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ABSTRACT

An effective and efficient image contour detector is highly de-
sired due to its wide applications in computer vision and mul-
timedia retrieval. However, the state-of-the-art image contour
detection algorithms are very computationally intensive, and
thus impractical for web-scale applications. In this work, we
study the relationship between edge detection and contour de-
tection, based on which an edge-based image contour detec-
tion algorithm is proposed. This algorithm fully makes use
of cheap edge information for efficiency purpose. The exper-
iments on benchmark data sets show that, the proposed con-
tour detector works much faster than existing state-of-the-art
algorithms while maintaining high accuracy, and thus suitable
for large-scale applications.

Index Terms— Image contour detection, edge detection

1. INTRODUCTION

Image contour detection plays an important role in computer
vision, and has been widely used in a variety of vision tasks
such as image segmentation [1, 2], image retrieval [3], ob-
ject detection [4], and object recognition [5]. In 2004, Martin
et al. [6] proposed the classic gradient paradigm, referred to
as standard Pb, in which a combination of local cues from
brightness, color, and texture channels were learned from the
Berkeley Segmentation Data Set (BSDS300) [7]. Since then,
a number of image contour detectors have been proposed and
validated on this data set, such as Boosted Edge Learning
(BEL) [8], Ultrametric Contour Map (UCM) [9], m Pb [10],
and Min-Cover [11].

In [12], the so called globalized probability of boundary
(g Pb) method was proposed and achieves the highest accu-
racy in terms of F-measure on BSDS300 and an extended
dataset BSDS500. However, gPb is quite computationally
intensive since it extracts multiscale local gradient features
and involves solving a generalized eigenproblem. Many web-
scale applications could not make use of such effective con-
tour detector due to its high computation cost. To speed up the
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detection process, a Graphics Processing Unit (GPU) based
method was proposed in [13]. However, in most cases where
GPUs are not affordable or impractical, the optimization in
the principle of the algorithm itself becomes highly desired.
Therefore, in the current era of big data, how to speed up
the state-of-the-art contour detection algorithms while keep-
ing high performance becomes a crucial problem, which is
the main motivation for this work.

In this paper, we investigate the relationship between edge
detection and contour detection, and speed up the contour de-
tection algorithms by making use of edge information. Differ-
ent from boundary detection, which aims at obtaining middle-
level boundaries of objects or scenes, edge detection extracts
low-level information such as sharp discontinuities in the
brightness. Although it was pointed out in [6] that, edge de-
tectors perform poorly for contour detection purpose because
they cannot distinguish textured regions from object/scene
boundaries, we will show in this work that edge information
is very useful in the sense that it provides cheap priors for the
contour detector, based on which an edge-based Pb detector
is proposed. The proposed detector accelerates the detection
process by almost an order of magnitude compared with the
standard Pb while keeping high accuracy. It should be noted
that, although we mainly study the standard P’b, the method-
ology naturally applies to other Pb-based detectors such as
mPb and g Pb.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces some related works including the standard
Pb and edge detection. Section 3 presents our edge based
contour detector. Section 4 presents experimental results. Fi-
nally, section 5 concludes our paper with discussion.

2. RELATED WORKS

2.1. The Standard Pb and Pb-based Contour Detectors

In the standard Pb detector, a function Pb(z,y, 0) is defined
to predict the posterior probability of a boundary with orienta-
tion 6 at each image pixel (z,y). It measures local cues com-
puted over four channels: the L, a, b channels in the CIELab
color space and a texture channel derived from a texton map.
Each local cue is computed as histogram differences between



the feature distributions in two half-disks with radius o over
eight orientations, in the interval [0, 7). Pb detector is con-
structed by linear combination of local cues at scale o

Pb(x,y,0) =Y a;Gi(x,y,0), (M

where G(x, y, 0) is the gradient operator at (x, y) along direc-
tion €, which is detailed in [6]. ¢ denotes the feature channels.
The weights «; are learned on the training data set via logis-
tic regression [6] or gradient ascent on F-measure [12]. The
boundary strength at (z,y) is given by

Pb(z,y) = max Pb(z, y,0), 2

based on which the probability of the pixel (z,y) being at a
boundary is obtained by normalizing Pb(z,y).

mPb was later proposed [10][12] which leverages multi-
scale features to improve Pb. The m Pb is described as

T)’LPb(IL‘,’y,Q) = Zzai,sGi,s(wvyag)a (3)

where s € {§, 0,20} indexes scale.

