
Beyond file systems: understanding the nature of places where people store

their data

Eno Thereska, Oriana Riva, Richard Banks, Sian Lindley, Richard Harper - Microsoft Research,

William Odom - Carnegie Mellon University

Abstract

This paper analyzes the I/O and network behavior of

a large class of home, personal and enterprise applica-

tions. Through user studies and measurements, we find

that users and application developers increasingly have

to deal with a de facto distributed system of specialized

storage containers/file systems, each exposing complex

data structures, and each having different naming and

metadata conventions, caching and prefetching strate-

gies and transactional properties. Two broad dichotomies

emerge from this. First, there is tension between the tra-

ditional local file system and cloud storage containers.

Local file systems have high performance, but they lack

support for rich data structures, like graphs, that other

storage containers provide. Second, distinct cloud stor-

age containers provide different operational semantics

and data structures. Transferring data between these con-

tainers is often lossy leading to added data management

complexity for users and developers.

We believe our analysis directly impacts the way users

understand their data, designers build and evaluate the

success of future storage systems and application devel-

opers program to APIs provided by the storage systems.

1 Introduction

The My Documents folder in Windows and its equivalent

on the Mac have become the default, local places within

which users have stored their digital documents, photos,

movies and music. This is changing, though. Increas-

ingly users have access to this content not just on their

personal devices, but also online, through file storage

services such as Flickr, Facebook, Skydrive and Drop-

box. They have access, also, to content not just created

or owned by them explicitly, but more broadly accessi-

ble. They have instant access to all music ever produced,

through services like iTunes, Spotify or Last.fm, and to

all movies ever released, through services like NetFlix

or Lovefilm. Online services affect not just the acces-

sibility of content, though, but also the elemental na-

ture of the files themselves. Photos, music and videos

are no longer standalone units of content, but instead in-

terconnected networks of streams and metadata, intrin-

sically connected to other pieces of content through re-

lated items, comments, review scores, tags and so on.

These content relationships act to reflect the provenance

and rich lifetime of the file itself.

Application developers are also affected. Increasingly

they have to program not to one file system abstrac-

tion, but to a de facto distributed system of specialized

storage containers. Each exposes complex abstractions

(e.g., Btrees, key-value stores, graph stores, file stores,

databases, etc.) Each has different caching and prefetch-

ing strategies (OS-based for files on desktops, browser-

based and whole-object caching and prefetching for files

on other containers). Naming, attributes and metadata

are different in each container leading to transformation

loss whenever a file moves from one container to another.

Communication models (shared space vs. message pass-

ing), and atomicity and transactions across data contain-

ers differ in policy and implementation.

This paper argues that, as a research community, we

do not have a set of good metrics to evaluate new stor-

age systems built today and their impact on users and

developers. Some of the metrics that served well in the

past do not apply well to today’s needs. Let’s look at

two examples. A first metric is performance. Efforts

have been made in the past to replace the local file sys-

tem with a database (an old example was the Inversion

file system [35] and a more recent one was the failure of

WinFS [45]). These have repeatedly failed, though, be-

cause performance was deemed to be inadequate. New

storage systems demonstrate, however, that users are

willing to be tolerant of imperfect performance as long

as the system provides new experiences for them. Har-

ter et al. show how application writers use (user-level)

databases and key-value stores to augment the inade-

1

quate local file system [20]. A second metric that may no

longer serve us well is the ability to support transactions.

Even when these are provided (as in the case of transac-

tional NTFS [31]) they are not pervasively used. Appli-

cation developers today have to handle operations across

a distributed system of storage containers and availabil-

ity requirements often make transactions impractical [9].

If a handful of storage containers do not provide transac-

tions (as is the case today) the value of transactions for

those containers that provide it (like NTFS) is small.

What should the new evaluation metrics be? The main

2.1 Summary of user study

We recruited 21 teenagers (aged from 12-17, 9 female

and 12 male) from a mid-sized city in US to gain under-

standing into their storage habits and in particular into

their relationship with online storage services. More de-

tails on the study can be found in [34].

