defender) as
well as viruses and other malware (e.g. Forefront Client Security, Windows Live
OneCare, Windows Live Security Scanner, and the Microsoft Malicious Software
Removal Tool). Our analysts utilize the reports in our efforts to detect new
malware on personal computers (PCs) running the Windows operating system.

The telemetry reports consist of various attributes measured by the AM
client running on the remote computer when it detects that a new file is being
installed or a previously undetected file is running. To limit the number of reports
received at the backend web service, only telemetry reports corresponding to files
which have not been signed by a trusted certificate authority are transmitted.
Additional information can be constructed at the backend by examining the
telemetry reports across all of the reporting clients. This local and backend
metadata corresponding to the (potential) installation of a file is summarized in
Table 1. All of the attributes are extracted by the AM client with the exception
of the second and third rows (i.e. original file name and file name matches) which
are determined on the backend. In addition to the low-level features discussed in
this section, we also construct other features indicating if a particular attribute
is blank or null. For example, if the organization is null, a boolean feature is set
to true. This high-level metadata is discussed in more detail below and serves as
the basis for the low-level features used to train the classifiers in Section 4.

In addition to the metadata listed in Table 1, the telemetry reports also
contain several unique file identifiers including the SHA1 and MD5 files hashes.
While these hashes cannot serve as features for any classification system since a
small change in the executable file leads to a large change in the corresponding
hash value, they allow us to assign a label to the incoming telemetry report
for files which have previously been collected, investigated and categorized (e.g.
malware, benign) by analysts. We could potentially also use files detected by
anti-virus signatures and include these in our dataset but we have not done
so for the following reason. Training primarily with samples determined by the
signature detector may lead to a situation where the telemetry classifier learns
to only recognize files we currently detect; doing so may prevent the telemetry
classifier from identifying files not currently identified by the signature detector.

While Table 1 illustrates the high-level metadata found in the telemetry
reports, we cannot directly use this information as the features for the telemetry
classifier described in later sections. There are too many values associated with
some of the attributes in the table. For example, we measured over 71 million
distinct file names in one month of telemetry data. Next, we describe the methods
used to transform this metadata into a set of potential low-level features for the
telemetry classifier we train in Section 4. This transformation is just the first
step in determining the final classifier features. We further restrict (i.e. filter)
this set of low-level features through feature selection in the following section.
Only two features may vary when comparing telemetry reports from a unique
malware sample, namely, the file name and the behavior which caused the report
to be generated (described later). In addition to the file name associated with the
report, the telemetry classifier also considers other derived features. All string

6

Name Percentage

Not Signed 95.68%
Freeze.com, LLC 0.26%
Zango 0.21%
WebDevAZ, Inc. 0.16%
WHENU.COM INC 0.15%

Table 2. Most frequent malware signer
names.

Name Percentage

Not Signed 78.53%
Microsoft Windows Component 5.07%
Publisher
Microsoft Windows 3.54%
Microsoft Corporation 2.50%
Microsoft Windows Publisher 2.50%

Table 3. Most frequent benign signer
names.

features are efficiently encoded using 1.5 grams. Given the shear number of
unique strings in the data, we cannot represent each string as a feature. To
limit the total number of possible features, we propose a compromise we call
1.5-grams (pronounced one and a half grams). To compute a 1.5-gram set for a
unicode string, we first convert the string to a byte array. The initial 1.5-gram
for the array is determined as the first 12 consecutive bits (i.e. 3 nibbles). To
compute the second 1.5-gram, we slide the index by 4 bits, and the 1.5-gram
is the value of next 12 consecutive bits. For standard 8-bit text, this encoding
represents a full character and half of the following character. It can also fully
represent more obscure non, 8-bit characters. Using the 1.5-gram representation
only requires 4096 (212) possible values for all possible file names. A separate
feature identifies if the file name in the report matches the file name associated
with the original report of the executable. Furthermore, the type of file (e.g.
keyboard driver, printer driver, application, DLL) is also used as a feature.

Two important features of the system are which organization signed the
file and which certificate authority granted the certificate. These features were
also suggested by Nachenberg et al. [7]. In addition, the certificate is verified
for authenticity. The signature type feature indicates whether or not the file
was signed. If it was signed, was the signature valid? Tables 2 and 3 provide
an example of the most frequent organizations that signed the files associated
with malicious and benign reports, respectively; these tables do not necessarily
describe the most discriminant (i.e. best) features for the telemetry classifier.
For example, since 95% of the malware and 78% of the benign files are not
signed, a signature value of “Not Signed” will not be a good feature. While it
is not surprising that most malware is not signed, the results for benign files
is an artifact of the telemetry reporting process. Reports are not sent by the
AM clients for files which are signed by trusted organizations. Thus, the signed,
benign files in the head of the distribution are not reflected in this data. The
Microsoft signatures in Table 3 are most likely particular signatures used on a
small number of files, and therefore, these signatures have not been added to the
list of trusted certificates.

