
USE OF KERNEL DEEP CONVEX NETWORKS AND END-TO-END LEARNING FOR

SPOKEN LANGUAGE UNDERSTANDING

Li Deng, Gokhan Tur, Xiaodong He, and Dilek Hakkani-Tur

Microsoft Research

{deng|gokhant|xiaohe|dilekha}@microsoft.com

ABSTRACT

We present our recent and ongoing work on applying deep learning

techniques to spoken language understanding (SLU) problems. The

previously developed deep convex network (DCN) is extended to

its kernel version (K-DCN) where the number of hidden units in

each DCN layer approaches infinity using the kernel trick. We

report experimental results demonstrating dramatic error reduction

achieved by the K-DCN over both the Boosting-based baseline and

the DCN on a domain classification task of SLU, especially when a

highly correlated set of features extracted from search query click

logs are used. Not only can DCN and K-DCN be used as a domain

or intent classifier for SLU, they can also be used as local,

discriminative feature extractors for the slot filling task of SLU.

The interface of K-DCN to slot filling systems via the softmax

function is presented. Finally, we outline an end-to-end learning

strategy for training the softmax parameters (and potentially all

DCN and K-DCN parameters) where the learning objective can

take any performance measure (e.g. the F-measure) for the full

SLU system.

Index Terms — kernel learning, deep learning, spoken language

understanding, domain detection, slot filling

1. INTRODUCTION

In recent years, machine learning has been playing increasingly

important roles in speech and language processing. In particular,

deep learning techniques have significantly improved the state of

the art on phone recognition (Deng et al, 2012; Mohamed et al,

2010, 2012), speech feature coding (Deng et al., 2010), and large

vocabulary speech recognition (Dahl et al, 2012; Hinton et al, 2012;

Monga et al., 2012).

 Spoken language understanding (SLU) in human/machine

spoken dialog systems aims to automatically identify the domain

and intent of the user as expressed in natural language and to

extract associated arguments or slots to achieve a goal. Deep

learning was more recently demonstrated to be effective for spoken

language understanding (SLU) by Tur et al (2012). In both areas of

intent determination (or domain detection) and slot filling, the

recent state of art has been based on discriminative classifiers such

as Boosting or SVM (Tur and De Mori, 2011) and CRF (Raymond

and Riccardi 2007; Hahn et al, 2011). The deep learning technique

of deep convex network (DCN) developed in (Deng and Yu, 2011;

Deng et al., 2012) was successfully applied to a domain-detection

task, improving the state of the art approach using Boosting (Tur et

al, 2012).

 In this paper, we will present the kernel version of the DCN

(which we call K-DCN), a significant extension of the previous

DCN technique where the number of hidden units in each DCN

layer approaches infinity using the kernel trick. We demonstrate

the much better classification performance of the K-DCN over

both the Boosting-based baseline and the DCN on a domain

classification task.

 In addition to domain or intent determination, another key task

of SLU is slot-filling, which requires sequence modeling where a

slot tag is assigned to each word or phrase in the input utterance.

That is, the task is to find an optimal slot ID sequence. In this

paper, we will discuss how to build sequential models for slot-

filling using DCN and K-DCN to provide local features via a

softmax-layer interface. We will also provide an end-to-end

learning framework in which the features extracted

discriminatively by DCN and K-DCN can be exploited to optimize

a full SLU system that performs slot-filling tasks. This end-to-end

training strategy allows us to optimize the slot-filling performance

such as an F-measure directly.

2. FEATURE EXTRACTION FOR SLU

In this section, we review the DCN architecture and learning, and

then extend it to the kernel version (resulting in K-DCN) by

constructing infinite-dimensional hidden representations in each of

the DCN module using the kernel trick. Both DCN and K-DCN

can be used as powerful classifiers for domain detection and also

as discriminative feature extractors for subsequent slot filling at the

full-utterance level.