Participants perceived online services as providing un-

limited and enduring storage. They reported storing pho-

tos on their devices while waiting for the opportunity to

transfer them online and often delete them locally. Files

and folders created on physical devices were seen as por-

tals to online storage. Only a small subset of local backup

folders was kept. On the other hand, participants said

to sometime move their ’virtual possessions’ back to the

material world by, for example, printing Facebook pho-

tos, often with their associated metadata.

Their attachment to content metadata was in fact evi-

dent. Participants expressed the importance of metadata

in documenting their life experiences (e.g., tags or com-

ments associated to a photo). In these cases, creating

metadata added value to the data, and metadata itself be-

came valued data. In addition to photos, participants re-

ported using metadata for music, such as replacing album

art images with personal photos or adding personal notes

in playlists when giving musical playlists as a gift. Or

they expressed their attachment to metadata such as the

number of times a song had been played, particularly for

music they do not listen to anymore, as a sort of means

for revisiting past experiences. In these cases, metadata

is more valuable than the actual data.

Making strong claims about how representative this

user study is would require a deeper investigation and

be beyond the scope of this paper. But it highlights the

users’ need to create, manage and share their virtual pos-

sessions, scattered across different online services. It

also shows the value users place in metadata, to the point

where the loss of metadata can cause more damage than

that of actual data.

2.2 Example in-depth: the copy command

We now focus on a small task, a simple “copy” com-

mand that illustrates the data flow across several contain-

ers users have to deal with. This example is taken from

a real usage scenario that motivated the paper. One of

our colleagues had several photos stored on a university’s

distributed file system (AFS) and when he moved insti-

tution he “copied” the photos to various other places, in-

cluding his local machine (NTFS), Sharepoint and even-

tually Facebook. Figure 1 shows a photo object migrat-

ing to these different containers over time. From this one

user action, we describe each of the technical findings.

No one data structure rules: As the original photo

�������������

	�������

�������������

�����������&^�

�	&^�

>�����&^�

�Ed&^�

^�������� &�������

^����������

D��������������

	�����

E���������

&�����������
d�������������
'���

^�������

��������� ��������� ���������

Figure 1: Moving a photo into different storage con-

tainers. Communication between files can be different

within and across containers. Certain operations can be

atomic within containers but are not atomic when per-

formed across containers. Each container manages dif-

ferent data structures leading to lossy transformations of

data across containers.

file moves from container to container, it has to be trans-

formed to match the container’s data structure. On AFS

and NTFS the photo is a file, but on Sharepoint it is a

record in a table, and on Facebook it is a node in a graph.

My “stuff” has many names: Naming/addressing

and thus finding the photo on each of the data structures

depends on the storage container. The namespace some-

times couples the name with the device/location as in

NTFS; other times the namespace is device-independent

as in Sharepoint or Facebook. Often, the namespace is

hierarchical as in AFS or NTFS and other times it can

be flat, table-based (Sharepoint) or it can follow a graph

structure (Facebook). For communicating (e.g., copy-

ing) within and across storage containers, sometimes a

shared namespace illusion is provided (AFS) and some-

times data has to be explicitly serialized and sent to the

new location (we use the message-passing analogy found

in multi-core CPU terminology).

Transformations are lossy: Different containers al-

low for different attributes associated with the object. In

NTFS the photo itself has certain static attributes embed-

ded inside the file. On Sharepoint, attributes associated

with the photo are stored as records inside the database

and are distinct objects from the photo itself. In some

containers like Facebook, attributes (like comments on

a photo) are as important as the object and the lines be-

tween what is data and what are attributes become blurry.

When moving from NTFS to Facebook the photo file

loses 94% of its attributes. When moving from Face-

book to NTFS (not shown), the photo file loses 90% of

its attributes (Section 4.2).