Another important feature is the certificate authority (CA) which granted
the certificate, and the data for the CA is listed in Tables 4 and 5. Interestingly,
a small fraction of malware authors have managed to obtain certificates granted
from respectable CAs. The reason is that they are trying to provide assurance to

7

Name Percentage

No Issuer 95.66%
VeriSign Class 3 Code 1.16%
Signing 2004 CA
Thawte Code Signing CA 1.15%
UTN-USERFirst-Object 0.59%
INVALID:Thawte Code 0.52%
Signing CA

Table 4. Most frequent malware certifi-
cate authorities.

Name Percentage

No Issuer 78.49%
Microsoft Windows Verification 7.88%
Intermediate PCA
VeriSign Class 3 Code 4.51%
Signing 2004 CA
Microsoft Windows 3.55%
Verification PCA
Microsoft Code Signing PCA 2.24%

Table 5. Most frequent benign certifi-
cate authorities.

the users that the code is legitimate. This behavior indicating attackers trying
to build trust has been studied recently for website certificates [10]. We encoded
each distinct value for the signer and certificate authorities in the set of potential
features.

All PE files contain information in the header such as the manufacturer,
description, and version number. This data is transmitted to the backend in
the telemetry reports and encoded as features using 1.5-grams for the telemetry
classifier. In addition to the SHA1 hash, a locality sensitive hash (LS hash) is
also computed for the file by the AM client and transmitted to the backend.
Unlike standard hashes which completely change when a single bit in the file
is altered, LS hashes have the property that changing a small amount of code
introduces a small change in the resulting hash. Bayer, et al. [3] and Jang, et
al. [19] have utilized the LS hash as a feature for malware clustering. Clustering,
however, requires comparing pairs of LS hash values which can be computation-
ally expensive. In our design, the telemetry classifier uses tri-grams of each file’s
LS hash which is a novel feature representation. The LS hash tri-grams from
variants of malware families in the training set increase the likelihood that these
tri-grams are associated with malicious files. As a result, training and evaluation
are not adversely affected as the scale increases. It should be noted that since
the LS hash is composed of hexadecimal digits, only 212 features are required to
represent all possible tri-gram values.

The action that caused the report to be generated is also used as a feature
for the telemetry classifier. There are roughly 50 distinct behavior actions found
in our telemetry reports, and these behavioral actions are indicative of a file
being installed on the computer. Table 6 provides the five most frequent behav-
iors associated with a report generated by malicious files while the five most
frequent behaviors associated with benign files are given in Table 7. Example
behavior actions include installing an ActiveX control, Browser Helper Object,
or driver, adding a Run Key to automatically start a program each time the user
logs on, starting a process, or scheduling a task. For both malware and benign
files, downloading an ActiveX control is the main behavioral feature associated
with the telemetry reports. Surprisingly, only 2.93% of malicious reports were
associated with Browser Helper Objects.

8

Name Percentage

ActiveX Downloads 73.93%
Run Keys 9.56%
Running Processes 3.77%
Browser Helper Object 2.93%
Task Scheduler 1.96%

Table 6. Most frequent malware behav-
ioral features.

Name Percentage

ActiveX Downloads 70.64%
Services 6.26%
Drivers 5.02%
Run Once Keys 3.91%
Run Keys 3.48%

Table 7. Most frequent benign behav-
ioral features.

Feature Selection

Telemetry Logs

Classifier TrainingDataSet Creation Classifier Model

Analyst Labels

Fig. 2. Anti-Malware telemetry classification training system.

3 Feature Selection and Dataset Creation

In this section, we describe the process used to create the dataset required to
train the telemetry classifier. The anti-malware telemetry classification training
system is illustrated in Figure 2. The raw telemetry logs and analyst labels
described earlier are input to the system which includes three processing blocks:
feature selection, dataset creation, and classifier training. An integral step in
the process is feature selection which excludes potential features that are not
beneficial during classifier training. In the previous section, we transformed the
high-level, telemetry metadata into a large number of potential low-level features,
but we cannot use all of these to train the telemetry classifier. The feature
selection algorithm determines the most discriminant (i.e. best) subset of all of
the features to be used for classification. Based on the selected features, a labeled
dataset is next constructed from the analysts’ labels and the low-level encoded
features derived from the telemetry reports. In the next section, we then use the
labeled dataset to train the telemetry classifier using several different algorithms.
The output of the training system is a classifier model (i.e. a set of weights or
parameters) which can be used to predict if unknown reports were transmitted
due to malware or benign files.

