
Identifying Users’ Topical Tasks in Web Search

Wen Hua†‡∗ Yangqiu Song‡ Haixun Wang‡ Xiaofang Zhou§†
†Renmin University of China, Beijing, China
‡Microsoft Research Asia, Beijing, China

§University of Queensland, Brisbane, Australia
huawen@ruc.edu.cn {yangqiu.song, haixun.wang}@microsoft.com zxf@itee.uq.edu.au

ABSTRACT
A search task represents an atomic information need of a user in
web search. Tasks consist of queries and their reformulations, and
identifying tasks is important for search engines since they provide
valuable information for determining user satisfaction with search
results, predicting user search intent, and suggesting queries to the
user. Traditional approaches to identifying tasks exploit either tem-
poral or lexical features of queries. However, many query refine-
ments are topical, which means that a query and its refinements
may not be similar on the lexical level. Furthermore, multiple tasks
in the same search session may interleave, which means we cannot
simply order the searches by their timestamps and divide the ses-
sion into multiple tasks. Thus, in order to identify tasks correctly,
we need to be able to compare two queries at the semantic level.
In this paper, we use a knowledgebase known as Probase to infer
the conceptual meanings of queries, and automatically identify the
topical query refinements in the tasks. Experimental results on real
search log data demonstrate that Probase can indeed help estimate
the topical affinity between queries, and thus enable us to merge
queries that are topically related but dissimilar at the lexical level.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval—Clustering, Query formulation, Search process

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Task Identification, Probase, Conceptualization, Interleaved Task

1. INTRODUCTION
A search task consists of a query and its refinements for accom-

plishing a specific information need. A recent study [13] suggests

∗The work is done at MSRA, Beijing, China.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WSDM’13, February 4–8, 2013, Rome, Italy.
Copyright 2013 ACM 978-1-4503-1869-3/13/02 ...$15.00.

that tasks are better information units than single queries or ses-
sions1 for many web search applications such as query suggestion,
determination of user satisfaction with search results and prediction
of user search intent, to name a few. Consider for example, query
suggestion. In Web search, query suggestion uses click data to rec-
ommend queries that are co-clicked with the original query. Given
a query “flight to LA”, we may recommend a query “cheap US
flight”. However, queries such as “hotel in LA”, which do not have
co-clicks with the original query, are also relevant because they
also belong to the task of planning a trip to Los Angeles. In order
to be able to recommend such queries, we can extend single-query-
based query suggestion to session-based query suggestion. That is,
we leverage the co-occurrence frequency of queries in search ses-
sions for recommendation. However, a session may contain queries
with multiple user intents, so if we treat queries in a session indis-
criminately, we may recommend queries that are not related to the
original query. Tasks, on the contrary, represent atomic informa-
tion needs, which means that queries contained in the same task
are usually related. Therefore, tasks can serve as better units for
query suggestions, and thus help improve user search experience.

However, task identification itself is far from simple, due to the
following reasons: First, it is not trivial to decide whether two
queries belong to the same task. A real task may contain queries
on the same topic but have no lexical similarity, e.g., similarity on
the bag-of-words level. For example, queries 4, 5, and 6 in Ta-
ble 1 may belong to the same task, as “cat”, “dog” and “snake”
may be of the same topic (“animal”), although the three queries
share little bag-of-words similarity. Therefore, we need a semantic
mechanism to identify topical query refinements. Second, infer-
ring semantics from a query or a short piece of text is a complex
task. Lucchese et. al. [14] address this problem by simply map-
ping each word in a query to a set of Wikipedia articles that con-
tain the word. Then, the “meaning” of a query is represented by
the combination of the Wikipedia articles that correspond to each
word in the query. However, we may not be able to derive topics
from single words. For example, when the query “tiger woods” is
split into two words, namely “tiger” and “woods”, the concepts re-
lated to “animal” and “material” will then be retrieved, instead of
“athlete”. Additionally, many words are ambiguous. Consider for
example, the word “python” in Table 1. It may refer to a snake or
a programming language. Consequently, the problem of detecting
topical query refinements becomes much more challenging, due to
the existence of ambiguity. Third, tasks in one session may inter-
leave (e.g., task 1 and 2 in Table 1). Previous attempts ignore this
phenomenon and identify task boundaries using a Sequential Cut

1In this paper, we use session to denote a sequence of queries issued
within a fixed period of time, or queries issued on a particular web
browser as long as the user does not close the browser.

93

algorithm. Recently, Jones and Klinkner [11] use a Graph Cut al-
gorithm to merge every pair of similar queries into one task. This
approach, which is obviously more accurate, also introduces two
issues: 1) it is computationally costly; and 2) it may lead to the
problem of “over-merging”. For instance, consider the query “the
rain song youtube” in Table 1. It contains two concepts, i.e., “song”
and “video site”, but its real intent is to find a “song”. Similar for
query “the largest dog youtube”. If we calculate the similarity of
each pair of queries based on their common concepts, which is the
process used in Graph Cut, the two queries mentioned above will
be regarded as similar and grouped together. The problem also ex-
ists in Sequential Cut, but it becomes more obvious in Graph Cut,
as every pair of queries is considered. Therefore, we need to merge
queries in interleaved tasks efficiently without over-merging. This
requires us to detect concepts that truly reflect users’ search intent.

QUERYID QUERY TASKID
0 the rain song youtube 0
1 cool math 1
2 the ugliest cat in the world 2
3 the cutest cat in the world 2
4 the tiniest cat in the world 2
5 the largest dog youtube 2
6 the largest snake on the earth 2
7 python wikipedia 2
8 cool math for kids 1

Table 1: An example of tasks in one session.

In this work, we build a conceptualization mechanism based on
an external knowledgebase (Probase [17]) to infer the underlying
conceptual meanings of queries and reduce query ambiguity. We
also employ a Sequential Cut and Merge (SCM) algorithm to ad-
dress the problem of interleaving tasks. The algorithm has higher
accuracy and less computational cost, compared with state-of-the-
art methods. More specifically, our contributions are three-fold:

• We employ lexical, conceptual, template and temporal fea-
tures to measure query similarities, which are then used to
estimate whether two queries should be clustered into one
task. Particularly, we leverage Probase to build a conceptual-
ization mechanism to infer the underlying conceptual mean-
ings of queries. Our experimental results show that by incor-
porating conceptual features into our model, we can increase
the accuracy of the identified tasks by 13% on average.

• We use multi-word terms, rather than single words, to iden-
tify topics contained in queries. We also intersect the con-
cepts of topically-related terms, and thus emphasize on com-
mon concepts, which reduces query ambiguity.

• We introduce a Sequential Cut and Merge (SCM) algorithm
to identify interleaving tasks. We compare it with Sequential
Cut (SC) and Graph Cut (GC). Both SCM and GC can ad-
dress the problem of interleaving tasks that SC cannot han-
dle. Additionally, as SCM merge similar subtasks derived by
SC rather than similar queries as in GC, it does not have the
“over-merging” problem that GC has. This also enables us
to greatly reduce the computational cost at the same time.

