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Interacting with Graphs 



Data is not flat BIG 
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Data is multi-modal, multi-relational, spatio-temporal, multi-media  

shorthand:  Graph Data 



NEED: ML* for Graphs 

*: Machine Learning 



ML for Graphs 

Pattern #1: Collective Classification – inferring labels of 
nodes in graph 
 

Pattern #2: Link Prediction – inferring the existence of 
edges in graph 
 

Pattern #3: Entity Resolution – clustering nodes that 
refer to the same underlying entityentity 
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Nugget: active surveying – acquire label 
and neighbors 
 
 

Sharara & Getoor IJCAI 2011;  Namata et al., MLG 2012 

Pattern #1 & #2: Collective Classification & Link Prediction 



Most previous work assumes that only the labels are 
unobserved (i.e., a fully observed network) 

Label: Positive Neutral Negative 



Network structure also often only partially observed 

 

Label: Positive Neutral Negative 



Survey 

Mark 

Survey: Acquire the label and ego-network of a node 
e.g., personal interview, targeted information gathering 
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Context 

too much: whole graph 

too little: single node 

just right: relational context 



D-Dupe: Interactive Entity Resolution Tool 

Potential  

Duplicate  

Viewer 

Relational  

Context 

Viewer 

Data 

Detail 

Viewer 

Kang, Getoor, Shneiderman, Bilgic, Licamele, TVCG 2008 

http://www.cs.umd.edu/projects/linqs/ddupe 

 

 

http://www.cs.umd.edu/projects/linqs/ddupe


Nugget: Relational Context  
Pattern #2 & #3: Entity Resolution & Link Prediction 



Nugget: Relational Context  



What’s different about graphs? 
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Comparing ML Algorithms 

Flat Data: confusion matrix 

Graph Data: ? 



G-Pare: Graph Comparison 

Sharara, Sopan, Namata, Getoor, VAST 2011 

http://www.cs.umd.edu/projects/linqs/gpare 
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Ground Truth 

(Prediction Accuracy) 

Nugget: Node Visualization 
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Neutral 

Positive 

• Model 1 prediction: “Positive”  

Model 2 prediction: “Neutral” 

 

• Model 1 is more confident in its prediction than Model 

2 

 

• Distributions of the two models vary significantly 

 

• Model 1’s prediction matches the ground truth 

Nugget: Node Visualization 
Pattern #1: Collective Classification 



Finding regions of disagreement 



GrDB: Putting it all together, first steps… 

Eldin Moustafa, Miao, Deshpande, Getoor, SIGMOD Demo 2013 

http://www.cs.umd.edu/projects/linqs/grdb 

 



Closing 

State-of-the-Art: interaction unit, context and comparison 
important 

 

Challenges: interaction/ML for complex tasks involving 
graphs is hard 

 

Opportunities:  creating common abstractions that work for 
both interaction for ML and ML for interaction 