Constructing a dataset from all of the encoded data from the previous sec-
tion can lead to hundreds of thousands of potential features. Using too many
low-level features can cause overfitting which is due to training a complex ma-
chine learning algorithm with an insufficient number of training examples. If the
model is too complex, the results when the system is deployed to production
may be significantly worse compared to those observed when trained and tested
on a small labeled dataset. A general rule is to select the number of features F

9

for the system to be the total number of samples divided by a sufficiently large
number (e.g. 8-10). The feature selection algorithm we use first computes a 2x2
contingency table for each potential feature based on the mutual information cri-
terion [23]. A maximum likelihood estimate of the mutual information criterion
serves as our ranking score R(f):

R(f) =
D

N
log2

N ·D
(B̂D)(ĈD)

+
B

N
log2

N ·B
(ÂB)(B̂D)

+
C

N
log2

N · C
(ĈD)(ÂC)

+
A

N
log2

N ·A
(ÂB)(ÂC)

where A is the number of times the potential is not in the reports and the file
is determined to be benign, while D is the number of malicious reports which
include the potential feature. B (C) similarly is the report count for malicious
(benign) files not including (including) the potential feature. In addition, ÂB =
(A + B), ÂC = (A + C), B̂D = (B + D), ĈD = (C + D), and N = A + B +
C + D. Finally, the top F features are selected from the highest ranked mutual
information scores.

4 Telemetry Classifier Performance

Now that we have created our labeled dataset in the previous section, we turn
to the task of training our telemetry classifier. In this section, we investigate the
performance of five, linear and one, nonlinear classification algorithms. We are
particularly interested in linear classifiers because they are fast to train, but more
importantly, they can be used to evaluate unknown reports very quickly. Since
tens of millions of reports are received every day, evaluation of each unknown
report must be fast.

We first consider two forms of logistic regression [5] trained using stochas-
tic gradient descent (LR-SGD) and L-BFGS (LR-L-BFGS) [1] as the optimiza-
tion methods to learn the model parameters. Next, we train a support vector
machine (SVM) [5] with a linear kernel based on the Pegasos [31] algorithm
(SVM-Pegasos) as well as an approximation of the linear SVM [36] again using
L-BFGS (SVM-L-BFGS). The final linear classifier considered in this study is
the averaged perceptron [11]. We also train with a nonlinear algorithm employing
boosted decision trees using the MART [12] algorithm. Boosting has previously
been suggested for malware classification [22], [28].

To train and test the classifiers, we created a labeled dataset from 253,517
telemetry reports consisting of 173,548 malicious reports and 79,969 benign re-
ports collected over a four month period ending January 2012. We selected a
single telemetry report to represent each distinct file, as represented by a unique
SHA1 hash. To evaluate the performance of the six classification algorithms, we
use 5-fold cross validation which is the most fair way to do so. In cross valida-
tion, the entire labeled dataset is split equally into N (e.g. 5) sections. For each
fold, we use one section as the test data and combine the remaining sections as

10

the training data. After the telemetry classifier has been trained and evaluated
for all folds, every sample in the dataset has been independently used in the
testing set. To be completely fair, we also rerun the feature selection algorithm
for each fold’s training data. Consequently, we never do feature selection using
samples from the test set. For these experiments, the number of selected features
was determined as one-tenth of the number of samples used for training. Using
4/5 of the total 253 thousand samples leads to the selection of 20,281 low-level
features.