The remainder of this paper is organized as follows: in Section
2, we briefly review the related works in the context of task iden-
tification; then we divagate from the main line in Section 3 to talk
about Probase, the knowledgebase we utilized in this work; our ap-
proaches and experiments are depicted in Section 4 and 5, respec-
tively, followed by a brief conclusion and a discussion of future
work in Section 6.

2. RELATED WORKS
The problem of identifying tasks from query logs has attracted

a great deal of attention in the web search community. Existing
methods fall into two categories: time-based and content-based ap-
proaches. In time-based approaches, two consecutive queries are
considered to be of two different tasks if the timespan between
them exceeds the pre-defined timeout threshold, thus constitute a
task boundary. Catledge and Pitkow [5] claimed in 1995 that a
25.5-minute timeout exists between consecutive tasks, and many
works [13, 4, 16, 18] use a 30-minute time window to bound tasks.
There are also works that use varying thresholds to detect tasks.
For example, He and GÃűker [9] used timeouts ranging from 1 to
50 minutes to detect task boundaries from Excite query logs. Jones
and Klinkner [11] formulated the task identification problem as a
supervised classification problem, and tried four different timeouts
(i.e., 5, 30, 60 and 120 minutes) in their experiments. Lucchese
et. al. [14] also used different timeouts, i.e., 5, 15 and 26 minutes,
to detect tasks from the 2006 AOL query logs. The experimen-
tal results of these works show that the choice of different timeout
thresholds does not have a huge influence on the accuracy of the
detected tasks, and that these time-based features alone do not per-
form well for task identification. In other words, other information
such as content-based features, is needed for task identification.
Furthermore, as the timeout features only make sense between con-
secutive queries, these approaches cannot detect interleaved tasks,
which are prevalent in real life query logs. In content-based ap-
proaches, queries are clustered to the same task if they are similar
in content. However, current approaches [2, 6, 11] consider lexical
similarity only. In other words, they treat queries, titles and snip-
pets of clicked URLs as a bag-of-words, and use some string sim-
ilarity metrics (e.g. Levenstein edit distance, n-gram jaccard, etc.)
to measure the similarity between two queries. The assumption is
that users often change the words just slightly when reformulating
queries. For example, if a user wants to find the lyric of Justin
Bieber’s song “As Long As You Love Me,” she may issue the fol-
lowing three queries in a sequence: “justin bieber”, “justin bieber
as long as you love me”, and “justin bieber as long as you love me
lyric”. Given this assumption, the content-based approaches using
lexical features have long been the state-of-the-art approaches for
task identification.

However, a recent study by Huang and Efthimiadis [10] pointed
out that many query reformulations cannot be characterized by lex-
ical features. In their work, they manually created a taxonomy of
query reformulations (e.g. substring/superstring, word substitution,
word reordering, stemming, spelling correction, etc.) and built an
automatic classifier to detect each type of reformulation. Their ex-
perimental results showed that 962 out of 9091 query refinements
were missed by their classifiers. This phenomenon is usually re-
ferred to as the vocabulary-mismatch problem, that is, queries of
the same task are dissimilar in their surface form. The misclas-
sified queries are related at the topic level. For example, a user
interested in cars may enter the following queries to express her
information need: “honda”, “nissan”, and “ford”. To capture this
topical relatedness and thus improve the accuracy of task identifi-
cation, Lucchese et. al. [14] exploit Wikitionary and Wikipedia to
estimate the conceptual affinity of queries whose lexical similari-
ties are low. However, it still lacks the power of fully quantify-
ing semantic similarity and semantic relatedness: First, it is still a
bag-of-words based approach; And second, it limits the power of
disambiguating concepts by simply combining the Wikipedia arti-
cles. In our work, we build a conceptualization mechanism based
on Probase – a large and general-purpose knowledgebase automati-
cally acquired from the web corpus. Probase has more concepts for

94

better describing short text, and our conceptualization mechanism
finds meaningful conceptual features for queries, which makes the
similarity calculation more accurate.

3. PROBASE
As we know, semantic knowledge can help fill the gap between

the bag-of-words representation and the human understanding of
queries. In this section, we briefly introduce Probase, including
what knowledge is contained in Probase, and where and how we
acquire these knowledge.

3.1 Knowledge Representation
Probase can be regarded as a huge semantic network [17]. The

nodes are divided into three categories, i.e., entities (e.g., “Barack
Obama”), concepts (e.g., “President of America”) and attributes
(e.g., “age”, “color”), and the edges represent the relationships be-
tween nodes. Probase now mainly focuses on two relationships
that can be used for conceptualization, namely the isA relationship
and the isAttributeOf (also called isPropertyOf) relationship. The
isA relationship exists between entities and concepts (e.g., “Barack
Obama” isA “President of America”), while the isAttributeOf rela-
tionship exists between attributes and concepts (e.g., “population”
isAttributeOf “country”). Note that a term can be categorized as
an attribute or an entity at the same time. For example, “popula-
tion” can be regarded as an attribute of “country”, but it can also
be an entity of “demographic datum”. The edges in Probase are
weighted with probabilistic information. For example, the proba-
bility P(instance|concept) tells us how typical or popular the in-
stance is in the given concept. Intuitively, knowing that both “poo-
dle” and “pug” are dogs is sometimes not enough. We may also
need to know that “poodle” is a much more popular dog than “pug”,
that is, when people talk about dogs, it is more likely that they
are talking about “poodle” rather than “pug”. Such information
is essential for understanding the intent behind a query. Besides
P(instance|concept), we also obtain many other probabilistic in-
formation such as P(concept|instance), P(concept|attribute) and
P(attribute|concept).

3.2 Knowledge Acquisition
In order for a knowledgebase to be useful for conceptualiza-

tion, it should be large enough, i.e., it should have a broad cov-
erage of the concept space. Existing knowledgebases[8, 12, 3, 7,
1] are usually manually built and only contain a limited number
of concepts, which severely limits their power to discover the hid-
den meaning of a natural language. The knowledge contained in
Probase is extracted from a web corpus that contains billions of
web pages, from which we achieve millions of concepts, attributes,
and entities. These obviously lay the foundation for conceptualiza-
tion. Specifically, Probase obtains its knowledge through an itera-
tive information extraction process. That is, to obtain the isA rela-
tionships, we use Hearst patterns (e.g., such as patterns) and other
syntactic patterns. For instance, from a sentence “. . . Dogs such
as Labradoodles and Goldendoodles . . . ”, we obtain “Labradoo-
dle” isA “Dog” and “Goldendoodle” isA “Dog”. To obtain the isAt-
tributeOf relationships, we consider sentences such as “What is the
population of China?”, from which we can infer that “population”
isAttributeOf “China” and that “population” isAttributeOf “coun-
try”. The probabilistic information related with each relationship is
calculated during this information extraction process, for example:

P(instance|concept) =
n(instance, concept)

n(concept)
(1)

where n(instance, concept) denotes the number of times instance

and concept appear in the same sentence, and n(concept) is the fre-
quency of concept. Finally, we perform a series of sophisticated in-
ferencing to clean and enrich the knowledge acquired from the syn-
tactic patterns. For details of how Probase is constructed and how
the probabilistic information are calculated, please refer to [17].