The state-of-the-art image contour detector gPb [14]
takes mPb as an input to derive spectral cues sPb and fi-
nally combines m Pb and sPb. g Pb achieves highly accurate
contours on several data sets but its applicability is rather lim-
ited by its prohibitively computational cost. It was recently
speeded up by GPU in [13] but to our best knowledge no di-
rect optimization method in algorithm has been proposed in
the literature.

2.2. Edge Detector

As one of the fundamental problems in computer vision, edge
detection has attracted many research efforts. Numerous edge
detection algorithms have been proposed, such as Sobel oper-
ator, Prewitt operator, Laplacian detector and Canny detector.
In our system, we employ Canny edge [15] detector to ex-
tract edge information from image, due to its very attractive
properties including minimal response, good detection and lo-
calization ability. The standard Canny consists of four steps:
smoothing the raw image with a Gaussian filter; applying di-
rectional Gaussian derivative filters and thus obtaining edge
gradients and orientations; thinning the edge using non-max
suppression; thresholding with hysteresis.

While it proves to be a very powerful technique for edge
detection, unfortunately Canny edge detector performs poorly
for contour detection [6]. The reason is that Canny detector
cannot distinguish contours from highly textured areas. Is it
possible to use edge detector such as Canny in contour detec-
tion technique? We will give the answer to this question in
section 3.

Fig. 1.

Top row: RGB images; Second row: Canny
edges; Third row: Pb contours; Bottom row: human labeled
groundtruth.

3. EDGE BASED CONTOUR DETECTION

3.1. Problem Formulation

From Eqn. (1) we can see that, Pb computes the boundary
strength for every pixel in the image, and the four local cues
along eight directions are extracted. This is inherently com-
putationally intensive. For example, it takes more than one
minute to extract contours from a 321 x 481 image, if imple-
mented with C# on a single-core CPU. This speed is imprac-
tical for web-scale applications such as building sketch-based
image search engine [3].

In this work, we aim at speeding up the state-of-the-art
contour detectors from the algorithm perspective. From Fig-
ure 1 we can see that, the edge maps extracted by Canny de-
tector contain almost all of the location information of the
contours obtained by Pb and groundtruth. In other words, al-
most all the contours extracted by Pb is a subset of the edge
map. In some sense, we can regard low-level edge informa-
tion as kind of prior, which may contain very important clue
for boundaries. We can show with simple probability calcula-
tion that making use of low-level edge information is possible
and reasonable to speed up contour detection.

We adopt the notations in [8] where S(x,y) = 1 if the
boundary passes through location (x,y), and S(z,y) = 0
otherwise. Let F'(x,y) denote the feature vector at location
(x,y), and P(S(x,y) = 1le(x,y)) the probability that the
pixel (x,y) is on the boundary given the edge information.
Thus, given the feature F'(z,y), the probability of the pixel
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Edge information is easy to compute. Meanwhile, if we as-
sume that the majority of pixels on the boundaries also lie on
the edges, i.e., P(S(x,y) = lle(x,y) = 0) is extremely low,
Eqn. (4) can reduce to

P(S(z,y) = 1|F(z,y))

~ P(S(z,y) = 1|F(z,y),e(z,y) = 1)Pe(z,y) = 1|F(z,y))

(&)

whose interpretation is that if the edge map contains the ma-
jority of pixels of the contours, we can only apply the contour
detector to the edge pixels.