2.1 Deep convex network (DCN): A review

Here, we provide an overview of the DCN architecture. The

philosophy of DCN’s architecture design rests in the concept of

stacking, where simple modules of functions or classifiers are

composed first and then they are “stacked” on top of each other so

as to learn complex functions or classifiers. Following this

philosophy, Deng and Yu (2011) and Deng et al. (2012) developed

and presented the basic DCN architecture that consists of many

stacking modules, each of which takes a simplified form of shallow

multilayer perceptron using convex optimization for learning

perceptron weights. Fig. 1 gives an example of a three-block DCN,

each consisting of three layers and each illustrated with a separate

color. All hidden layers are sigmoid nonlinear. Prediction and input

layers are linear. The DCN weight parameters and in each

module are learned efficiently from training data. For making

connections to the K-DCN in Section 2.2, we now review the

210978-1-4673-5126-3/12/$31.00 ©2012 IEEE SLT 2012

learning method for given fixed and hence fixed hidden units’

outputs, which is () at the bottom module of DCN and

()

 (

|

()

()
|

()
) at a higher module.

 The learning objective of DCN is mean square error regularized

by L2 norm of the weights:

 ()

 ()()

 (1)

where is DCN’s output (for each module),
 are the target vectors for training, and C is the

regularization parameter. The solution is well known:

 ()
Hence the output of DCN of each module can be written as

 () (2)

Figure 1: A typical DCN architecture. Hidden layers are sigmoid

nonlinear. Prediction and input layers are linear. Three modules

are shown, each with a distinct color.

2.2 Kernel deep convex network (K-DCN)

The DCN architecture reviewed above has convex learning for

weight matrix given the hidden layers’ outputs in each module,

but the learning of weight matrix is non-convex. For most

applications, the size of is comparable to that of and then

DCN is not strictly a convex network. In a recent extension of

DCN, a tensor structure was imposed, shifting the majority of non-

convex learning burden for into a convex one (Hutchinson et al,

2012). In the current K-DCN extension, we completely eliminate

non-convex learning for using the kernel trick (Hofmann et al,

2008).

To derive the K-DCN architecture and the associated learning

algorithm, we first take the bottom module of DCN as an example

and generalize the sigmoidal hidden layer () in the

DCN module into a generic nonlinear mapping function ()

from the raw input feature , with high dimensionality in ()

(possibly infinite) determined only implicitly by a kernel function

to be chosen. Second, we reformulate the unconstrained

optimization problem of (1) into a constrained one:

minimize

 subject to ()

 Third, we make use of dual representations (rf. pages 293-294

in Bishop, 2006) of the above constrained optimization problem to

obtain where vector takes the following form

 ()

and where () () is a symmetric kernel matrix with

elements of () ()
 Finally, for each new input vector x in the test or dev set, we

obtain the K-DCN (bottom) module’s prediction of

 () () () () ()() (3)

where the kernel vector () is so defined that its elements have

values of () () in which is a training sample and is

the current test sample.
 For l-th module in K-DCN where Eq. (3) holds except the

kernel matrix is modified to

 (|
()

()

|
()

) (|
()

()

|
()

)

 Comparing the prediction of (2) in DCN and of Eq. (3) in K-

DCN, we see key advantages of K-DCN as follows. First, unlike

DCN which need to compute hidden units’ output show in (2),

K-DCN does not need to explicitly compute hidden units’ output

 () or (|
()

()

|
()

). In the experiments reported in

Section IV, we have explored the use of Gaussian kernel, where

kernel trick equivalently gives us an infinite number of hidden

units without the need to compute them explicitly. Further, we no

longer need to learn the lower-layer weight matrix in DCN

(Deng et al, 2012) and the kernel parameter (e.g., the single

variance parameter in the Gaussian kernel) makes K-DCN much

less subject to overfitting than DCN. In Fig. 2, we show the

architecture of a K-DCN using the Gaussian kernel.