4. METHODOLOGY
The problem of task identification boils down to two questions:

First, how to quantify the similarity or relatedness of two queries
(Section 4.1); Second, how to efficiently cluster similar queries in
a query session (Section 4.2). Before we present our answers to the
two questions, we first formally define task. A task is a sequence
of queries ordered by their timestamps, and each pair of queries in
the same task has a similarity larger than a threshold. Formally, if
we donate a session as {q1, q2, q3 . . .}, then a task in that session is:

taskk = {(qk1 , qk2 , qk3 . . .)|∀i, j, t(qki) < t(qki+1) ∧ sim(qki , qk j) > θ}.

Here, t(qki) is the timestamp of query qki , sim(qki , qk j) is the similar-
ity of queries qki and qk j , and θ is the similarity threshold. k1, k2 . . .
might not be consecutive.

4.1 Similarity Calculation
We employ four types of features to estimate query similarity,

i.e., conceptual features, lexical features, template features, and
temporal features. In order to combine all these features to calcu-
late an overall similarity, we consider a supervised machine learn-
ing process. In the following sections, we present the details of how
these features are calculated, with an emphasis on the conceptual
features.

4.1.1 Conceptual Features
In this part, we describe the techniques of inferring the concep-

tual meaning behind any short text, and how to use the conceptu-
alization results to calculate the similarity between queries in the
concept space. In our work, we merge together both the words
contained in the original query and those contained in the titles of
the clicked urls when conducting conceptualization. But we still
use query to refer to the merged string, in order to simplify the de-
scription. We formulate the process of calculating the conceptual
similarities between queries into three steps detailed below.

Step 1: Parsing
Given a query, we split it into a set of terms, and then use longest
cover to map each term to an instance/attribute contained in Probase.
If two instances/attributes are of the same length, we choose the
one connected to more concepts. For example, for query “truck
driving school pay after training”, we obtain “truck driving”, “driv-
ing school”, “pay” and “training”, which are the longest instances
in Probase that appear in the query. Note that, “driving” is also
an instance in Probase, but we won’t use it as there are longer in-
stances that match the example query. Similarly, for query “tiger
woods”, we obtain one instance "tiger woods", instead of two in-
stances “tiger” and “woods”. In this way, we can better interpret
queries, compared with the bag-of-words splitting method used in
[14].

Step 2: Conceptualization
After parsing, a query is mapped to a collection of instances/ at-
tributes. We denote it as T = (t1, t2, . . . , tL). We want to infer
the best concepts to describe those instances/attributes. To do this,
we first identify the candidate concepts for each instance/attribute
ranked by P(instance|concept) and P(attribute|concept), which is

95

then represented as a concept vector c = (c1, c2, . . . , cM) ∈ RM ,
where M is the total number of concepts in Probase. As we only
retrieve the top K concepts for each instance/attribute, c is usu-
ally a sparse vector. Then in order to detect multiple topics con-
tained in a query, we group the instances/attributes into clusters
with each cluster representing one topic. For example, from a
query “alabama home insurance” we can obtain two clusters, one
is “alabama” which relates to the concept “state”, and the other
is “home insurance” which relates to the concepts “insurance” and
“benefits”. We use a clustering procedure to group topically related
instances/attributes together, as shown in Algorithm 1. We build a

Algorithm 1 Conceptualization by Clustering.
Input: A set of instances/attributes T = (t1, t2, . . . , tL). The weight
threshold θ.
Conceptualization: Conceptualize each ti to obtain a concept vector ci.
Build Graph: Build a graph GT = (VT , ET). Compute weight wi j be-
tween ti and t j using Eq. (2). Remove an edge between ti and t j if
wi j < θ.
Retrieve Clusters: Merge all instances/attributes that are connected in
GT into a cluster.

weighted graph GT = (VT , ET) from T , where VT is the set of nodes
equal to T and ET is the set of edges connecting each pair of nodes.
Each edge is weighted by a cosine similarity between concept vec-
tors of the corresponding nodes. More specifically, we define the
weight wi j of edge ei j = (ti, t j) as:

wi j = cosine(ci, c j) =
cicT

j

||ci|| · ||c j||
. (2)

We then examine each edge in the graph and remove it when its
weight is smaller than a pre-defined threshold. This results in a
set of connected sub-graphs whose nodes will be grouped together
to form an instance/attribute cluster. We denote cluster r as T r =

(tr
1, t

r
2, . . . , t

r
Lr), where Lr is the number of instances/attributes con-

tained in cluster r.
Next, we conceptualize the instances/attributes contained in each

cluster r as a concept vector cr. Here, we solve the query ambigu-
ity problem mentioned in Section 1. Instead of summing up the
concept vectors of all the instances/attributes contained in cluster r,
which is the approach used in [14], we calculate their intersection
by a Naive Bayes function, as depicted in Eq. (3).

P(ck |T r) ∝ P(ck)
Lr∏
l=1

P(tr
l |ck) ∝

∏Lr

l=1 P(ck |tr
l)

P(ck)Lr−1 (3)

where P(ck |tr
l) is the k-th value in the concept vector for instance/

attribute tr
l calculated using the method in [15], and P(ck) is the pop-

ularity of concept ck in Probase which can be derived directly from
the probabilistic information stored in Probase. In this equation,
we assume that the instances/attributes are independent of each
other. In this way, the common concepts of the instances/attributes
in cluster r will be ranked higher than the individual ones. For
example, given a cluster (microso f t, apple), we obtain concepts
related to “company”, as shown in Figure 1 (a); while given a clus-
ter (pear, apple), all the retrieved concepts are related to “fruit”, as
shown in Figure 1 (b). We can see that ambiguity has been elimi-
nated in this case.

After we obtain the disambiguated concept vector for each clus-
ter, the conceptualization result of the whole query q can be ex-
pressed as:

cq =

∑
Lr · cr

q

L
(4)

where L is the total number of instances/attributes extracted from
query q, and Lr is the number of instances/attributes contained in
cluster r of query q. From Eq. (4) we can see that the final concep-
tualization results of query q is a weighted combination of multiple
topics, with each topic represented by a set of related concepts.
For example, given the query “microsoft windows 7”, our algo-
rithm first detects that there are two instances, namely “microsoft”
and “windows 7”. It then groups all the instances together into
one cluster, so the conceptualization result contains only one topic,
i.e., concepts related to “operating system”; on the contrary, given
the query “alabama home insurance”, our algorithm automatically
identifies two topics after clustering. As a result, we then obtain
two sets of concepts, one including “state” related concepts derived
from the instance “alabama”, and the other including “insurance”
and “benefits” related concepts derived from the instance “home
insurance”.

Step 3: Calculating conceptual similarity
Now we have obtained the conceptualization result of each query
expressed as a concept vector cq = (cq1 , cq2 , . . . , cqM) ∈ RM . We
can use the concept vectors to calculate the conceptual similarities
between queries simply by a cosine function:

simc(qi, q j) = cosine(cqi , cq j) =
cqi cT

q j

||cqi || · ||cq j ||
. (5)

where cqi and cq j are the concept vectors of queries qi and q j re-
spectively, and cT

qi
and cT

q j
are the transposes of concept vectors cqi

and cq j respectively.