Furthermore, the orientation information of edges can
benefit gradient feature-based contour detectors such as Pb-
based methods. Ideally if the orientation of a boundary is
equal to that of an edge, then Pb can further reduce to

Pb(z,y) = > a;Gi(x,y,0.), (6)

where (z,y) € supp(e), e is the edge map, supp(e) is the
support set of e, i.e., the edge pixels, and 6. is the edge ori-
entation at (x,y) (quantized to be one of eight orientations).
It is obvious that the new detector will dramatically reduce
the computational cost, which will be validated in Section 4.
Of course, this derivation is based on our heuristic and ideal
assumptions for demonstration purpose. In the following sec-
tion, we will introduce the system design and the approaches
to handling the practical issues.

3.2. Edge-based Contour Detector

Figure 2 illustrates the flowchart of our contour detection sys-
tem. First, the edge information such as edge map and corre-
sponding orientations is extracted from the input image. For

P(S(z,y)|F(z,y),e(x,y) = i) Ple(x, y) = il F(z,y))

gray images, the algorithm works on the intensity channel;
for color images, three channels L,a,b in CIELab color space
are computed, and then the edge information extracted from
each channel is combined and further thinned to form a sin-
gle edge map with orientations. In practice, we find that ex-
tracting edge information from the intensity channel of color
image is fairly enough for further processing, especially for
natural images.

With edge information, we can greatly reduce the com-
putational cost of the standard Pb detector by the following
strategies. 1) For the texton computation, only assign texton
indexes to those pixels within the disc with radius o centered
at each edge pixel. 2) Extract local cues only on edge pixels
along a subset of eight orientations. Ideally, one would like
to extract the gradient cues along the edge orientation. How-
ever, there are two issues that should be considered. First, an
edge orientation may not be consistent with a boundary orien-
tation, especially in the joint locations in the image. Second,
it is well known in computer graphics that a pixel has an area,
and even a visually straight line with some slope in the im-
age is not really straight in pixel domain [16]. This makes it
difficult to calculate the exact edge or boundary orientation.
Thus, the assumption that the edge orientation is equal to the
boundary orientation in P is too strict and impractical. To
make use of the edge orientation to speedup Pb, here, we re-
lax this assumption by taking into account the computed edge
orientation (that is quantized) and its adjacent orientations as
well. In other words, we extract local cues along several ori-
entations excluding those (almost) perpendicular to the edge
orientation.

In the implementation, the Canny edge detector is
adopted, which has become one of the most successful edge
detectors since it was invented in 1986 [15]. Its good detec-
tion and localization properties make our assumption reason-
able, while its minimal response property means less noisy
edges are extracted, suggesting less pixels considered for fur-
ther processing.

Our training phase is slightly different from the standard
Pb in that only local cues on the edge map are used as positive
or negative features, without particular smoothing processing.
To overcome the well known double-peak problem in texture
edge detection [6, 1], Pb applies directional 2D Savitsky-
Golay (SQ) filtering to localize the local cues. In contrast,
our approach naturally avoids the double-peak problem due
to the good localization ability of Canny detector, though at
cost of underestimating the texture gradient response.

4. EXPERIMENTAL RESULTS

4.1. Evaluation Measurement

For performance evaluation, we base the analysis on
BSDS300 and BSDS500 and adopt the evaluation methodol-
ogy introduced in [6]. It compares machine detected bound-



Table 1. Comparison of average runtime in seconds for each
image of size 321 x 481 or 481 x 321 on the testing set of
BSDS500 Color.

’Method\Preprocess\Textons\Local Cues\Postprocess\ Total ‘

Pb 0.09 12.79 77.86 0.56 91.30
Ours 0.49 8.11 1.43 0.04 10.07

aries to human marked boundaries in the precision-recall
framework. To better quantify the performance of the detec-
tor, F-measure is used, which is defined as the harmonic mean
of precision and recall:

9PR
F(P,R) = R 7

Thus the performance of the detector is quantified by the max-
imal F-measure on the precision-recall curve on the testing
dateset.