Access control is unnatural: Access control is mis-

matched across containers. AFS and NTFS have access

control lists associated with the photo, such as who can

read or write to it, but these are developed to work within

a shared namespace (like the C: drive in NTFS, shared by

several users, or the /afs/ namespace) and do not trans-

3

form across namespaces (like Sharepoint’s namespace or

Facebook’s). From a programmer’s and user’s perspec-

tive, sharing the photo with someone else if the photo is

on the NTFS or AFS containers is virtually impossible.

On the other hand, on Facebook, sharing a photo with

someone else is a single API call. In all cases, sharing

is an all-or-nothing situation: once the data is shared the

sharer loses all control over it.

Caching and prefetching mismatch: Each container

has a different caching and prefetching strategy and these

strategies are not compatible across containers. NTFS

prefetches blocks of a file for example, while Sharepoint

and Facebook do whole-file prefetching. Furthermore,

the latter have more hints to work with (e.g., photos

in an album) and can prefetch multiple related objects.

Caching is done differently too. For the applications that

run on the browser, the browser determines the caching

strategy, while if the application resides on the operating

system, the OS determines the caching strategy.

Local vs. remote performance matters less: The la-

tency when accessing a photo on AFS, Sharepoint and

Facebook differs by three or more orders of magnitude

from the local NTFS performance (Section 4). This does

not stop a user from storing the data on the remote stor-

age container because they are getting something mean-

ingful in return (a new user experience).

No transactional expectations: Each storage con-

tainer can support transactional properties. For exam-

ple, the NTFS can be transactional [31]. Internally, once

a request arrives in Facebook’s servers, it can be stored

atomically in databases [6]. However, these transactional

properties are often just a part of the end-to-end opera-

tions, which are often not transactional (like moving a

photo from NTFS to Facebook). For end-to-end transac-

tions, a developer has to implement transactional proper-

ties when working with files across the containers (a hard

task which is often not done.)

3 Methodology

We have put together a set of simple tasks representa-

tive of what users go through when storing and retriev-

ing their data. Some tasks can be executed through

traditional applications installed on a user’s computer.

For those, we use the ETW tracing mechanism in Win-

dows [28] to understand the I/O behavior. This part is

similar to the methodology of Harter et al. [20].

Many tasks however can only be executed through on-

line services for which no application installation is nec-

essary. For these tasks we are able to monitor the I/O and

networking behavior by tracing the HTTP traffic from the

user’s device to the service through HttpWatch [22] for

Internet Explorer and the Chrome Developer Tools (Net-

work Panel) [17] for the Chrome browser. We use Inter-

Application Task and description

Word Create and edit a document

Permit write access to a friend

Powerpoint Create and edit a presentation

Media player Open and listen to 5 songs

Photo viewer Open and view album of 20 photos

Flickr Upload 20 photos from NTFS to Flickr

Create an album with all 20 photos

Comment on your own photo

Permit a friend to comment on an album

Open all photos in your friend’s album

Copy friend’s album photos to NTFS

Permit Facebook to access uploads

Facebook Upload 20 photos and a movie

Create an album with all 20 photos

Tag the 20 photos with friends’ names

Share the album with a set of friends

Comment on your own photo

Copy a photo from Facebook to Flickr

Sharepoint Create a folder and upload 10 files from NTFS

Tag 5 documents with keywords

Permit read or write access to a friend

Edit a file concurrently with friend

Dropbox Add an existing folder to Dropbox

Permit write access to a friend

Edit a file concurrently with friend

Last.fm Create a playlist with 10 songs

Open songs in playlist in shuffle mode

Share playlist with a friend

Lovefilm.com Open and watch a movie

Kindle Download 5 free books

Open the first chapter on each book

Edit by annotating 3 paragraphs

Share annotations with a friend

GoogleDocs Edit a document by adding 5 text paragraphs

Share a file with a friend and edit concurrently

YouTube Upload 2 video clips

Open and watch 5 video clips

Table 1: Applications and tasks used in the measure-

ments. They include single-user, cross-container and

cross-user tasks. In italics are common verbs/tasks.

net Explorer 9.0 by default, except for the Kindle appli-

cation below that requires Chrome. The service itself is

treated as a black box but the APIs to store and retrieve

data from it are visible to our tracing mechanism.