Since we are dealing with a binary (i.e. two-class, malware versus benign)
classification problem, we investigate the performance of the classifiers using de-
tection error trade-off (DET) curves which plot the false negative rate versus the
false positive rate for the 5-fold cross validation results. Figure 3 shows the DET
curves for the six different classification algorithms. In addition, the equal error
rates, where the false positive and false negative rates match, and the training
time for one fold of the cross-validation are shown in Table 8. Of the six differ-
ent algorithms, LR-L-BFGS outperforms the remaining classifiers, particularly
at lower false positive rates. This version of logistic regression includes both L1
and L2 regularization terms. For L1 regularization, the algorithm tries to force
small weights to have a value equal to zero which helps improve the algorithm’s
ability to generalize to new telemetry reports. In this case, the L1 and L2 pa-
rameters are each set to 1.0. MART is competitive and is slightly better than
LR-L-LBGS at higher FP rates. SVMs have been well studied in the machine
learning literature [5], [15]. However, training an SVM for large data sets can
take a prohibitive amount of time. Zhang, et al. [36] proposed an approximation
to the linear SVM based on a modified version of logistic regression. The central
idea is that the SVM’s non-linear hinge loss can be approximated by the logistic
regression’s smooth log-loss function. We often use this algorithm to approxi-
mate the SVM in our work since the datasets tend to be very large. This SVM
approximation trained with L-BFGS (SVM-L-BFGS) also performs reasonably
well compared to LR-L-LBGS and MART. However, this implementation does
not include a separate L1 regularization term which may contribute to the de-
crease in detection accuracy compared to LR-L-BFGS. The averaged perceptron
and LR-SGD are competitive, but the SVM trained using the Pegasos algorithm
performed significantly worse compared to the other five algorithms. We con-
ducted another experiment to verify the contribution on the proposed LS Hash
features on the LR-L-LBGS model. Removing the LS Hash features from the
model increased the CV equal error rate for one particular dataset from 5.76%
to 6.81%, an increase of over 18.2%. As Table 8 shows, the classifiers are reason-
ably fast to train on a large server with dual, 2.0 GHz Intel E7540 processors
and 128 GBs of RAM. The best performing algorithm, LR-L-BGGS, requires
approximately 11 minutes to train. This training time is approximately one-
fourth of the time required to train the second best algorithm, MART, which is
significantly more complex.

In Figure 4, we analyze how the telemetry report training set size affects the
equal error rate for three of the algorithms: LR-L-LBGS, MART, and LR-SGD.

11

0 5 10 15 20 25
0

5

10

15

20

25

False Positive Rate %

F
al

se
 N

eg
at

iv
e

R
at

e
%

LR−L−BFGS
MART
SVM−L−BFGS
Perceptron
LR−SGD
SVM−Pegasos

Fig. 3. DET curves for the malware clas-
sifiers trained with several different algo-
rithms.

10
2

10
4

10
6

5

10

15

20

25

Training Set Size

E
qu

al
 E

rr
or

 R
at

e
%

LR−L−BFGS
MART
LR−SGD

Fig. 4. Equal error rates for classifiers
trained with various training set sizes.

Algorithm Equal Error Rate (%) Training Time

LR-SGD 7.41 00:07:52.53
LR-L-BFGS 6.45 00:11:13.21

SVM-L-BFGS 6.77 01:59:32.89
SVM-Pegasos 10.34 00:01:12.59

Averaged Perceptron 7.21 00:02:54.15
MART 6.64 00:44:58.39

Table 8. Equal error rates and training times for six different telemetry classifier
algorithms.

The motivation for studying the effect of the training set size is that the results
presented in [22] and [30] are based on small training set sizes of 3622 and 4301,
respectively. We would like to understand if a particular classification algorithm
is the main factor in determining the classification performance or if the amount
of training data is more important. The figure clearly shows that increasing
the training set size leads to a significant decrease in the equal error rate for
all three models. For many of the different sample sizes, MART performs best
but is surpassed by LR-L-BFGS starting at 100 thousand samples. The relative
performance of LR-L-LBFGS and LR-SGD depends on the sample size. As the
sample size increases, the equal error rates become very close for the different
algorithms. One important result from Figure 4 is that the test error is still
decreasing even with a training set of 157 thousand samples. Although since the
x-axis is on a log scale, achieving better accuracies requires higher and higher
numbers of training samples.

Next in Table 9, we evaluated the performance of the telemetry classifier
over a period of thirteen months on new, unique reports (i.e. files) received in
the month following the classifier training but were not included in the training
set. For each test month, the telemetry classifier was trained on the previous five
months of unique labeled reports. The files associated with both the training

12

Start Training Final Training Test Month CV Equal Test FP Test FN
Month Month Error Rate (%) Rate Rate

2010 09 2011 01 2011 02 7.66 9.73 9.45
2010 10 2011 02 2011 03 7.52 9.87 8.94
2010 11 2011 03 2011 04 7.43 13.36 6.63
2010 12 2011 04 2011 05 7.37 11.46 8.14
2011 01 2011 05 2011 06 7.43 18.14 16.17
2011 02 2011 06 2011 07 7.29 8.0 10.33
2011 03 2011 07 2011 08 7.23 7.44 11.07
2011 04 2011 08 2011 09 7.40 8.97 10.56
2011 05 2011 09 2011 10 7.13 10.77 14.61
2011 06 2011 10 2011 11 6.37 8.87 7.56
2011 07 2011 11 2011 12 6.33 6.95 9.12
2011 08 2011 12 2012 01 6.17 21.11 6.48
2011 09 2012 01 2012 02 6.78 8.35 6.11

Table 9. Longitudenal results for the telemetry classifier system over a period of 13
months.