The entire K-DCN is characterized by two module-dependent

hyper-parameters: () and () , the kernel smoothing parameter

and regularization parameter. While both parameters are intuitive

and their tuning (via line search or leave-one-out cross validation)

is straightforward for a single bottom module, tuning them from

module to module is more difficult. For example, if the bottom

module is tuned too well, then adding more modules would not

benefit much. In contrast, when the lower modules are loosely

tuned (i.e., relaxed from the results obtained from straightforward

methods), the overall K-DCN often performs much better. The

experimental results reported in Section IV have been obtained

using a set of empirically determined tuning schedules to

adaptively regulate the K-DCN from bottom to top modules.

 Without stacking to form a deep architecture, the use of kernel

functions to perform nonlinear regression and classification has

been reported in statistics and machine learning literature under a

number of different names including kernel ridge regression, least-

square SVM, kernel fisher discriminant, empirical kernel map,

regularized least square classifier, extreme learning machine, and

kernel partial least squares regression (e.g. Rosipal and Trejo,

2001; Huang et al, 2012; Karasuyama, M. and Nakano, 2008; Chen

and Haykin, 2002; Kadri et al, 2011; Hofmann et al, 2008;

Saunders et al, 1998). The key contribution of this work is to use

this type of shallow machines as building blocks to construct a

deep architecture. Importantly, we have discovered that the

principles used to regularize a single shallow block are very

different from those for the deep network consisting of many

stacking blocks.

 As a summary, the K-DCN described in this section has a set of

highly desirable properties from the machine learning and pattern

recognition perspectives. It combines the power of deep learning

and kernel learning in a principled way and unlike the previous

211

DCN/DSN there is no non-convex optimization for K-DCN. The

computation steps shown in Eq. (3) make K-DCN easier to scale

up for parallel computing in distributed servers than the previous

DCN and tensor-DSN. There are many fewer parameters in K-

DCN to tune than DCN, T-DSN, and DNN, and there is no need

for pre-training with often slow, empirical procedures related to

RBM and DBN. Also, we have found that regularization plays a

much more important role in K-DCN than in DCN and Tensor-

DSN, and the effective regularization schedules developed

sometimes can have intuitive insight and can be motivated by

optimization tricks. Further, we have found empirically that K-

DCN does not require data normalization, as is often essential in

other deep networks such as DNN and DCN. Finally, our

experience showed that, unlike other methods, K-DCN can easily

handle mixed binary and continuous-valued inputs without data

and output calibration. All these desirable properties have been

demonstrated in our experiments on intent determination tasks to

be described in Section 5.

Figure 2: Architecture illustration of K-DCN with three modules

3. SPOKEN LANGUAGE UNDERSTANDING

Semantic parsing of input utterances typically consists of 3 tasks,

domain detection, intent determination, and slot filling. Originated

from call routing systems, domain detection or intent determination

tasks are typically treated as semantic utterance classification, and

originated from natural language to semantic template filling

systems such as the DARPA ATIS, slot filling task is typically

treated as sequence classification. Syntactic, semantic, and other

contextual features are employed in statistical modeling of these

SLU tasks (Tur and De Mori 2011).

An example sentence with domain, intent, and slot annotations,

along with typical domain-independent named entities, is provided

below, following the popular in/out/begin (IOB) representation,

where Boston and NewYork are the departure and arrival cities

specified as the slot values in the user’s utterance, respectively.

 show flights from Boston to New York today

Slots O O O B-dept O B-arr I-arr B-date

Names O O O B-city O B-city I-city O

Intent Find_Flight

Domain Airline Travel

4. SEMANTIC UTTERANCE CLASSIFICATION

The semantic utterance classification (SUC) task aims at

classifying a given speech utterance Xr into one of M semantic

classes, ̂ ∈ C = {C1, . . . , CM} (where r is the utterance index).