4.2. Experiment Setting

To ensure the integrity of the evaluation, we optimize all the
parameters only on the training and validation set and perform
testing blindly on the testing set. For Canny edge detector,
there are three parameters: the standard deviation of Gaus-
sian filters, the percentage of non-edge pixels (PNP), and the
threshold ratio. For the Pb method, there are a set of parame-
ters like the scale of local cues and fitting weights for logistic
regression, all of which are discussed in details in [6]. In our
experiments, we found that the optimal standard deviation of
Gaussian filters in all cases is 1. The F-measure is not so
sensitive to PNP and threshold ratio when they are in normal
range. Suggested value for PNP is 0.6 and threshold ratio is 1.
The experiments were conducted on both color and grayscale
versions of BSDS300 and BSDS500.

For a fair comparison, we implemented both standard Pb
and the proposed detector in C# on a single core of Intel(R)
Core(TM)2 Quad CPU Q9400.

4.3. Performance Analysis
4.3.1. Comparison with Standard Pb

Figure 3 presents the comparison results between Pb and
our method on BSDS300 and BSDS500. It can be observed
that our method achieves competitive performance in terms
of precision-recall curves and F-measures, in all cases as op-
posed to Pb. Our detector attains F-measure 0.66 on color
images of BSDS500 and 0.64 on BSDS300, suggesting its
high-quality compared to the state-of-the arts [14]. Also this
is a strong sign that a good edge detector such as Canny de-
tector can capture salient contours in the image.
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Precision
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Fig. 3. Comparison of the proposed contour detector and the
standard Pb method on BSDS.

Table 1 presents the comparison of average runtime be-
tween the proposed detector and Pb, on the testing set of
BSDS500 Color. Overall, the proposed detector works al-
most 9 times as fast as Pb. Note that the runtime of the pro-
posed contour detector could be less if using more advanced
computer hardware. In the preprocess step, our detector con-
sumes slightly more runtime due to the extra Canny edge de-
tection, but the total runtime of this step is less than half a
second and thus can be neglected. In all other steps, it clearly
demonstrates the efficiency of the proposed detector over Pb,
which is consistent with the previous analysis in Section 3.
Specifically, in the texton computation step, instead of ap-
plying Gaussian derivative filter bank that assigns texton in-
dex to every pixel in the image, the proposed detector only
works on the pixels around the edges in the edge map, re-
ducing the runtime almost by one third. As for the extraction
of local cues, we can observe a huge drop of runtime by us-
ing our detector. Pb computes the local cues in every pixel
along eight orientations, which is time consuming and inef-
ficient. In contrast, our detector only extracts local cues on
edge pixels along fewer orientations (the edge orientation and
orientations nearby, see Section 3.2), which dramatically de-
creases the runtime by over 50 times in this step. The post-
processing of the proposed method requires less time because
it computes the probability of boundary map on fewer pixels
and fewer orientations, without using SG filter for localization
purpose.

It is worth noting that, we are not targeting at designing
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Fig. 4. Comparison of the proposed contour detector and
BEL-edge on BSDS300.

the best contour detector with highest possible F-measure on
BSDS; instead, we aim at speeding up the state-of-the-art con-
tour detectors from the algorithm perspective without (if any)
much degradation of performance. On the one hand, Pb is of-
ten used as a high-quality image contour detector in practice
for a number of real-world applications [3], and it is highly
desired to obtain a faster version of Pb; on the other hand,
Pb is an essential and fundamental part of the state-of-the-art
contour detectors, such as mPb and gPb whose applicabil-
ity is certainly limited by their prohibitively computational
cost, so our work provides one means of speeding up mPb
and g Pb. In cases where GPUs are not practical or CPUs are
preferred (e.g., distributed computing system), the efficient
image contour detection is highly desired. Also, a high end
GPU is required to speed up the Pb method by an order of
magnitude [13]. As such, our proposed edge based contour
detection algorithm can be regarded as complementary of the
GPU-based algorithm [13].