and test reports were previously determined to be malicious or benign by either
manual analysis by professional analysts or other automated means. For example,
computing the SHA1 hashes of all files in an off-the-shelf program and adding
them to a whitelist constitutes an automated method of determining a file’s
label. As noted earlier, we did not rely on detections based on AV signatures for
this validation. The table shows that cross validation rates on the training sets
are fairly consistent. However, due to a smaller amount of data, the FP and FN
rates for the test month have a larger variance and are almost always higher than
the cross-validation error on the training set. This is to be expected because it is
the most difficult test on previously unseen data. In January 2012, the FP rate
was 21.1% which can happen due to a small number of samples labeled benign
for a particular test month. In this case, the number of true positives was 29,836
and true negatives was 5,931. In addition, we found 1,587 false positives and
2,068 false negatives. Overall, there is reasonable agreement between the test
and training CV errors. For collecting new samples and sample submission to an
in-depth processing system, we believe these error rates are acceptable. In these
scenarios, a false positive results in the collection or submission of roughly one
benign sample for every nine malicious samples.

5 Malware Estimation

Now that we have trained our malware telemetry classifier to predict the label
of the unknown reports, we can use the classification system trained with LR-
L-LBFGS to estimate the number of malicious files. The 26.7 million telemetry
reports in our sample can be divided into several high-level sets as shown in
Figure 5. The figure indicates the number of reports received in October 2010

13

Telemetry Report Set (26.7M)

Reports from Files

Detected by the

AM Engine (20.5M)

Reports from

Detected Files with

Samples (255K)

Reports from

Undetected Files with

Samples (578K)

Reports from Files Undetected

by the AM Engine (6.2M)

Fig. 5. Anti-malware telemetry report description. All reports represent a distinct ex-
ecutable determined by a unique SHA1 hash.

considering only a single report for each distinct executable file. In other words,
we sample the most recent report received for each file and disregard each previ-
ous report containing that particular SHA1 file hash. These reports are divided
into two sets, namely those for files identified by the signature detector running
on the remote computer (20.5 million) and those for unknown files which were
not detected (6.2 million). One of the main goals of this paper is to predict
the label of these undetected reports in the shaded box. Furthermore, detected
reports include 255 thousand reports corresponding to executables where a sam-
ple of the file has been previously collected at the backend. Similarly, the file
collection system includes 578 thousand file samples found in the undetected re-
ports. From the figure, we see that we have only collected samples of files found
in 3.1% ((255K + 578K)/26.7M) of the reports thus providing motivation to
analyze reports in the absence of a file sample.

To estimate what percentage of unknown files are predicted to be malicious,
we first estimate the percentage of malicious executables from the unknown
reports in our sample population. The second and third columns of Table 10
provide the number of reports based on the three detection methods, manual
labeling, signature detection, and telemetry classifier prediction. In total, we
received reports for 26,749,556 distinct, files during October 2010. Of these 0.27%
(72,771) were generated due to files where we have a sample which has been
previously labeled as malicious by an analyst. These files are part of the set
of 255 thousand file samples in the detected reports in Figure 5. Similarly, we
observed that 0.07% (19,952) of the reports correspond to files labeled as benign
by analysts from the 578 thousand reports for which we have samples. The vast
majority (20,518,412, 76.7%) of reports were due to files that were detected as
malicious by the engine but not labeled by the analysts.

For the remaining reports for undetected files, we now use the telemetry clas-
sifier to predict how many of these were caused by malware and how many corre-
spond to benign files. Similar to the system described in Section 4, we trained a
telemetry classifier using the labeled samples up through October 2010 and then

14

used it to predict the label of the unknown reports. The equal error rate for this
version of the telemetry classifier is 5.9%. The third row of Table 10 shows that
16.0% (4,270,521) of the unknown reports are predicted to be malicious, while
7.0% (1,867,900) are predicted to involve benign files. The telemetry classifier
predicts that 69.6% (4,270,521/(4,270,521+1,867,900)) of the reports from un-
detected files are malicious. Furthermore, 93% of the total reports correspond to
malware. The telemetry classifier output also allows us to estimate the efficacy
of the signature detector. The table indicates that signatures detected 82.8%
(20,591,183/24,861,704) of the malicious files observed on the client computers.

Detection Type Malicious Benign

Manual Labeling 72,771 (0.27%) 19,952 (0.07%)
Signature Detection 20,518,412 (76.7%) Not Applicable
Telemetry Classifier Prediction 4,270,521 (16.0%) 1,867,900 (7.00%)
Total 24,861,704 (93.0%) 1,887,852 (7.1%)

Table 10. Statistics for distinct files associated with telemetry reports received in
October 2010.