Upon the observation of Xr, ̂ is chosen so that the class-posterior

probability given Xr, P(Cr|Xr), is maximized. More formally,

 ̂

 ()

 Semantic classifiers need to allow significant utterance

variations. A user may say “I want to fly from San Francisco to

New York next Sunday” and another user may express the same

information by saying “Show me weekend flights between JFK and

SFO”. On the other hand, the command “Show me the weekend

snow forecast” should be interpreted as an instance of another

semantic domain class, say, “Weather.” In order to do this, the

selection of the feature functions fi(C,W) aims at capturing the

relation between the class C and word sequence W. Typically,

binary or weighted n-gram features, with n = 1, 2, 3, to capture the

likelihood of the n-grams, are generated to express the user intent

for the semantic class C. Because of the very large dimensions of

the input space, large margin classifiers such as SVMs or Boosting

were found to be very good candidates for this task.

5. SEQUENCE MODELING FOR SLOT FILLING

In addition to domain detection and intent determination, another

key task in SLU is slot-filling. Traditional sequential models for

slot-filling include HMM, MEMM, SMT, and CRF (Hahn et al,

2011). Most of these models are based on discrete or discretized

features. In this paper, we introduce a slot-filling model based on

the log-linear framework, with dense continuously-valued features

transformed from raw binary lexical features using DCN and K-

DCN. We also describe how the model can be trained to directly

maximize the accuracy metric for evaluation, where

comprehensive experimental work is in progress.

5.1 Log-linear modeling for slot-filling

Given the observation, e.g., the input sentence, O, the optimal

sequence of slot IDs ̂ is obtained according to

 ̂

 () (4)

where () is modeled by a log-linear model (similar to the

approach by Macherey et al, 2009):

 ()

 {∑ ()

} (5)

and ∑ {∑ () } is the normalization

denominator. M is the number of feature functions. Note that we

define the feature functions { ()} in log domain to simplify

the notation in later sections.

In the log-linear model, the feature weights { } are

usually tuned by MERT on a held-out development set (Och 2003).

In the following sub-sections, we will describe the actual feature

models for slot-filling and the related learning problem.

 ()

 ()

 () (()) (())

 () () ()

 ()

 ()

 ()

 () (()) (())

 () ()

 ()

 ()

 ()

 ()

 ()

212

5.2. Slot translation model

Assuming that the input sentence consists of K words, we design

the word-to-slot translation feature which is scored as:

 () ∏ ()

 (6)

where and are the k-th slot ID in sequence S and the k-th

word in observation sentence O, respectively.

Instead of modeling translation probabilities directly, we take

into account an n-gram context around the word , and extract a

local feature vector from that n-gram using the K-DCN.

Let us denote the local feature vector extracted by K-DCN by .

Then we model the probability of slot ID i given feature x using

the softmax function:

 ()

∑
 (7)

where is the i-th row of the parameter matrix . Matrix has

a total of I rows and D columns, where I is the number of slot

categories, and D is the dimension of the feature vector. In latter

sections we describe how W can be learned in an end-to-end

optimal manner.

5.3. Slot transition model

In order to capture the dependence between slot IDs, we also

design additional “features” based on the slot-transition model:

 () ∏ ()

 (8)

which serves as a bi-gram language model (LM) for the slot IDs. In

our work, this bi-gram ID LM is trained on the annotation of the

training set as a regular LM.

5.4. Objective function for end-to-end learning

The objective function in learning matrix is defined as the

model-based expectation of slot-filling accuracy over the entire

training set (proportional with a factor of N):

 () ∑ ∑ () (
)

 (9)

where N is the number of sentences in the training set,
 is the slot

ID sequence reference of the n-th input sentence , and
 () that denotes the list of hypotheses of . (

) is the

accuracy measure of slot-filling, e.g., (
) could be the slot

accuracy count or F-measure of given the annotation reference

 . Note that (

) is a measure irrelevant to parameter

optimization. () is the posterior defined in (5). The

subscript indicates that it is computed based on the parameter

set to be estimated.