4.1.2 Lexical Features
We use two types of lexical features to formulate the bag-of-

words similarities between queries: N-word Jaccard and N-char
Jaccard.

For N-word Jaccard, we use three steps to calculate the similarity
between two queries. We first divide the bag-of-words representa-
tion of a query into a collection of N-words. For example, from the
query “the car james bond drive”, we get a set of 2-words as {“the
car”, “car james”, “james bond”, “bond drive”}. We then calcu-
late the N-word similarity between two queries using a modified
jaccard metric on the two corresponding N-word collections with
term frequencies:

simNw j(qi, q j) = J̃(vi, v j) =

∑
(viki
+ v jk j

)∑m
k=1 vik +

∑n
k=1 v jk

(6)

where vi is the N-word set of query qi, vik is the term-frequency
of the kth N-word in set vi, m and n are the sizes of set vi and v j

respectively. For each common N-word in query qi and q j, ki and
k j are the indexes of that N-word in set vi and v j respectively, and
viki

and v jk j
are the term frequencies of that common N-word in set

vi and v j respectively. We range the value of N from 1 to 5, and get
five N-word Jaccard similarities for each pair of queries: sim1w j,
sim2w j, . . . , sim5w j.

Analogously, for N-char Jaccard, we first divide the bag-of-words
representation of a query into a collection of N-chars. For exam-
ple, from the query “mlb trades”, we get a collection of 3-chars as
{“mlb”, “lb ”, “b t”, “ tr”, “tra”, “rad”, “ade”, “des”}. We then cal-
culate the N-char similarity between two queries using a modified
jaccard metric on the two corresponding N-char collections similar
to Eq. (6). Here, vi is the N-char set of query qi, and vik is the
term-frequency of the kth N-char in set vi. We range the value of N
from 1 to 9, and get nine N-char Jaccard similarities for each pair
of queries: sim1c j, sim2c j, . . . , sim9c j.

96

(a) Conceptualization of cluster (microsoft, apple). (b) Conceptualization of cluster (pear, apple).

Figure 1: Examples of conceptualization and disambiguation.

4.1.3 Template Features
Huang et al. show that some query refinement strategies are very

prevalent in the query logs [10], including substring/superstring,
add/ remove words, stemming, spelling correction, acronym and
abbreviation, etc. We formulate these templates of query refine-
ments as a similarity function based on Levenshtein edit distance:

simed(qi, q j) = 1 −
ed(qi, q j) − abs(len(qi) − len(q j))

max(len(qi), len(q j))
(7)

Where ed(qi, q j) is the Levenshtein edit distance between query qi

and q j, and len(qi) is the length of query qi, namely the number of
characters in query qi. We can see from Eq. (7) that when query qi

and q j satisfy one of the refinement strategies mentioned above, the
result of ed(qi, q j) − abs(len(qi) − len(q j)) will be close to 0, then
simed(qi, q j) will be close to 1.

4.1.4 Temporal Features
The temporal features are only calculated between consecutive

queries. We find that the time intervals between consecutive queries
in the same task are usually shorter than those that cross a task
boundary. Thus the more temporally close two consecutive queries
are, the larger the probability of them belonging to the same task
(Or the smaller the probability of them constituting a task bound-
ary). So we define a temporal feature to capture the characteristics
of time intervals between consecutive queries:

simt(qi, qi+1) =
t(qi+1) − t(qi) − d(qi)

maxi(t(qi+1) − t(qi) − d(qi))
(8)

where t(qi) is the time query qi is issued, and d(qi) is the dwelltime
of query qi, i.e., the sum of dwelltimes of clicks after query qi.

4.2 Task Identification
Now that we have obtained the overall similarity of each query

pair using a supervised machine learning process, the next thing
we need to do is to merge queries with significant similarities into
one task. Most previous works assume that tasks are never inter-
leaved with each other, so they simply try to detect task boundaries
between consecutive queries. More specifically, they model each
session as a query chain G1 = (V, E1), in which V = {qi} is the
set of queries, and E1 = {edge(qi, qi+1)} is the set of undirected
edges between consecutive queries. They then examine each edge
in the query chain and remove it when the similarity between the
two consecutive queries connected by that edge is smaller than the
similarity threshold θ. As shown in Figure 2 (a), edge edge(q3, q4)
is removed from the query chain, or in other words, a task boundary
between queries q3 and q4 is detected after edge examination. Fi-
nally, for each pair of consecutive queries, if they are still connected

in the query chain after edge examination, they will be clustered to-
gether into one task. We denote this process of task identification
as Sequential Cut (SC).

However, we can see from the example in Table 1 that tasks can
be interleaved (e.g., task 1 and task 2 are interleaved in this exam-
ple). Actually, we find in our evaluation dataset that 42.67% out of
600 randomly sampled sessions contain interleaved tasks. To detect
these interleaved tasks, Jones and Klinkner [11] employ a Graph
Cut (GC) algorithm. Particularly, they model each session as a
query graph G2 = (V, E2), in which V = {qi} is the set of queries,
and E2 = {edge(qi, q j)|i , j} is the set of undirected edges between
each pair of queries. They then examine each edge in the query
graph and remove it when the similarity between the two queries
connected by that edge is insignificant. As shown in Figure 2 (b),
edges edge(q1, q2), edge(q1, q4), edge(q2, q3) and edge(q3, q4) are
removed from the query graph after edge examination. Finally, the
queries contained in a connected sub-graph will be clustered into
one task. This approach is obviously more accurate, compared with
SC.

Nevertheless, as we discussed in Section 1, GC is usually time-
consuming, and sometimes may even lead to over-merging. In or-
der to detect interleaved tasks more quickly and avoid over-merging
at the same time, we propose a new algorithm for task identifica-
tion, which we call Sequential Cut and Merge (SCM). As de-
picted in Algorithm 2, SCM can be considered as a combination of
SC and GC. Or more specifically, we first apply SC on the tar-
get session and refer to the tasks derived from SC as subtasks.
We merge together the bag-of-words interpretations of queries con-
tained in a subtask to form a new query, which is used to represent
that subtask. We then apply GC to the set of subtasks. In other
words, we build a subtask graph G3 = (V ′, E3) on the derived sub-
tasks similar to the query graph. Here, V ′ = {Q1,Q2, . . . ,Qm} is the
set of subtasks, and E3 is the set of edges connecting each pair of
subtasks. We then examine each edge in the subtask graph and re-
move it when the similarity between the two subtasks (represented
by the new queries) connected by that edge is smaller than the sim-
ilarity threshold θ. Finally, we merge together queries contained in
subtasks that are still connected in the subtask graph after edge ex-
amination. Consider the example illustrated in Figure 2 (c). In the
SC process, edges edge(q1, q2), edge(q2, q3) and edge(q3, q4) are
removed from the query chain after edge examination, resulting in
four subtasks with each subtask consisting of a single query. Then
in the GC process, subtasks q1 and q3, q2 and q4 are merged to-
gether respectively, to form two tasks: task1 = (q1, q3) and task2 =