The applications and services monitored and the user

tasks are as follows. Table 1 lists the exact tasks.

Desktop suite on local file system: We use four com-

mon desktop applications storing data on the NTFS file

system on Windows 7. These applications are used to

validate the findings in [20] and contrast them with the

cloud storage containers. Microsoft Word 2010 and Pow-

erpoint 2010 are used to edit documents and presenta-

tions respectively. Windows Media Player is a music

player capable of audio and video playback. Windows

Photo Viewer is a simple photo viewer application.

Flickr: Flickr [13] is a photo store. Users store photos

there because storage space is free and because it is easy

to share photos among people, get feedback on photos or

4

provide feedback to others’ photos. Flickr gives devel-

opers an API to store and retrieve files, and is specialized

in photo files. The tasks we perform on Flickr have to

do with adding photos, creating photo collections, com-

menting on photos and sharing them with others.

Facebook: Facebook [11] is a service allowing users

to store a range of files (photos, movies, documents) and

to share them with others. It has been shown that users

use Facebook as a primary store [33], thus bypassing

the local file system and directly storing content there.

Facebook has a developer API (the Graph API [12] and

a SQL-like extension) that gives the ability to store and

retrieve content, annotate content and relate it to other

content. The common tasks we perform on Facebook

are adding photos and movies, commenting on them and

sharing them with others.

Sharepoint: Sharepoint [44] is a Wiki-like application

for enterprises that allows storage and retrieval of any

arbitrary media types. It has a complex API exporting

database tables and file abstractions. It is mostly found

in enterprise environments because it has capabilities for

data life-cycle management. The common tasks we per-

form on Sharepoint is populating it with white-paper and

presentation documents, reading and writing the docu-

ments, sharing the documents with others and creating

collections of documents.

Dropbox: Dropbox [10] is an application for sharing

documents and for collaborative editing. It is similar to

SkyDrive [30] or iCloud [3]. The unit of storage is the

traditional files and folders. Common tasks we perform

on Dropbox are sharing a folder and editing files among

a group of users.

Last.fm: Last.fm [24] is a service that allows stream-

ing of any music title to any device. It is used to rep-

resent one vision of the future that imagines all the mu-

sic ever created being available from anywhere (without

necessarily copying them on the “local” file system). The

common tasks we perform with Last.fm are creating a

playlist, importing several songs there, listening to the

songs and sharing the playlist with friends.

Lovefilm.com: Lovefilm.com [25] is a service that al-

lows streaming of movies. It is used to represent one

vision of the future that imagines all the movies ever cre-

ated being available from anywhere (without necessarily

copying them on the “local” file system). The tasks we

perform with Lovefilm are watching a movie and skip-

ping forward and backwards through the movie.

Kindle: The Kindle Cloud Reader [2] is a service that

allows reading and annotation of books without necessar-

ily copying them on the “local” file system. The tasks we

perform with Kindle are reading and annotating books.

GoogleDocs: GoogleDocs [18] is a service that is sim-

ilar to Microsoft’s Office. Both can store and retrieve

office documents, presentation and spreadsheets on the

cloud. Microsoft’s Office was designed for operating on

a local file system and only recently allowed storing doc-

uments on the cloud, while GoogleDocs was designed

with the cloud in mind from the start. The tasks we

perform involve creating documents, presentations and

spreadsheets, editing them and storing a copy of them

locally as well as on the cloud.

YouTube: YouTube [19] is a service where anyone

can upload, store and share videos. The tasks we perform

with YouTube are uploading and watching videos.