6 Discussions

We believe the results in Section 4 are quite encouraging. After conducting the
experiment to measure how well the telemetry classifier can predict if the file
associated with the telemetry report is malicious or benign and reviewing the
results, we next set up a research web service for analysts to classify telemetry
reports from client machines. The system accomplishes several tasks, namely
providing a probability that a specific file is malicious given a report and gener-
ating a ranked list of the most malicious items for an analyst to review. For the
first instance, the analysts can evaluate the telemetry classifier results for any
file based on the SHA1 hash. In addition, the analyst has the option of evaluat-
ing the results for reports where we have samples of the file which are labeled
as malicious, labeled as benign, or not currently labeled. In the latter case, the
status of the file is unknown and the telemetry classifier provides an indication
whether or not the file is malicious. For files that are labeled by analysts or
the signature detector as malicious, reports which are predicted to be benign
should be considered potential false positive (FP) candidates; FPs are particu-
larly problematic for anti-malware products. Similarly, files which are labeled by
analysts as benign but the reports are predicted to be malicious are candidates
for false negatives and can be analyzed further.

Next we investigate potential methods to defeat the proposed system. The
main attack vector is to cause a report to be generated in such a way that
the metadata mimics the features associated with benign files (i.e. a mimicry

15

attack), but in some cases, this is not an easy task to accomplish. For example,
it would be very difficult to mimic the LS Hash of a benign file. Even if the
attacker is able to some create malware with a LS Hash similar to a benign file,
other features will help discriminate the malware from the legitimate file. For
example, malware often tries to masquerade as legitimate software by copying
legitimate signatures and certificate authorities. If the certificates are determined
to be invalid by the AM engine, this provides a very strong hint to the telemetry
classifier that the file is indeed malicious.

Another issue to consider is the accuracy of the reports analyzed in the
previous section. For the results in Table 10, we consider all reports deemed
malicious by signature detection to be generated by malware. Although relatively
rare, false positives in the signatures lead to an increase in the number of reported
detections. In this case, we will overestimate the effectiveness of the signature
detection.

7 Related Work

The Microsoft Security Intelligence Report (SIR) [24] provides estimates of the
number of detected malicious files for different malware families. The telemetry
reports used to make the estimates in the SIR are the same as those used in this
paper. As noted earlier, this report is based on known signature detections and
does not attempt to estimate the amount of unknown malware.

Commercial software vendors have recently started using application and
URL reputation to determine if an application or URL is malicious. For example,
current versions of Symantec’s security products [7], [8] and Microsoft’s Internet
Explorer [14] both employ telemetry reports to infer a file’s reputation. The
key observation is that as more users run an application or visit a URL, these
entities can be considered more trustworthy. Applications which are only utilized
by a few individuals are more likely to be malware. In this paper, we do not
use the number of instances a particular SHA1 has been seen in the telemetry
data so that we can try to detect zero-day attacks. Waiting some period of
time to build a reputation could cause the system to miss many instances of
a single polymorphic attack. An alternate version of our system could also be
implemented with reputation data to better predict if an application is benign.
In addition, earlier systems [7], [8] appear to utilize telemetry reports to build a
reputation, but these papers do not attempt to classify the reports directly as
proposed in this work.

Security researchers have written many papers on malware classification, and
a recent survey of techniques used to detect malware is given in [16]. Most of
the features used in the telemetry classifier are determined by static analysis of
the file. As such, the telemetry classifier is closely related to early work in static
malware classification of executable binaries. Schultz et al. [30] train classifiers
to distinguish between malware and benign files based on three different feature
sets (DLLs, strings, executable byte sequences). In [22], Kolter and Maloof train

16

several different classifiers based on n-grams of executable byte code sequences
as features, among others.

There have been several in-depth malware analysis systems which have been
developed over the years and could be utilized in Figure 1 including Anu-
bis [17],[4], BitBlaze [32], and BAP [6]. Clustering and classification of the results
of static analysis of files has been previously proposed for prefiltering for in-depth
file analysis [18], [26], [34]. Our work differs in that we classify telemetry reports
for files with analyzed on remote computers. Oberheide et al. [27] propose run-
ning simple clients on remote machines and transmitting the files to a backend
service to be analyzed by a suite of commercial malware products. This work
differs from the system described in this paper in that the entire file is not trans-
mitted to the backend. Instead malware is detected by classifying the metadata
in the telemetry reports.

8 Conclusions

For the first time, we estimate the total number of infected files including un-
known files which have been predicted to be malicious using our telemetry report
classifier. Based on a sample population of 50 million computers, we estimate
that 93% of the files observed in the telemetry in October 2010 are malicious.
While this estimate is somewhat biased, it confirms our suspicion that malware
is a serious problem. We are somewhat encouraged that the current signatures
have identified 82.8% of the known and predicted malware; we feel that this
percentage could have been much worse, and the telemetry classifier allows us
to measure our progress.