4.3.2. Comparison with BEL-edge

We notice that the fast version of BEL [8] (referred to as BEL-
edge) was posted on http://www.loni.ucla.edu/
~ztu/Download.htm, which claims around 12 seconds of
runtime on an image of 481 x 321. We are interested in com-
paring our detector with BEL-edge. Since we cannot access
the source code of BEL-edge, in the experiment we run the
provided executable file of its detector trained on BSDS300'.
Figure 4 shows the comparison results in terms of precision-
recall curve and F-measure. As we can see, our detector per-
forms better than BEL-edge, though not significantly. Ac-
tually, our detector is much simpler, involving much fewer
features than BEL-edge (50,000 features). Furthermore, our
detector potentially can be used to speed up the state-of-the-
art image contour detector g Pb.

ISince the BEL-edge detector trained on BSDS500 is not provided by
authors, we cannot compare the two algorithms on BSDS500.

4.3.3. Strengths and Weaknesses of the New Method

The extensive experiments conducted on BSDS300 and
BSDS500 above have demonstrated the high-quality of the
proposed image contour detector. Figure 5 shows illustrative
results using newly proposed image contour detector. We can
see our contour detector performs quite well on the left two
images, compared to the Pb. Here we emphasize the scala-
bility of the new contour detector with respect to image size.
From Table 1, we can find that, for the new detector, compu-
tation of textons consumes most of the total runtime required
for processing one image of size 321 x 481 or 481 x 321. For
images with size 321 x 481 or 481 x 321 in BSDS500, edge
pixels by Canny detector occupy on average about 10% of the
total pixels depending on the choices of scale and thresholds,
the pixels around the edges which require texton computation
take up about half the total pixels in the image, in this single
scale case. As image size grows, the proportion of the edge
pixels in one image generally should be smaller or roughly re-
main the same, say 10%, but the proportion of pixels around
the edges for texton computation will decrease fast, due to
the fact that the radius of disc in local cues extraction grows
slowly than image size. Hence, it is reasonable to say that the
larger the image size is, more efficient our proposed contour
detector becomes compared to the standard Pb.

Regarding the weakness of the proposed image con-
tour detector, when the assumption that the majority of pix-
els on the boundaries also lie on the edges is invalid, i.e.,
P(S(xz,y) = lle(x,y) = 0) is not low, our detector will
fail to some extent. For instance, in Figure 5, for tiger image,
our detector performs worse than Pb due to the failure of the
assumption and lack of smoothing filtering. The boundary of
the tiger in the image is not explicit but determined by discon-
nected edges near the boundary. Since Canny edge detector
does not perform smoothing or connect edges, the resulted
contour is not so smooth as Pb contour. However, in our ex-
periments on BSDS, when our detector fails, the standard Pb
does not perform well either in most cases. In practice, the
edge based contour detector gives competitive results, com-
pared to the standard Pb.

5. CONCLUSION

In this paper, we have proposed a fast contour detection al-
gorithm that essentially combines Canny edge detector and
the standard Pb method. The experiments have shown that
the proposed detector works much faster than Pb while main-
taining comparable performance. So we contend that Canny
detector is able to detect salient contours in the image and thus
can be used to speed up the Pb as well as other existing con-
tour detection algorithms. Our work bridges the gap between
edge detection and contour detection in the sense that edge de-
tector provides cheap location and orientation information for
contour detector. The good performance and high efficiency



Fig.

5. Top row: RGB images; Second row: Pb contours;

Bottom row: Edge-based image contours.

of our proposed detector make it applicable and promising in
large-scale applications.
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