4 Measurements and analysis

This section compares the storage containers along a

number of axis.

4.1 Data structures and namespace

In this section, we examine the data structures and

namespace that the storage containers expose. A de-

veloper creating an application that accesses data stored

across these containers needs to think about the basic unit

of stored data, how to name it, and how to subsequently

retrieve it.

To understand the data structure and namespace affor-

dances of each storage container, we ran the tasks in Ta-

ble 1. All of them need a way to name and address ob-

jects when creating them and a way to query the store’s

namespace when retrieving them. The tasks are not com-

prehensive, and many containers offer more functionality

than our tasks cover. Nonetheless, the tasks helped reveal

the main results in Table 2.

In all the desktop applications running on NTFS, the

basic addressable unit is a file and a folder/directory. The

name of the unit is tightly coupled with the location (e.g.,

”C:/Users/Public/Pictures/Sample Pictures/Desert.jpg”).

As reported previously [20], there are databases used on

the desktop, however the native API provided by the op-

erating system is still file-based (a database’s data is ul-

timately stored on a file, i.e., there is no OS support for

native databases).

Several containers such as Dropbox and Kindle (the

app version) have a device-semi-transparent namespace.

By that, we mean that their basic unit (e.g., file in Drop-

box) exists and can be accessed independently of the de-

vice (from anywhere), but it is also often stored/cached

on the device accessing it as a file on NTFS. The other

containers are mostly location- and device-independent

because they reside on the cloud. However, of course,

they are not namespace-independent and the basic unit

can only be found inside a namespace. There is no single

global file system namespace, as proposed by [26].

The addressable unit in the containers ranges from

files and folders, to opaque object IDs and data struc-

5

Data store Naming and location Addressable unit API

NTFS (desktop apps) Naming coupled w/ location File, folder File streaming

Flickr Location-independent Object ID, sets Graph-like API

Facebook Location-independent Object ID Graph and FQL

Sharepoint Location-independent Object ID, list LINQ and proprietary

Dropbox Device-semi-transparent File, folder File streaming

Last.fm Location-independent Song, album Last.fm API

Lovefilm.com Location-independent Movie Graph-like API

Kindle Device-semi-transparent Book File streaming and SQL

GoogleDocs Location-independent File and collection Google data protocol (REST-like)

YouTube Location-independent Video Google data protocol (REST-like)

Table 2: Naming, addressing, data structures and APIs for different storage containers.

tures such as lists, sets and collections. For special-

ized containers (like Kindle, Lovefilm.com, Last.fm and

YouTube), the object ID refers to their specialized data

(e.g., book, movie, video) and we chose to list the data

type instead of the opaque “object ID”.

The API an application developer has to use is quite

diverse. On the desktop, the APIs are mostly either file

streaming APIs (often wrapped in other layers such as

Win32 on Windows) or (user-level) database APIs like

SQL. Many of the online containers implement their set

of APIs. A common feature among these APIs is a graph-

like semantics (e.g., for Facebook through the Graph

API and for Flickr through the Flickr API). The need

to describe and query relationships among data is key

for some of the online containers. This is arguably true

for the desktop file system too, but the folder abstraction

can only describe one kind of relationship among files.

Several of the online containers also have in common a

REST-like API where PUT, GET and POST are the basic

building blocks.

Interpretation: Uniquely from other file system stud-

ies, we find that data stores export different data struc-

tures and APIs and allow for a variety of naming and

addressing schemes. The set of storage abstractions has

grown organically and thus it is difficult for a developer

to develop applications that access data from the differ-

ent containers. The desktop container has been the least

innovative and exposes the same data structures and APIs

now that it did 30 years ago. Harter et al. showed that

“a file is not a file” and application developers want to

store richer data structures on the file system [20]. Un-

fortunately the desktop file system cannot natively store

anything else but files.