New AV signatures cannot be automatically generated using the proposed
system: the false positive rate is too high. However we believe this telemetry
classifier can serve several useful purposes including monitoring the current AV
signature detection rates, automatically requesting samples, and ranking un-
known files for more in-depth automated classification. The consequences of an
FP are low: a user may be prompted to submit an unknown file which turns out
to be benign or the in-depth analysis system spends a few minutes investigat-
ing a benign file. These outcomes can be minimized by only selecting files for
analysis which are predicted to be malicious with a high probability.

Acknowledgments

We thank Misha Bilenko, Matthew Richardson, Ofer Dekel, and Galen Andrew
for providing some of the machine learning algorithms used in this study. We
also thank the anonymous reviewers for their insightful comments.

References

1. Andrew, G., Gao, J.: Scalable training of l1-regularized log-linear models. In: Proc.
of the 24th International Conference on Machine Learning (ICML), Corvalis, OR.
pp. 33–40. ACM, New York, NY (2007)

17

2. Bayer, U., Habibi, I., Balzarotti, D., Kirda, E., Kruegel, C.: A view on current
malware behaviors. In: Proc. of 2nd USENIX Workshop on Large-Scale Exploits
and Emergent Threats (LEET), Boston, MA, USA (2009)

3. Bayer, U., Comparetti, P.M., Hlauschek, C., Kruegel, C., Kirda, E.: Scalable,
behavior-based malware clustering. In: Proc. of the 16th Annual Network and
Distributed System Security Symposium (NDSS), San Diego, CA (February 2009)

4. Bayer, U., Kruegel, C., Kirda, E.: TTAnalyze: A tool for analyzing malware. In:
Proc. of 15th Annual Conference of the European Institute for Computer Antivirus
Research (EICAR) (2006)

5. Bishop, C.: Pattern Recognition and Machine Learning. Springer (2006)
6. Brumley, D., Jager, I., Avgerinos, T., Schwartz, E.J.: Bap: Binary analysis plat-

form. In: Proc. of the 2011 Conference on Computer Aided Verification (CAV)
(2011)

7. C. Nachenberg, V. Seshadri, Z.R.: An analysis of real-world effectiveness of
reputation-based security. In: Proc. of Virus Bulletin Conference (VB). pp. 178–183
(2010)

8. Chau, D.H., Nachenberg, C., Wilhelm, J., Wright, A., Faloutsos, C.: Polonium:
Tera-scale graph mining and inference for malware detection. In: Proc. of SIAM
International Conference on Data Mining (SDM) (2011)

9. Christodorescu, M., Jha, S., Kruegel, C.: Mining specifications of malicious be-
havior. In: Proc. of the 6th joint meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE). pp. 5–14 (2007)

10. Edelman, B.: Adverse selection in online “trust” certifications. In: Fifth Workshop
on the Economics of Information Security. pp. 26–28 (2006)

11. Freund, Y., Schapire, R.: Large margin classification using the perceptron algo-
rithm. In: Machine Learning. pp. 277–296 (1999)

12. Friedman, J.: Greedy function approximation: a gradient boosting machine. In:
Annals of Statistics. pp. 1189–1232 (2001)

13. Group, A.P.W.: Phishing activity trends report, 3rd quarter 2009 (2010), http:
//www.antiphishing.org/reports/apwg_report_Q3_2009.pdf

14. Haber, J.: Smartscreen application reputation in ie9
(2011), http://blogs.msdn.com/b/ie/archive/2011/05/17/

smartscreen-174-application-reputation-in-ie9.aspx

15. Hu, W., Liao, Y., Vemuri, V.R.: Robust support vector machines for anomaly
detection. In: Proc. 2003 International Conference on Machine Learning and Ap-
plications (ICMLA). pp. 23–24 (2003)

16. Idika, N., Mathur, A.: A survey of malware detection techniques. Tech. rep.,
Purdue Univ. (February 2007), http://www.eecs.umich.edu/techreports/cse/
2007/CSE-TR-530-07.pdf

17. Iseclab: Anubis, analyzing unknown binaries. http://anubis.iseclab.org
18. Jacob, G., Comparetti, P.M., Neugschwandtner, M., Kruegel, C., Vigna, G.: A

static, packer-agnostic filter to detect similar malware samples. In: Conference on
Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA) (2012)

19. Jang, J., Brumley, D., Venkataraman, S.: Bitshred: feature hashing malware for
scalable triage and semantic analysis. In: Proc. of the 18th ACM conference on
Computer and communications security (CCS). pp. 309–320 (2011)