(q2, q4).
Compared with GC, SCM can reduce the computational time

97

Algorithm 2 Sequential Cut and Merge (SCM)
Input: A session represented as a sequence of queries S =
(q1, q2, . . . , qn). A similarity threshold θ.
Build Query Chain: Build a query chain G1 = (V, E1) on S .
Edge Examination: Calculate the similarity of consecutive queries qi
and qi+1 connected by an edge edge(qi, qi+1). Remove this edge if
sim(qi, qi+1) < θ. This results in a new query chain G′1 = (V, E′1).
Retrieve Subtask: Merge queries that are still connected in G′1 into a
subtask. Each subtask is represented by a query Qi, which is a union
of the bag-of-words interpretations of queries contained in that subtask.
This result in S = (Q1,Q2, . . . ,Qm).
Build Subtask Graph: Build a subtask graph G3 = (V′, E3) on S .
Edge Examination: Calculate the similarity between subtasks Qi and Q j
connected by an edge edge(Qi,Q j). Remove this edge if sim(Qi,Q j) < θ.
This results in a new subtask graph G′3 = (V′, E′3).
Retrieve Task: Merge queries contained in subtasks that are still con-
nected in G′3 into a task.

q1 q2 q3 q4 q5 q1 q2 q3 q4 q5

(a) Illustration of Sequential Cut in query chain.

q1 q2

q3 q4

q1 q2

q3 q4

(b) Illustration of Graph Cut in query graph.

q1 q2 q3 q4 q1 q2 q3 q4 q1 q2 q3 q4

(c) Illustration of Sequential Cut and Merge.

Figure 2: Illustration of SC (a), GC (b) and SCM (c).

required. This is obvious, because GC calculates the similarities
of all pairs of queries in one session. Then given the number of
queries n in a specific session, the number of calculations in GC
will be n·(n−1)

2 , or O(n2). Whereas, SC only calculates the similar-
ity of each consecutive query pair, then the number of calculations
in SC will be n − 1, or O(n). Additionally, the merging process in
SCM calculates the similarity of each subtask pair, so it will require
m·(m−1)

2 calculations where m is the average number of subtasks in a
specific session. Then the total number of calculations needed for
SCM will be (n − 1) + m·(m−1)

2 , and thus O(n + m2). Though the or-
der of magnitude of the computational complexity hasn’t changed,
SCM can still tremendously reduce the computational time as long
as n (namely, the number of queries in one session) is large enough,
and at the same time, m ≪ n. We will prove this analysis in our
experiments. Additionally, we will also show that SCM can some-
times produce more accurate tasks than GC.

5. EXPERIMENTS
In this section, we present the experiments to demonstrate that

(1) Probase can help inferring the topical meaning behind each
query and reduce query ambiguity at the same time, and thus can be
utilized to automatically detect topical query refinements, which in
turn improves the performance of task identification; (2) SCM al-
gorithm can significantly reduce the computational cost while pre-
serving the task identification accuracy, compared with GC algo-
rithm. We first present the evaluation dataset used in our experi-

ments. Then we introduce the evaluation metrics used to measure
the effectiveness of various features and algorithms. Finally we
present the results and discussions.

5.1 Benchmark
We extract all the sessions one day in May, 2012 from a commer-

cial internet browser. By session, we mean a sequence of queries
issued in the browser without the use closing it. For simplicity
and accuracy, we introduce three constraints on the dataset: (1)
queries should have been entered to the “web“ browser by users in
the “United States”; (2) queries should have been written in “En-
glish”; (3) each session should have contained at least 10 queries.
After filtering with these constraints, we obtain 45,813 sessions,
from which we randomly sample 600 sessions and manually label
them as our evaluation dataset.

task-unrelated statistics
queries 9144
sessions 600

queries per session 15.24
clicks per query 0.65

dwelltime per click (seconds) 131.7
task-related statistics

subtasks per session 4.43
tasks per session 3.435
queries per task 4.437

sessions containing interleaved tasks 256

Table 2: Statistics of evaluation dataset.

Table 2 lists some statistics of the dataset. We can see that there
are an average if 3.4 tasks in each session, with each task containing
4.4 queries, which means that a typical information need can be
satisfied within 4 or 5 queries. Note that, 256 out of 600 sessions
(i.e., 42.67% sessions) in our evaluation dataset contain interleaved
tasks.

5.2 Evaluation Metrics
In order to measure and compare the effectiveness of all the fea-

tures and task identification algorithms we mentioned in Section
4, we introduce three evaluation metrics: error rate, f-measure,
and jaccard index. Error rate is used to evaluate features, while
f-measure and jaccard index are used to evaluate various task iden-
tification algorithms.

5.2.1 Error Rate
We formulate the process of edge examination described in Sec-

tion 4 as an edge classification problem:

{edge(qi, q j)|i , j} → {0, 1}.
Here, edge(qi, q j) will be removed from the query chain/query graph
/subtask graph, if it is mapped to 0. Then, the error rate can be de-
fined as the misclassification rate in edge classification. Or more
formally, the error rate of a classifier is defined as

error =
|ErrorEdge|
|TotalEdge| (9)

where |ErrorEdge| is the number of misclassified edges in the query
chain/query graph/subtask graph, and |TotalEdge| is the number of
edges before classification that connect each pair of (consecutive)
queries/subtasks. For query chain of session S = (q1, q2, . . . , qn),
|TotalEdge| = n − 1; for query graph of session S , |TotalEdge| =
n(n−1)

2 ; and for subtask graph of session S , |TotalEdge| = m(m−1)
2 .

Here m and n are the number of subtasks and queries respectively
in session S .

98

5.2.2 F-measure
In this part, we denote labeled tasks as human annotated tasks,

and result tasks as tasks identified by our algorithms. We use a
three-step procedure to calculate the f-measure of a particular ses-
sion S .

Step 1: For a result task resulti and a labeled task labeled j, we
compute precision pi j =

|resulti∩labeled j |
|resulti | and recall ri j =

|resulti∩labeled j |
|labeled j | ,

where resulti ∩ labeled j denotes the set of queries that belong to
both resulti and labeled j. Then the f-measure of result task resulti

with respect to labeled task labeled j is defined as:

f measurei j =
2 · pi j · ri j

pi j + ri j

Step 2: We consider the problem of measuring the degree of
correspondence of a result task resulti and the labeled tasks as
the problem of finding the best corresponding labeled task given
resulti. To this point, the f-measure of the result task resulti is de-
fined as the largest f-measure of resulti with respect to any labeled
task labeled j, i.e.,

f measurei =
J

max
j=1

f measurei j

where J is the number of labeled tasks in session S .
Step 3: Finally, the f-measure of session S can be calculated as a

weighted sum of all the f-measures of the result tasks contained in
S

f measure =
I∑

i=1

|resulti|
|S | · f measurei (10)

where |resulti| and |S | are the number of queries in resulti and ses-
sion S respectively, and I is the number of result tasks in session
S .

5.2.3 Jaccard Index
In contrast to f-measure, which considers the task id of each

single query, jaccard index considers the task ids of each pair of
queries. We can calculate the jaccard index as follows:

Jaccard =
n11

n01 + n10 + n11
(11)

where n01 = the number of query pairs that belong to different result
tasks while belonging to the same labeled task; n10 = the number
of query pairs that belong to the same result task while belonging
to different labeled tasks; and n11 = the number of query pairs that
belong to the same result task and also the same labeled task.