4.2 Metadata, attributes, transformations

In this section, we examine the blurring lines between

data and metadata/attributes. We also look at transforma-

tions of data across different containers. For this section,

the most relevant tasks in Table 1 are the ones that copy

or move a file from one container to another.

The number of attributes describing an object such as

a document, photo, music or video varies with the type of

storage container. Figure 2 shows a representative exam-

ple, with the number of attributes of a photo object when

stored in the different containers. The total number of at-

tributes for each container varies from 18 (Facebook) to

87 (Flickr)1. These attributes include common properties

such as object size, type, date, access control settings as

well as description (e.g., Exif tags), tags and comments.

The desktop file system has a clear-cut differentiation

between data and metadata. On NTFS attributes can re-

side on a secondary file stream. Most applications how-

ever, like Media Player and Photo viewer in this partic-

ular instance often embed some attributes within the file

itself. The other storage containers have a less clear-cut

definition of data and metadata. For example, a photo

and the associated comments on Facebook have a graph-

like relationship (the photo and comments are nodes, and

they are related with edges). It is not clear how to copy

such a relationship to NTFS, and the transformation/copy

is often lossy (more below).

Figure 2 also splits the attributes into two types. The

first type, namely “attributes as values”, refers to the

attributes being stored as an interpretable value. The

second type, “attributes as references” refers to the at-

tributes being stored as references to values (the analogy

in programming languages is call-by-value and call-by-

reference respectively). A desktop file system like NTFS

stores attributes by value only. Facebook and Flickr store

several attributes as references (9 and 5 respectively).

Often the references are to “live” content, such as a user

name attribute referring to a user’s details (Sharepoint

1Despite the similarity of Facebook and Flickr as photo sharing ser-

vices, the main reason for such a lager difference in the number of

photo attributes is that Flickr, as well as most storage containers, store

Exif tags (corresponding to 60 attributes in Flickr) while Facebook does

not.

6

From/To NTFS Flickr Facebook DropBox Sharepoint GoogleDocs

NTFS 0.0 47.5 94.4 1.6 4.9 3.3

Flickr 98.9 0.0 NS2 98.9 98.9 NS

Facebook 88.9 NS 0.0 88.9 88.9 NS

Dropbox 0.0 47.5 94.4 0.0 4.9 3.3

Sharepoint 0.0 NS NS 0.0 0.0 NS

GoogleDocs 4.9 NS NS 4.9 0.0 0.0

Table 3: Percentage of lost attributes when moving a photo from one storage container to another (NS means operation

not supported).

61

82

9

60 61 62

0

5

9

1 0 1

0

20

40

60

80

100

#
 a

tt
ri

b
u

te
s

attributes as values

attributes as references

Figure 2: Number of attributes of a photo object on dif-

ferent photo containers. Attributes are classified as “val-

ues” and as “references” to values.

and GoogleDocs store user names as references as well).

We argue that part of the value derived from a storage

container comes from these non-static attributes.

As a direct consequence of the above, it is clear that

certain transformations of data from container to con-

tainer will be lossy. For example, when moving a photo

object across containers some of the attributes are likely

to be lost unless the operation occurs across containers

which are file system based such as Sharepoint, Sky-

drive, DropBox or GoogleDocs. As Table 3 shows, when

uploading a photo to Facebook, 94.4% of its attributes

(e.g., Exif tags, description, dates) are lost, and still when

downloading a photo from Facebook to the local file sys-

tem 88.9% of the attributes (in particular tags and com-

ments) are lost. When moving a photo from NTFS to

Flickr the loss is less because most of the Exif tags (in-

cluding latitude and longitude) are preserved. However,

when downloading the same photo from Flickr to NTFS,

Exif tags are lost and only the type attribute is preserved.

We have verified that other objects, such as videos and

documents suffer similarly from transformational loss.

Interpretation: Different storage containers support

2Flickr allows automatically posting a photo on the Facebook’s

wall, but the photo is copied as a reference/link.

different types of metadata and attributes. The difference

between data and metadata is often blurred in the non-

desktop containers with metadata often being of equal

importance to the end-user (e.g., comments on a photo).