20. Jiang, X., Wang, X., Xu, D.: Stealthy malware detection through vmm-based ”out-
of-the-box” semantic view reconstruction. In: Proc. of the ACM Conference on
Computer and Communications Security (CCS). pp. 128–138 (2007)

http://www.antiphishing.org/reports/apwg_report_Q3_2009.pdf
http://www.antiphishing.org/reports/apwg_report_Q3_2009.pdf
http://blogs.msdn.com/b/ie/archive/2011/05/17/smartscreen-174-application-reputation-in-ie9.aspx
http://blogs.msdn.com/b/ie/archive/2011/05/17/smartscreen-174-application-reputation-in-ie9.aspx
http://www.eecs.umich.edu/techreports/cse/2007/CSE-TR-530-07.pdf
http://www.eecs.umich.edu/techreports/cse/2007/CSE-TR-530-07.pdf
http://anubis.iseclab.org

18

21. Kirda, E., Kruegel, C., Banks, G., Vigna, G., Kemmerer, R.A.: Behavior based
spyware detection. In: Proc. of the 15th USENIX Security Symposium. pp. 273–
288 (2006)

22. Kolter, J., Maloof, M.: Learning to detect and classify malicious executables in the
wild. In: Journal of Machine Learning Research (JMLR). pp. 2721–2744 (2006)

23. Manning, C.D., Raghavan, P., Schtze, H.: An Introduction to Information Re-
trieval. Cambridge University Press (2009)

24. Microsoft: Microsoft security intelligence report, july - december 2010 (2011), http:
//www.microsoft.com/security/sir/default.aspx

25. Moser, A., Kruegel, C., Kirda, E.: Limits of static analysis for malware detection.
In: Proc. of the 23rd Annual Computer Security Applications Conference (AC-
SAC). pp. 421–430 (2007)

26. Neugschwandtner, M., Comparetti, P.M., Jacob, G., Kruegel, C.: Forecast skim-
ming off the malware cream. In: 27th Annual Computer Security Applications
Conference (ACSAC) (2011)

27. Oberheide, J., Cooke, E., Jahanian, F.: Cloudav: N-version antivirus in the network
cloud. In: Proc. of the 17th Conference on Security Symposium. pp. 91–106 (2008)

28. Perdisci, R., Lanzi, A., Lee, W.: Mcboost: Boosting scalability in malware collection
and analysis using statistical classification of executables. In: Proc. of the 2008
Annual Computer Security Applications Conference (ACSAC). pp. 301–310 (2008)

29. Preda, M., Christodorescu, M., Jha, S., Debray, S.: A semantics-based approach
to malware detection. In: Proc. of the 34th annual ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages. pp. 377–388 (2007)

30. Schultz, M., Eskin, E., Zadok, E., Stolfo, S.: Data mining methods of detection
of new malicious executables. In: Proc. of the 2001 IEEE Symposium on Security
and Privacy (SP). pp. 38–49. IEEE Press, New York (2001)

31. Shalev-Shwartz, S., Singer, Y., Srebro, N.: Pegasos: Primal estimated sub-gradient
solver for svm. In: Proc. of the 24th International Conference on Machine Learning
(ICML), Corvalis, OR. pp. 807–814. ACM, New York, NY (2007)

32. Song, D., Brumley, D., Yin, H., Caballero, J., Jager, I., Kang, M.G., Liang, Z.,
Newsome, J., Poosankam, P., Saxena, P.: Bitblaze: A new approach to computer
security via binary analysis. In: Proc. of the 4th International Conference on In-
formation Systems Security (ICISS) (2008)

33. Stolfo, S., Wang, K., Li, W.: Towards stealthy malware detection. In: Christodor-
escu, M., Jha, S., Maughan, D., Song, D., Wang, C. (eds.) Malware Detection.
Springer (2007)

34. Wicherski, G.: pehash: A novel approach to fast malware clustering. In: USENIX
Workshop Large-Scale Exploits and Emergent Threats (LEET) (2009)

35. Zhang, B., Yin, J., Hao, J., Zhang, D., Wang, S.: Malicious codes detection based
on ensemble learning. In: Proc. of Autonomic and Trusted Computing (ATC). pp.
468–477 (2007)

36. Zhang, J., Jin, R., Yang, Y., Hauptmann, A.G.: Modified logistic regression: An
approximation to svm and its applications in large-scale text categorization. In:
Proc. of the 20th International Conference on Machine Learning (ICML). Menlo
Park. pp. 888–895 (2003)

http://approjects.co.za/?big=security/sir/default.aspx
http://approjects.co.za/?big=security/sir/default.aspx

	Scalable Telemetry Classification for Automated Malware Detection