The above three scores are calculated for each session. In order
to obtain the overall measure for the evaluation dataset, we sim-
ply use an average function over all the sessions in our evaluation
dataset.

5.3 Results
We conduct two experiments to evaluate: (1) the effectiveness

of different classifiers and features using error rate; (2) the accu-
racy of identified tasks by GC, SC and SCM using f-measure and
jaccard index.

5.3.1 Effectiveness of Classifiers and Features
We experiment with three typical classification methods (i.e.,

Logistic Regression, Naive Bayes and Linear SVM (Support Vec-
tor Machine)), as well as three optimization methods (i.e., Stochas-
tic Gradient Descent, L_BFGS (Limited-memory Broyden Fletcher

Goldfarb Shanno) and SMO (Sequential Minimal Optimization)).2

This leads to the following five classifiers:

• C1: Logistic Regression + Stochastic Gradient Descent

• C2: Logistic Regression + L_BFGS

• C3: Naive Bayes + Stochastic Gradient Descent

• C4: Linear SVM + SMO

• C5: Linear SVM + L_BFGS

For the problem of edge classification in the query chain, we
consider six different combinations of the features we mentioned
in Section 4 to evaluate the influence of each feature on the perfor-
mance of the classifiers. The six feature sets (FSs) are as follows:

• FS1: temporal feature

• FS2: template feature

• FS3: lexical features

• FS4: conceptual feature

• FS5: template + lexical features

• FS6: template + lexical + conceptual features

We conduct a 5-fold cross validation on the 600 labeled sessions.
The mean (Avg) and standard deviation (Std) of error rates for edge
classification are shown in Table 3.

FS1 FS2 FS3 FS4 FS5 FS6

C1 Avg 24.0% 22.7% 17.3% 21.5% 17.3% 15.2%
Std 1.4% 1.5% 1.9% 1.3% 1.8% 1.0%

C2 Avg 24.2% 22.7% 17.3% 21.8% 17.3% 14.9%
Std 1.4% 1.4% 2.0% 1.1% 2.0% 1.1%

C3 Avg 24.1% 23.4% 24.3% 25.1% 24.1% 20.6%
Std 1.3% 1.3% 1.4% 1.7% 1.4% 1.8%

C4 Avg 24.0% 24.1% 17.4% 22.5% 17.4% 14.9%
Std 1.4% 1.4% 1.8% 1.0% 1.8% 0.7%

C5 Avg 24.0% 24.1% 17.1% 23.0% 17.1% 15.5%
Std 1.4% 1.4% 1.8% 1.8% 1.8% 0.8%

Table 3: Error rate of edge classification in query chain.

From Table 3, we can make the following conclusions:
First, when comparing the error rates of FS1, FS2, FS3 and FS4,

we find that the lexical features (FS3) perform the best in all the
classifiers except C3, in which template features are the best. This
to some extent verifies the assumption exploited in the traditional
content-based approaches ([2], [6] and [11]) that most users only
make a small change of words when refining queries. Particularly,
time-based features (FS1) are not comparable with content-based
features (FS2 and FS3) in task identification. This result is also
consistent with those found in [2], [6] and [11].

Second, the results using only conceptual features (F4) are usu-
ally better than time-based features (F1) and template features (F2),
but not as good as lexical features (F3). However, when comparing
the error rates of FS5 and FS6, we find an obvious improvement
in all the five classifiers (12.14% improvement for C1, 13.87% for
C2, 14.52% for C3, 14.37% for C4, and 9.36% for C5). It seems
that topical query refinements are not only dominant patterns in
tasks but also very prevalent in real query logs, and thus concep-
tual features are very significant complementary features to lexical
2From the internal use of Sho.NET, http://research.
microsoft.com/en-us/projects/sho/.

99

ones. To further confirm the importance of conceptual features,
we randomly select a real session in which the classifier using FS6
performs better than that using FS5. We list the tasks identified by
Sequential Cut after edge classification using FS5 and FS6 in Table
4. The last three columns are task ids of the labeled tasks and result
tasks using FS5 and FS6 respectively. We find that FS6 clusters all
the queries together into one task because Probase can successfully
detect that “honda”, “suzuki”, “mitsubishi” and “nissan” are brands
of cars, which cannot be recognized by FS5.

QUERYID QUERY LABELED FS5 FS6
0 honda civic 0 0 0
1 honda civic 1999 0 0 0
2 1994 suzuki katana 600 0 1 0
3 1997 mitsubishi diamante 0 2 0
4 1994 nissan sentra 0 3 0
5 1994 nissan sentra for sale 0 3 0

Table 4: Importance of conceptual features.

As for the edge classification in the query graph and subtask
graph, sequentiality has been lost in these graph structures, because
the edges are added between each pair of queries/subtasks that are
not necessarily consecutive. This makes temporal feature mean-
ingless. So we only consider five combinations of features (i.e.,
FS2, FS3, . . . , FS6) for each classifier. Tables 5 and 6 list the mean
(Avg) and standard deviation (Std) of error rates for edge classifi-
cations in the query graph and subtask graph respectively, using all
the five feature combinations. From these two tables we also find
that, when combining both content-based and conceptual features
(i.e., FS6), the classification accuracy can be improved, compared
with only using content-based features (i.e., FS5).

FS2 FS3 FS4 FS5 FS6

C1 Avg 35.20% 27.71% 35.15% 27.91% 25.49%
Std 4.02% 6.08% 5.47% 5.39% 5.08%

C2 Avg 35.54% 27.56% 35.70% 28.47% 25.50%
Std 4.14% 5.97% 4.72% 5.25% 5.12%

C3 Avg 36.41% 35.25% 35.76% 35.20% 31.81%
Std 4.48% 8.30% 6.03% 8.32% 6.51%

C4 Avg 35.38% 27.48% 39.07% 28.31% 24.97%
Std 5.17% 5.80% 3.15% 5.07% 4.72%

C5 Avg 36.17% 27.97% 39.31% 28.03% 25.47%
Std 5.44% 6.32% 2.51% 6.54% 6.59%

Table 5: Error rate of edge classification in query graph.

FS2 FS3 FS4 FS5 FS6

C1 Avg 10.46% 5.52% 7.47% 5.36% 5.34%
Std 3.25% 1.33% 2.75% 1.81% 1.33%

C2 Avg 10.14% 5.36% 7.14% 5.33% 5.16%
Std 3.54% 1.30% 2.26% 1.75% 1.15%

C3 Avg 8.68% 6.00% 9.55% 7.66% 6.01%
Std 3.84% 1.80% 3.05% 3.39% 1.77%

C4 Avg 10.46% 5.65% 6.84% 5.63% 5.44%
Std 3.25% 1.08% 1.86% 1.35% 1.15%

C5 Avg 10.46% 5.52% 7.22% 5.52% 5.38%
Std 3.25% 1.18% 2.32% 1.55% 1.13%

Table 6: Error rate of edge classification in subtask graph.