Uniquely from other file system studies we measure the

issue of data transformations across containers and find

that the transformations are often lossy with respect to at-

tributes. The next subsection shows that transformations

are lossy with respect to access control as well.

4.3 Access control and sharing

In this section, we analyze the ways data can be shared

with other users and applications, and the access con-

trol options available. The most relevant tasks in Table 1

for this section are the ones that share data with others

or attempt to view and modify data. Table 4 provides

a detailed analysis focused on photo objects only, while

Figure 3 graphically summarizes the findings.

The first axis of measurement is whether one shares

data with users directly or with applications and services

as well. As seen in Table 4, only a few of the stores

(Facebook, Dropbox and Flickr) allow access control on

data shared with applications. Flickr only supports read

permissions, Dropbox supports read/write permissions to

only a specific application folder (sandbox access) or to

all user’s folders (full access), while Facebook offers 5

different types of permissions for data of the user and

even for data of the user’s friends.

When it comes to sharing data with users, there are

several ways to name the users. NTFS uses usernames

and group IDs. Flickr and Facebook have “friends”,

“family”, “friends of friend”, contacts, members of the

same service, custom lists and “anyone/public”. Drop-

box uses user IDs or “public”. Sharepoint and Google-

Docs can restrict by user ID.

The second axis of measurement is the type of permis-

sions when sharing with users. The desktop apps based

on NTFS have an extended set of permissions that con-

trols reads, writes and deletes of both data and attributes

as well as execution permissions and permissions on who

can change permissions and take ownership of the data.

7

Service Sharing with users Sharing with apps/services

Unit Permissions Unit Permissions Pre-defined services

NTFS username read data write data exec NS NS none

group read attrib. write attrib. delete

read e.attrib. write e.attrib. read perm.

change perm.

take ownership

Flickr friend view comment download app id read public search

family add notes blog Facebook

contacts add tags print Twitter

any member add people share with Tumblr

anyone others’ apps Live.Journal

Wordpress

Blogger

Facebook friend view share with app id read (users’ photos) public search

friend of friend friends’ apps read (friends’ photos) ads

custom list search instant-

public publish personalization

delete

Dropbox user ID read data write data app id sandbox access none

public read only full access

Sharepoint user ID view edit delete NS NS none

GoogleDocs user ID read write download NS NS none

Table 4: Access control options for users and applications when sharing a photo object with other users or

apps/services. “e.attrib.” stands for extended attributes. NS means operation is not supported.

Flickr has settings for controlling specific attributes such

as comments, notes, tags, and people. In Facebook, these

settings are collapsed into one setting “view”. An addi-

tional setting allows the user to control access to his con-

tent by friends’ applications. However, both Flickr and

Facebook lack write permissions.

As observed for attributes, it is hard to move content

from one container to another while fully respecting the

access control options, i.e., the transformation is lossy

with respect to access control too. In same cases, not

the same options are supported and in others they are

supported with different semantics. For instance, a photo

in Flickr with permissions to add notes enabled and with

permissions to add people disabled, would be difficult to

translate into a NTFS container.

Interpretation: The sharing and access control ab-

stractions, key to development of early file systems, need

a complete redesign. For an application developer it is

difficult to maintain the access control semantics desired

by an end-user across storage containers. For users, it

is difficult to reason about issues around data ownership

and control when many of the storage containers they

have their data into have very different and incompatible

semantics. Others have shown qualitatively, through user

studies, that users really care and worry about this is-

sue [33], but due to the confusion and management over-

head they rarely use the options given [5]. Perhaps sub-

tly, the unevenness in access control leads to more (lossy)

data transformations. For example, a user that needs to

edit a photo stored in Flickr (no write permissions pos-

2

5
4

3
2

0 0 0
1

3

11

9

2
3

2

0 0 0

3
0

0

1

1
0

1

0 0 0

0
0

0

7

3

0
0

0 0 0

0
0

0

1

5

0 2

0 0 0

0
0

0

5

10

15

20

25

#
 a

cc
e

ss
 c

o
n

tr
o

l
o

p
ti

o
n

s

Permissions for apps

Pre-defined apps

Application naming options

Permissions for users

User naming options

Figure 3: Access control options for different contain-

ers. Access control settings are both for sharing data with

users and with external apps as well as public search en-

gines.