5.5. Optimization

The objective function (9) has been widely used in a number of

sequential pattern recognition tasks such as ASR (He et al. 2008)

and SMT (He and Deng 2012). However, unlike previous work

where the parameters to be optimized are in discrete probability

distribution or continuous probability density domain, here we

need to optimize an unbounded matrix. Therefore, the efficient

EBW-based optimization method (He et al. 2008, He and Deng

2012) is not suitable anymore. Instead, we resort to the stochastic

gradient descent (SGD) method to optimize ().

By taking different forms of accuracy measure (
) , the

objective function () is directly linked to various evaluation

metrics. Table 1 summarizes a few commonly used evaluation

metrics for slot-filling and corresponding form of the accuracy

measure. Note the corpus-level F-measure in the table is not

decomposable. Therefore we use the average of sentence-level F-

measure to approximate the corpus-level F-measure. In contrast,

the corpus-level correct slot-ID count is directly decomposable to

the sentence-level; i.e., it is simply the sum of correct slot-ID

counts of all sentences.

Table 1. Common evaluation metrics for SLU and their

corresponding forms of the accuracy measure in Eq. (9).

Metric Accuracy measure (
)

Concept error Raw count of correct slot-IDs in

F-measure Sentence-level F-measure for

6. EXPERIMENTS

6.1 Experimental Setup

In order to perform experiments with the DCNs, we compile a

dataset of utterances from the users of a spoken dialog system.

Table 1 shows the properties of the data sets and the (relative)

frequencies of the two types of queries in each data set. Each of the

utterances in these data sets is manually labeled with one of 25

domain categories. The domains were chosen to cover specific

target domains such as restaurants, calendar, or movies, generic

user intents such as greeting or frustration, and one additional

category for the remaining domains. For evaluation, the error rate

of the top scoring class is used. The baseline performance is

obtained using only word trigrams with Boosting. This data

contains about 125K word trigrams, so we applied Boosting-based

filtering reducing the input feature space size to 4789 unique

salient n-grams. These features are then fed to DCN and K-DCN.

We have also employed two additional kinds of features,

following our earlier work (Hakkani-Tür et al 2012), using features

as extracted from query click logs and named entity extraction.

Both of these feature types have been shown to improve domain

classification. Query click features are computed using the click

distribution over a set of clicked base URLs (such as imdb.com

and rottentomatoes.com) from search engine query click logs of

user utterances. Some of these features are highly correlated as

expected, as queries related to the same domain may be resulting in

clicks to different base URLs related to that domain, and in this

work these are represented as two different features. Since not

every user utterance has these features are been observed in search

query click logs due to the natural language nature of user

utterances, which are different than keyword search queries,

automatic translation of user utterances to keyword queries has

been performed; see (Hakkani-Tür et al 2012) for more details on

this translation.

6.2. Experimental Results

Shown in Table 1 are the summary results comparing the baseline

system’s performance with that of DCN and K-DCN systems. We

213

have used three types of raw features, including lexical features,

features derived from query clicks, and features derived from name

entities. Four ways of their combinations are fed into the three

types of classifiers with the error rates shown in Table 1. K-DCN

has considerably lower error rates than DCN and the baseline

classifier for all four sets of raw features. Specifically, when query

click features are added to the lexical features (row 3), all systems

reduce error rates and the K-DCN system reduces the error rate

more significantly. When name entity features, which take

continuous values, are further added (row 4), the baseline system is

not able to reduce its error rate, due to the difficulty of Boosting in

handling non-binary features. Nevertheless, both DCN and K-DCN

systems reduce their error rates, and for K-DCN the magnitude of

error reduction is more significant again. One most interesting

observation gleaned from Table 2 is that K-DCN is able to exploit

query click features much more effectively than Boosting or DCN.