Furthermore, in order to verify that our approach to conceptu-
alization using Probase can indeed reduce ambiguity, we manu-
ally pick out three queries, namely “tiger woods”, “the cutest cat”
and “python vs. java”, and illustrate the Graph Cut results using

Wikipedia ([14]) and Probase respectively in Table 7. As men-
tioned in Section 1, Lucchese et. al. [14] infer the conceptual
meaning behind each query by combining the concept vectors (rep-
resented by TF-IDF vectors of Wikipedia articles) of all words con-
tained in that query. Therefore, for the query “tiger woods”, they
will first divide it into two words, namely “tiger” and “woods”,
and then map the word “tiger” to a set of Wikipedia articles related
to “tiger” or “animal”, and the word “woods” to articles related
to “material” or “plant”. Finally, they add up all these articles,
weighted by TF-IDF values. Similarly, the query “the cutest cat” is
mapped to articles about “cat” or “animal”, and the query “python
vs. java” is mapped to articles about “snake” or “animal”, as well
as articles about “programming language”. Consequently, all these
three queries will be merged into one task because they all contain
many concepts related to “animal”. On the contrary, Probase maps
the query “tiger woods” to “athlete” related concepts only, because
“tiger woods”, rather than “tiger” or “woods”, is the longest cover
found in the Parsing process of our approach, which will then be
used to obtain the concepts about “golfer” or “athlete”. Besides, we
use an intersection function to emphasize common concepts of all
the instances/attributes. Then “programming language”, which is
the common topic of “python” and “java”, will be ranked higher in
the conceptualization results, while “snake”, which is only derived
from “python”, will be ranked extremely low or even disappear
from the top K concepts. Consequently, all these three queries will
be divided into different tasks. This indicates that our conceptual-
ization approach using Probase can indeed reduce query ambiguity
to some extent.

QUERY Wikipedia Probase
tiger woods 0 0

the cutest cat 0 1
python vs. java 0 2

Table 7: Disambiguation using Probase.

5.3.2 Accuracy of Algorithms
In this section, we evaluate the accuracy of tasks identified by

GC, SC and SCM using f-measure and jaccard index. For GC and
SC, we first pick out the best classifier built for edge classification
in query graph and query chain respectively. Here by best clas-
sifier, we mean the classifier with the lowest error rate. We then
group the queries that are still connected in the query graph/query
chain after classification into one task. For SCM, we first pick out
the best results from SC and define the retrieved tasks as subtasks.
We then apply the “Merging” process of SCM on the resulting sub-
tasks, to group together queries contained in similar subtasks. Ta-
ble 8 shows the best f-measure and jaccard index of each algorithm.
For the sake of comparison and analysis, we also build two base-
line approaches: NotMerge and MergeAll. In NotMerge, all the
queries in one session are classified into distinctive tasks. And in
MergeAll, all the queries in one session are merged into the same
task. The f-measure and jaccard index of NotMerge and MergeAll
are also listed in Table 8.

NotMerge MergeAll GC SC SCM

fmeasure Avg 0.333 0.796 0.848 0.758 0.861
Std 0.000 0.000 0.010 0.012 0.012

jaccard Avg 0.053 0.345 0.393 0.267 0.443
Std 0.000 0.000 0.024 0.073 0.027

Table 8: F-measure and jaccard index of identified tasks.

From Table 8 we can note that, SC is always worse than GC in

100

terms of task identification (GC has a 12.03% improvement on f-
measure and a 46.21% improvement on jaccard index, compared
with SC). Note that, the f-measure and jaccard index of SC (0.758
and 0.267 respectively) are even worse than those of MergeAll
(0.796 and 0.345 respectively), the baseline approach. This suc-
cessfully verifies the prevalence of interleaved tasks in real ses-
sions. So when we further merge together similar subtasks derived
from SC, which is the procedure used in SCM, the results should
be comparable with those obtained using GC. The data depicted
in Table 8 is consistent with our expectation, with SCM increasing
the f-measure and jaccard index by 1.49% and 12.61% respectively,
over GC.

QID QUERY TID GC SC SCM
0 the rain song youtube 0 0 0 0
1 cool math 1 1 1 1
2 the ugliest cat in the world 2 0 2 2
3 the cutest cat in the world 2 0 2 2
4 the tiniest cat in the world 2 0 2 2
5 the largest dog youtube 2 0 2 2
6 the largest snake on the earth 2 0 2 2
7 python wikipedia 2 0 2 2
8 cool math for kids 1 1 3 1

Table 9: An example of task identification results using GC (4th
column), SC (5th column), and SCM (6th column) respectively.

Table 9 shows the task identification results of the session de-
picted in Section 1. The numbers listed in the last four columns
are the task ids of all the queries with human labeling and different
algorithms. It shows that SCM can perform better than SC and GC.
We give two examples below to verify this.

First, in Table 9, SC cannot group the queries “cool math” and
“cool math for kids” together into one task, even though they are
similar from both the lexical and topical views. This is because SC
only considers the similarities between consecutive queries. Thus,
two queries (be they similar or not) will not be grouped together
as long as there is another query between them that is similar with
neither of them. However, by further applying a graph cut pro-
cess on the subtask graph derived from SC, SCM can successfully
merge together the interleaved parts of one task, thus improve its
task identification accuracy.

Second, SCM can reduce the over-merging phenomenon of GC.
This is mainly because the real user intent can be better exposed by
a subtask (i.e., a collection of queries) than by a single query. In Ta-
ble 9, when conceptualizing the query “the rain song youtube”, we
obtain two topics, i.e., “song” related concepts, as well as “video
site” related concepts derived from the word “youtube”. When con-
ceptualizing query “the largest dog youtube”, we also obtain two
topics, i.e., “animal” related concepts derived from the word “dog”
and “video site” related concepts derived from the word “youtube”.
Thus, these two queries will be grouped together into one task, as
they both contain many concepts about “video site” that rank rel-
atively high in the conceptualization results. Besides, queries 2 to
7 all refer to “animal”s, so they will be clustered together. Then,
all these seven queries will be merged into one task in the result
of GC. However, when conceptualizing queries 2 to 7 together as a
subtask, as we emphasize on common topics that appear frequently
in the query in our conceptualization procedure, the “animal” re-
lated concepts will be ranked higher in the conceptualization re-
sult, while the “video site” related concepts derived from the word
“youtube” will be ranked extremely low, or will not be found in the
top K results at all, as shown in Figure 3. This results in the better
performance of SCM than GC.

Figure 3: Conceptualization of subtask as a whole.

We mentioned in Section 4 that the computation complexity of
GC is O(n2), while the computation complexity of SCM is O(n +
m2). From the statistics of the evaluation dataset listed in Table 2
we can see that, there are on average 15.24 queries and 4.43 sub-
tasks in each session. If we assume that m = 1

3 · n or m = 1
4 · n, then

the calculations required for SCM will be O(n2

18) or O(n2

32), which
is about one-tenth of that required for GC. In order to confirm our
analysis, we derive the training time and task forming time of GC
and SCM using all the five classifiers in the above experiments. The
training time of GC is the time required to train the classifiers used
for edge classification in the query graph; the training time of SCM
is the training time of classifiers used for edge classification in the
query chain, plus the training time of classifiers used for edge clas-
sification in the subtask graph. The task forming time of GC is the
time required to merge connected queries in the query graph after
edge classification; and the task forming time of SCM is the time
required for SC to merge connected queries in the query chain, plus
the time required to merge connected subtasks in the subtask graph
after edge classification. In Figure 4, we vary the number of ses-
sions contained in the dataset from 100 to 600, differentiated using
different colors. GCi and S CMi on the x-axis represents classi f ieri

used for edge classification in GC and SCM respectively. And the
numbers on the y-axis are the time required in seconds. We apply
a logarithmic function on the training time in order to make the
histograms increase smoothly.

