## The Distributed Camera

Noah Snavely Cornell University

Microsoft Faculty Summit June 16, 2013

### The Age of Exapixel Image Data



- Over a *trillion* photos available online
- Millions uploaded every hour
- Interconnected
- The Internet is becoming a living visual record of our world

#### Photos over time



"Every 2 minutes today we capture as many photos as the whole of humanity took in the 1800s." [1000memories]

### What can we do with all this data?



- Use images to understand the world
  - Changes in cities and environments over time
  - High-level behaviors, e.g. traffic patterns, pedestrian moments
  - Surprising events
  - Forensics what happened, when?
- **Challenge**: data is extremely unstructured





#### Astronomers Calculate Comet's Orbit Using Amateur Images From The Web

Amateur astrophotographs posted online represent a massive untapped resource. Now astronomers have worked out how to mine it

KFC 04/04/2011

5 COMMENTS



http://www.technologyreview.com/blog/arxiv/26603/



Snow cover from Flickr photos

[Zheng, Korayem, Crandall, LeBuhn, WWW 2012]

# Calibrating the distributed camera

• For any photo on the web



- Where was it taken? In what direction?
- What time was it taken?
- What is visible in the image? Where?
- Our work: vision tools to provide basic calibration data

#### What about sensor data?



| GPS Latitude          | 40 deg 44' 30.00" N |
|-----------------------|---------------------|
| GPS Longitude         | 74 deg 0' 13.20" W  |
| GPS Altitude Ref      | Above Sea Level     |
| GPS Altitude          | 10.3827476 m        |
| GPS Time Stamp        | 17:53:26.86         |
| GPS Img Direction Ref | True North          |
| GPS Img Direction     | 171.3049327         |

• Provides a weak signal, but we want *pixel-accurate* localization

#### Location recognition





Image-based

[Schindler, Brown, Szeliski 'o6] [Hays & Efros 'o8] [Kalogerakis *et al.* 'o9] [Li, Crandall, Huttenlocher 'o9] [Knopp, Sivic, Pajdla, '10]

#### Geometry-based

[Li, *et al.* '10] [Sattler & Leibe '11] [Lim *et al.*, '11] [Li, Snavely, Huttenlocher, Fua '12]

#### A Database of 3D Geometry



Downtown Hong Kong



#### A Database of 3D Geometry



Downtown Hong Kong

lickr

Home The Tour Sign Up Explore



Groups Peop

Full text O Tags only



From Jeren

From Jeremy



From Jerem



From Jeremy...

www.florenceart.

#### Colosseum Tickets

Save on Colosseum Tickets. Most 10-15% Less than other Sites. www.TicketsPlus.com

#### lotels near the Colosseum

Save up to 75% on Italy hotels. Par at check-in. No booking fees.

#### [Snavely, Seitz, Szeliski, 2006]

#### Dubrovnik, Croatia





[Building Rome in a Day, Agarwal, Snavely, Simon, Seitz, Szeliski, ICCV 2009]



[Crandall, Backstrom, Huttenlocher, and Kleinberg. WWW09]

🖲 Landmark3 status pag 🛛 🔵

← ⇒ C

#### Status was last updated: 03/21/2012 08:55:50. 844 out of 10000 landmarks are processed (8.44%)

| Landmark<br>ID <sup>1</sup> | Tags (click to hide)                                             | Cleaned <sup>2</sup> | #<br>components | Component<br>1                          | Component<br>2                 | Compone<br>3                        |
|-----------------------------|------------------------------------------------------------------|----------------------|-----------------|-----------------------------------------|--------------------------------|-------------------------------------|
| 0000                        | paris eiffeltower eiffel toureiffel tower paris france           |                      |                 |                                         |                                |                                     |
| 0001                        | london trafalgarsquare trafalgar square london<br>england uk     |                      | 12              | <u>3951.0</u><br>(93.21%,<br>6380/6845) | 1457.0<br>(87.62%,<br>92/105)  | 3613.0<br>(100.00%<br>26/26)        |
| 0002                        | london londoneye eye thames london england uk                    |                      | 17              | 4771.0<br>(81.68%,<br>6102/7471)        | 4771.7<br>(80.69%,<br>163/202) | <u>4771.6</u><br>(85.71%,<br>48/56) |
| 0003                        | london bigben westminster england london uk                      |                      | 5               | 57.0<br>(86.67%,<br>4654/5370)          | 57.1<br>(88.33%,<br>106/120)   | 57.2<br>(89.66%,<br>26/29)          |
| 0004                        | paris cathedral notre dame notredame church france paris         |                      | 49              | <u>1008.0</u><br>(7981/)                | 1008.0.0<br>(7974/)            | 1008.1<br>(2101/)                   |
| 0005                        | paris pyramid louvre museum paris france                         |                      | 68              | <u>508.1</u><br>(73.04%,<br>4273/5850)  | 508.6<br>(90.83%,<br>307/338)  | 508.12<br>(99.21%,<br>126/127)      |
| 0006                        | london tatemodern tate modern bridge thames london<br>uk england |                      | 18              | 1076.0<br>(89.01%,<br>2851/3203)        | 1076.3<br>(73.54%,<br>164/223) | 1076.4<br>(61.27%,<br>106/173)      |
| 0007                        | rome colosseum colosseo rome italy italia roma                   |                      | 8               | 33.0<br>(100.00%,<br>49/49)             | 120.0<br>(100.00%,<br>38/38)   | 67.0<br>(100.00%<br>28/28)          |