While this is an area of further investigation, our preliminary

observation is that K-DCN has the ability to directly handle mixed

binary and continuous-valued inputs. In all experiments, no data

normalization is carried out and the dynamic range of different

elements of the input vectors can go from 0->1 to 0->50.

To provide more detailed results of the K-DCN in Table 1 with

Lexical+QueryClick features, we show in Table 2 the domain

classification error rates (percent) separately on Train set, Dev set,

and Test set as a function of the depth or the module number (from

bottom up) of the K-DCN. Importantly, the error rate of 5.94% is

obtained at the lowest error rate of 6.45% for the Dev set, both

occur at the sixth module of K-DCN. Beyond this, when more

modules are stacked, the error rate of Dev and Test sets increasing,

showing overfitting.

Table 3. More detailed results of K-DCN in Table 2 with

Lexical+QueryClick features. Domain classification error rates

(percent) on Train set, Dev set, and Test set as a function of the

depth of the K-DCN.
Depth Train Err% Dev Error% Test Err%

1 9.54 12.90 12.20

2 6.36 10.50 9.99

3 4.12 9.25 8.25

4 1.39 7.00 7.20

5 0.28 6.50 5.94

6 0.26 6.45 5.94

7 0.26 6.55 6.26

8 0.27 6.60 6.20

9 0.28 6.55 6.26

10 0.26 7.00 6.47

11 0.28 6.85 6.41

 Note that, in Table 2, as the depth of K-DCN increases, the

training error rate generally continues to decrease. If we were to

select some fixed values of ()and () over all modules l, the

training error rate would go quickly to zero but overfitting would

start earlier than module six to produce a higher error rate than

5.94%. To avoid this, we use a carefully tuned schedule for ()and

 () as a function of l. This prevents the training error rate from

quickly going to zero, thus causing overfitting to start after a low

error rate has already been achieved.

We conduct slot-filling experiments on the ATIS dataset

following similar settings as described in (Tur, et al., 2010). The

training set consists of 4978 sentences and the test set consists of

893 sentences. In the task, each word will be tagged by a slot ID,

and there is a total of 127 slot IDs. An example of a sentence and

its annotations is given in section 3. The Linear CRF result is

obtained using only lexical features, with default parameters of

CRF++ toolkit, following (Raymond and Riccardi, 2007).

We then study the effectiveness of using K-DCN for local slot

ID classification. In the experiment, we use a 5-word window for

each position to derive raw features. We project each word to a 50-

dimension dense vector by looking-up a embedding mapping table,

which is trained through unsupervised learning on Wikipedia text

corpus (Collobert, et al., 2011). Then we concatenate the 5

embedding vectors in a context window to form a 250-dimension

contextual vector as the input for K-DCN. As in classical

classification tasks, the output of K-DCN is a 127-dimension

vector, each element corresponds to one slot ID. K-DCN is then

trained on the training data. Compared to a logistic regression

baseline which uses n-gram features (n=1~5) derived from the 5-

word window, the K-DCN local classifier improves the F-measure

significantly.

We then take the K-DCN output as dense local features for the

log-linear model and perform the end-to-end training. A standard

bi-gram LM on slot IDs is trained on the slot annotations of the

training set. Then we performed SGD to train the softmax matrix

by optimizing the expected F-measure. It gives further

improvement by 0.23% over the K-DCN local classifier.

The gain from the end-to-end training is not as large as we expect,

partially due to the reason that the slot dependency information is

only modeled by a simple bi-gram LM, and it is not trained to

optimize the end-to-end metric. In the future, we are working on

extending the end-to-end sequential training methods to these bi-

gram features and expect more significant results.

7. DISCUSSION AND CONCLUSIONS

This paper reports our ongoing research on the use of integrated

deep learning and kernel learning for discriminative feature

Table 2. Comparisons of the domain classification error rates

among the boosting-based baseline system, DCN system, and K-

DCN system for a domain classification task. Three types of raw

features (lexical, query clicks, and name entities) and four ways

of their combinations are used for the evaluation as shown in

four rows of the table.