From Figure 4 we can reach the following conclusions: 1) The
training time and task forming time will increase with the incre-
ment of dataset size, for both GC and SCM. 2) Both the train-
ing time and task forming time required for GC are always larger
than those required for SCM. Additionally, the computation time
of GC rises faster than that of SCM. The most notable case is the
classifier4 (Linear SVM + SMO) for GC (or edge classification in
the query graph), whose training time has a tremendous increment
from 10 seconds to 3500 seconds, when the number of sessions
increases from 100 to 600.

6. CONCLUSIONS
In this paper, we attempt to improve the performance of task

identification by capturing topical query refinements, as well as de-
tecting interleaved tasks in each session. Queries may be ambigu-
ous, which makes it extremely challenging to infer the real intent
behind each query. We exploit Probase – an external knowledge-
base extracted from web collection, to reduce query ambiguity.
Previous approaches that leverage Wikitionary or Wikipedia usu-
ally map the bag-of-words expression of a query to a set of concept
vectors represented as TF-IDF vectors of Wikipedia articles, and
then sum up all the concept vectors to form the topical meaning of

101

0.1

1

10

100

1000

10000

GC1 SCM1 GC2 SCM2 GC3 SCM3 GC4 SCM4 GC5 SCM5

Training Time (Seconds)

100 200 300 400 500 600

(a) training time.

0

1

2

3

4

5

GC1 SCM1 GC2 SCM2 GC3 SCM3 GC4 SCM4 GC5 SCM5

Task Forming Time (Seconds)

100 200 300 400 500 600

(b) task forming time.

Figure 4: Training time (left) and task forming time (right) of GC and SCM using different classifiers

the original query. In this way, many unrelated concepts will be
retrieved if some words reflect multiple topics. On the contrary, we
use the longest cover method to express a query as a bag-of-terms,
with each term representing an instance/attribute. Our experiments
show that the bag-of-terms expression can reflect the queries’ top-
ical components better than the simple bag-of-words expression.
Furthermore, we use a Naive Bayes function to intersect the con-
cept vectors of all terms, and thus emphasize on common concepts.
This will to some extent reduce query ambiguity, as proved in our
experiments. Additionally, tasks are often interleaved with each
other. To address this, we build a Sequential Cut and Merge (SCM)
algorithm, which can be considered as a combination of Sequen-
tial Cut (SC) and Graph Cut (GC). We prove that SCM can detect
interleaved tasks and thus retrieve comparable or even better per-
formance, compared with GC. Moreover, SCM can significantly re-
duce the computational time required by GC, as long as the session
size (or the number of queries contained in that session) is large
enough, and there are significantly fewer subtasks than queries in
one session.

We have found that the queries contained in some tasks are re-
lated to each other, rather than similar. Take for example, queries
“celtics members” and “kevin garnette”. Although they are not sim-
ilar in the concept space with one being an NBA team and the other
being an NBA player, they should still be clustered into one task,
because they are actually topically related, with the former query
searching for members of an NBA team and the entity contained
in the latter query being a member of that NBA team. Currently,
Probase doesn’t have any mechanism to calculate the relatedness
score of each query pair. We leave it for future work.

7. ACKNOWLEDGMENTS
This paper is partially supported by National 863 High-tech Pro-

gram (2012AA010701). We would also like to thank Weizhu Chen
for his instruction and useful suggestions.

8. REFERENCES
[1] M. Banko, M. J. Cafarella, S. Soderland, M. Broadhead, and

O. Etzioni. Open information extraction from the web. In
IJCAI, pages 2670–2676, 2007.

[2] P. Boldi, F. Bonchi, C. Castillo, D. Donato, A. Gionis, and
S. Vigna. The query-flow graph: model and applications. In
CIKM, pages 609–618, 2008.

[3] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor.
Freebase: a collaboratively created graph database for
structuring human knowledge. In SIGMOD, 2008.

[4] H. Cao, D. Jiang, J. Pei, Q. He, Z. Liao, E. Chen, and H. Li.
Context-aware query suggestion by mining click-through
and session data. In KDD, pages 875–883, 2008.

[5] L. D. Catledge and J. E. Pitkow. Characterizing browsing
strategies in the world-wide web. Computer Networks and
ISDN Systems, 27(6):1065 – 1073, 1995. Proceedings of the
Third International World-Wide Web Conference.

[6] J. Cui, H. Liu, J. Yan, L. Ji, R. Jin, J. He, Y. Gu, Z. Chen, and
X. Du. Multi-view random walk framework for search task
discovery from click-through log. In CIKM, pages 135–140,
2011.

[7] O. Etzioni, M. Cafarella, and D. Downey. Webscale
information extraction in knowitall (preliminary results). In
WWW, 2004.

[8] C. Fellbaum, editor. WordNet: an electronic lexical database.
MIT Press, 1998.

[9] D. He and A. GÃűker. Detecting session boundaries from
web user logs. In In Proceedingsof of the BCS-IRSG 22nd
Annual Colloquium on Information Retrieval Research,
pages 57–66, 2000.

[10] J. Huang and E. N. Efthimiadis. Analyzing and evaluating
query reformulation strategies in web search logs. In CIKM,
pages 77–86, 2009.

[11] R. Jones and K. L. Klinkner. Beyond the session timeout:
automatic hierarchical segmentation of search topics in query
logs. In CIKM, pages 699–708, 2008.

[12] D. B. Lenat and R. V. Guha. Building Large
Knowledge-Based Systems: Representation and Inference in
the Cyc Project. Addison-Wesley, 1989.

[13] Z. Liao, Y. Song, L.-w. He, and Y. Huang. Evaluating the
effectiveness of search task trails. In WWW, 2012.

[14] C. Lucchese, S. Orlando, R. Perego, F. Silvestri, and
G. Tolomei. Identifying task-based sessions in search engine
query logs. In WSDM, pages 277–286, 2011.

[15] Y. Song, H. Wang, Z. Wang, H. Li, and W. Chen. Short text
conceptualization using a probabilistic knowledgebase. In
IJCAI, pages 2330–2336, 2011.

[16] R. W. White, P. N. Bennett, and S. T. Dumais. Predicting
short-term interests using activity-based search context. In
CIKM, pages 1009–1018, 2010.

[17] W. Wu, H. Li, H. Wang, and K. Q. Zhu. Probase: A
probabilistic taxonomy for text understanding. In SIGMOD,
2012.

[18] B. Xiang, D. Jiang, J. Pei, X. Sun, E. Chen, and H. Li.
Context-aware ranking in web search. In SIGIR, 2010.

102