#### NAVTEQ SF Street View Dataset

Chen et al. City-scale landmark identification on mobile devices.[CVPR 2011]



Model of San Francisco

#### Automatic georeferencing



#### Where was this photo taken?



#### World-wide Pose Estimation



Matching becomes challenging as # of points grows very large

[Li, Snavely, Huttenlocher, Fua. ECCV 2012]

### Very large search problem

- Largest model we've created:
  - About 500M 3D points
  - … from several million images
- Each 3D point has 1 or more SIFT descriptors
   We index these using standard kd-trees
- Finding good matches at this scale is challenging
  - We have to come up with new tricks

#### Not all 3D points are created equal...



[Li, Snavely, Huttenlocher, ECCV 2010]

#### Point Co-occurrence



Examples of empirically frequently co-occurring triplets of points

• We can use these rich statistics over point frequency and co-occurrence to make hypothesis testing much more efficient

### Sampling based on co-occurrence



#### Example result

Input Photo

**Estimated Camera Pose** 



latitude: 51.5079 deg longitude: -0.1283 deg altitude: 0.718 m zenith: 82.2991 deg azimuth: -8.7291 deg roll: -0.0391 deg focalLength: 1610.01 px



Machu Picchu, Peru





Times Square



Corner of Beach and Jones (San Francisco)





Sutter St.





Pine St.

#### "Pixel-accurate" alignment



3D world model rendered from estimated viewpoint





See also "Deep Photo," Kopf et al. SIGGRAPH Asia 2008

### What about time?







The Monument, London



[credit: Chris Meighs-Andrews]





#### Input photo

#### Best matching webcam frame











### Matching features across time



#### [Hauagge and Snavely, CVPR 2012]

# Next steps

### Scene appearance



### Using geographic data



#### OpenStreetMap

| ome Climate Informati | on Data Access Customer Support About NCDC                                                                                  | Search NCDC Q                                                |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| uick Linke            | HOME > DATA ACCESS                                                                                                          |                                                              |
| Land-Based Station    | Land-Based Station Data                                                                                                     |                                                              |
| 🗷 Datasets            | Land-based (in situ) observations are collected from                                                                        |                                                              |
| Find a Station        | instruments sited at locations on every continent. They                                                                     |                                                              |
| E Station Metadata    | precipitation, wind speed and direction, visibility, atmospheric                                                            |                                                              |
| Climate Data Online   | pressure, and types of weather occurrences such as hail, fog,                                                               |                                                              |
| Data Publications     | and thunder. NCDC provides a broad level of service                                                                         |                                                              |
| Satellite             | collection, quality control, archive, and removal of biases                                                                 |                                                              |
| adar                  | associated with factors such as urbanization and changes in                                                                 |                                                              |
| Model                 | instrumentation through time. Data on sub-hourly, hourly,<br>daily, monthly, annual, and multivear timescales are available |                                                              |
| Weather Balloon       | any, normy, annua, and multiped anescales are available.                                                                    |                                                              |
| Marine / Ocean        | <ul> <li>Datasets and Products<br/>Access NCDC's land-based datasets directly         </li> </ul>                           |                                                              |
| Paleoclimate          | Find a Station                                                                                                              | 1                                                            |
| Severe Weather        | Control a station     Locate a station by using either a map tool or a location     and data search tool.                   | Measuring instruments used for current observations and data |
|                       | Station Metadata                                                                                                            | reporting                                                    |



3D city models



#### Bus schedules

Weather data

### Relating geographic data to vision



- Which direction is north?
- What is the shape of the buildings?
- What was the weather like?
- Where are streets?
- What is the #51 bus schedule in Rome?

**Goal**: Integrate images into this ecosystem of geographic data

### Understanding scenes over time



# OpenSurfaces

Sean Bell, Paul Upchurch, Noah Snavely, Kavita Bala Cornell University

#### Statistics Materials Reflectances Textures Ľ Good All ( C) N Labeled Scenes 25.357 91.876 Whitebalanced 17,839 24,771 Photos 70.005 103.513 Segmentations Planar 36,482 70,005 Segmentations Named 56.625 68,761 Materials Named Objects 31,697 42,203 2 22,219 Rectified 16.829 -Textures

http://opensurfaces.cs.cornell.edu/, SIGGRAPH 2013



### Summary

• Massive image collections can help reveal information about our world

• We're taking steps toward organizing this massive data source

Lots of interesting challenges

### Acknowledgements

- Sean Bell
- Daniel Cabrini Hauagge
- Kevin Matzen
- Andrew Owens
- Chun-Po Wang
- Kyle Wilson
- Yunpeng Li
- Dan Huttenlocher
- David Crandall
- Kavita Bala

# Thank you!

More information at <a href="http://www.cs.cornell.edu/~snavely/">http://www.cs.cornell.edu/~snavely/</a>