Feature Sets Baseline DCN K-DCN

lexical features 10.40% 10.09% 9.52%

lexical features

+ Named Entities

 9.40% 9.32% 8.88%

lexical features

+ Query clicks

 8.50% 7.43% 5.94%

lexical features

+ Query clicks

+ Named Entities

 10.10% 7.26% 5.89%

c

Table 4. Slot-filling performances on ATIS.

Models F-measure

Logistic Regression 90.07%

Linear CRF 91.09%

K-DCN 91.65%

Log-linear K-DCN 91.88%
c

214

extraction for SLU applications. The K-DCN architecture

described in this paper can be viewed as an extension of the earlier

DCN when the number of hidden units in each module grows to

infinity. K-DCN is shown to perform much better than our

previous boosting-based baseline and DCN systems when

evaluated on a set of domain detection problems in SLU. For

potential applications to slot filling problems of SLU, we make use

of softmax to convert the discriminatively learned features

computed by K-DCN into posterior probabilities in a log-linear

model. An end-to-end learning technique is outlined to estimate the

softmax weights that calibrate the K-DCN outputs so as to directly

optimize the SLU performance metric. Experimental work in

developing and testing the slot filling model is currently under

way.

Compared with DCN, the K-DCN reported in this paper vastly

increases the size of hidden units without suffering from

computation and overfitting difficulties. However, as is typical of

kernel methods, the memory required to hold the kernel matrix is

quadratically related to the sample size, and when the sample size

becomes very large, inverse of the correspondingly large matrix, as

shown in Eq. (3), can become computationally expensive. For the

SLU and speech recognition experiments involving larger training

data than used in this study, our future work will develop feature

selection/projection techniques, basis pursuit methods, and kernel

approximation methods in the context of K-DCN (e.g., Baudat and

Anouar, 2003; Cawley and N. Talbot, 2002). We will also strive

to develop theory to guide the practice on cross-validation and

adaptive regularization over modules of the K-DCN.

8. REFERENCES

[1] G. Baudat and F. Anouar. “Feature vector selection and

projection using kernels,” Neurocomputing, Vol. 55, pp. 22-

38, 2003.

[2] C. Bishop. Pattern Recognition and Machine Learning,

Springer, 2006.

[3] G. Cawley and N. Talbot, “Reduced rank kernel ridge

regression,” Neural Processing Letters, vol. 16, 2002.

[4] Z. Chen and S. Haykin, “On different facets of regularization

theory,” Neural Computation 14, 2791–2846, 2002.

[5] G. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent

pretrained deep neural networks for large vocabulary speech

recognition,” IEEE Trans. Audio, Speech, and Lang. Proc.

Jan. 2012.

[6] L. Deng and D. Yu. “Deep Convex Network: A scalable

architecture for speech pattern classification,” Proc.

Interspeech, 2011.

[7] L. Deng, D. Yu, and J. Platt. “Scalable stacking and learning

for building deep architectures,” Proc. ICASSP, 2012.

[8] L. Deng, M. Seltzer, D. Yu, A. Acero, A. Mohamed, and G.

Hinton. Binary coding of speech spectrograms using a deep

auto-encoder. In Proc. Interspeech, September 2010.

[9] S. Hahn, M. Dinarelli, C. Raymond, F. Lefevre, P. Lehnen, R.

de Mori, A. Moschitti, H. Ney, and G. Riccardi. “Comparing

Stochastic Approaches to Spoken Language Understanding in

Multiple Languages,” IEEE TASLP, vol. 19, 2011.

[10] D. Hakkani-Tür, G. Tur, R. Iyer, L. Heck, “Translating

Natural Language Utterances to Search Queries for SLU

Domain Detection Using Query Click Logs,” Proc. ICASSP

2012.

[11] X. He and L. Deng. “Maximum Expected BLEU Training of

Phrase and Lexicon Translation Models”, Proc. ACL, 2012.

[12] X. He, L. Deng, W. Chou. “Discriminative learning in

sequential pattern recognition”, IEEE Signal Processing

Magazine, Sept. 2008.

[13] G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly,

A. Senior, V. Vanhoucke, P. Nguyen, T. Sainath, and B.

Kingsbury. “Deep Neural Networks for Acoustic Modeling in

Speech Recognition.” IEEE Signal Processing Magazine, Vol.

29, No. 6, November, 2012.

[14] T. Hofmann and B. Scholkopf, and A. Smola, “Kernel

methods in machine learning,” The Annals of Statistics, Vol.

36, No. 3, pp. 1171-1220, 2008.

[15] G. Huang, H. Zhou, and X. Ding, and R. Zhang, “Extreme

learning machine for regression and multiclass classification,”

IEEE Trans. Systems, Man, and Cybernetics (Part B), Vol. 42,

No. 2, pp. 513-529, April 2012.

[16] B. Hutchinson, L. Deng, and D. Yu, “A deep architecture with

bilinear modeling of hidden representations: Applications to

phonetic recognition,” Proc. ICASSP 2012.

[17] H. Kadri, A. Rabaoui, P. Preux, E. Duflos, and A.

Rakotomanonjy, “Functional regularized least squares

classification with operator-valued kernels,” Proc. ICML,

2011.

[18] Karasuyama, M. and Nakano, R. “Optimizing sparse kernel

ridge regression hyperparameters based on leave-one-out

cross-validation,” Proc. IJCNN 2008. vol., no., pp. 3463-

3468, June 2008.

[19] K. Macherey, O. Bender, H. Ney, "Applications of Statistical

Machine Translation Approaches to Spoken Language

Understanding", IEEE TASLP, vol. 17, 2009

[20] A. Mohamed, G. E. Dahl, and G. E. Hinton, “Acoustic

modeling using deep belief networks,” IEEE Trans. on Audio,

Speech, and Lang. Proc. Jan. 2012.

[21] A. Mohamed, D. Yu, and L. Deng, “Investigation of full-

sequence training of deep belief networks for speech

recognition,” Proc. Interspeech 2010, pp. 1692-1695.

[22] R. Monga, J. Dean, G. Corrado, K. Chen, M. Devin, Q. Le,

M. Mao, M. Ranzato, P. Tucker, and A. Ng. “Downpour and

Sandblaster: Two Complementary Approaches to Large-scale

Distributed Optimization,” ICML Workshop, 2012.

[23] F. Och. “Minimum error rate training in statistical machine

translation”, Proc. of ACL 2003.

[24] C. Raymond and G. Riccardi, Generative and Discriminative

Algorithms for Spoken Language Understanding, Proc.

Interspeech 2007.

[25] R. Rosipal and L. Trejo, “Kernel partial least squares

regression in reproducing kernel Hilbert space,” J. Machine

Learning Research, vol. 2, pp. 97-123, 2001.

[26] C. Saunders, A. Gammerman, and V. Vovk, “Ridge

regression learning algorithm in dual variables,” Proc. ICML,

1998.

[27] G. Tur, L. Deng, D. Hakkani-Tür, and X. He. “Towards deep

understanding: Deep convex networks for semantic utterance

classification,” Proc. ICASSP, 2012.

[28] G. Tur and R. De Mori (eds): Spoken Language

Understanding - Systems for Extracting Semantic Information

from Speech, John Wiley and Sons, 2011.

[29] G. Tur, D. Hakkani-Tür, and L. Heck. “What's Left to Be

Understood in ATIS?,” Proc. IEEE SLT Workshop, 2010.

[30] R. Collobert, J. Weston, L. Bottou, M. Karlen, K.

Kavukcuoglu and P. Kuksa. “Natural Language Processing

(Almost) from Scratch,” Journal of Machine Learning

Research (JMLR), 2011

215