sible) must first transfer the photo to a storage container

with write permissions (often the local file system), and

then back again.

4.4 Caching and prefetching

In this section, we explore the caching and prefetching

strategies of the applications. Initially, we focus on the

types of caching and prefetching hints that applications

pass to the cache managers, the in-kernel one in case

of the desktop applications and the in-browser one for

web applications. Under Windows, applications may

8

Hint

Word [- ,RND, - , - , - , -]

Powerpoint [- ,RND, - , - , - , -]

Media Player [SEQ, - , - , - , - , -]

Photo viewer [SEQ, - , - , - , - , -]

Flickr [- , - , - , - ,LFT, -]

Facebook [- , - , - , - ,LFT, -]

Sharepoint [- , - , - , - , - , -]

Dropbox [- , - , - , - ,LFT,CND]

Last.fm [- , - , - , - , - , -]

Lovefilm.com [- , - , - , - ,LFT,CND]

Kindle [- , - , - , - , - , -]

GoogleDocs [- , - , - , - ,LFT,CND]

YouTube [- , - , - , - ,LFT,CND]

Table 5: Six types of caching and prefetching hints used

by the applications. [SEQ,RND,NBF,WTH,LFT,CND].

SEQ stands for FILE FLAG SEQUENT IAL SCAN,

RND stands for FILE FLAG RANDOM ACCESS,

NBF stands for FILE FLAG NO BUFFERING, WTH

stands for FILE FLAG WRIT E T HROUGH, LFT

stands for “Lifetime” hints (such as max − age) and

CND stands for conditional invalidation hints (such as

those specified by the ETAG value).

pass such hints when they first create a file as flags to

the FileCreate() call. There are four types of possible

hints, allowing a developer to say that a file will be ac-

cessed sequentially, a file will be accessed in a random-

access way, a file will not be accessed again so it needs

no caching and that a file’s changes should be immedi-

ately propagated to persistent storage (write-through).

In the browser, applications may pass hints as part of

a request response together with the object. There are

two types of hints, allowing a developer to specify how

long an item should be cached, and whether the server

supports conditional checks on an item’s freshness. In

a conditional check, the browser makes a request to the

server to verify that a cached item has not been updated.

If the item has been updated, the server sends the browser

the new item, otherwise the server sends the browser a

short message.

Table 5 shows the types of caching and prefetching

hints and the applications employing them. In gen-

eral, the desktop applications employ only the first hints,

while the web applications employ only the last two

hints. The web applications leave it up to the browser

to decide how to store the cached items locally.

Figure 4 zooms in on the web application’s two

caching hints. The item lifetime hint varies by orders

of magnitude between the services, even when the item

type stored is the same (e.g., a photo in Facebook or

Flickr). Furthermore, not all web storage containers al-

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

C
a

ch
in

g
 l

if
e

ti
m

e
 (

se
co

n
d

s) no conditional check

conditional check

Figure 4: Caching lifetime and ability to make condi-

tional requests. NTFS, Last.fm and Kindle do not pro-

vide any lifetime or conditional hints.

0

2

4

6

8

10

12

#
 i

te
m

s
fe

tc
h

e
d

whole-item fetching

page-based fetching

Figure 5: Different prefetching options.

low for conditional caching.

Figure 5 shows the number of items fetched by the

application when an item is requested. Several of the

applications do deep whole-item prefetching for photos.

For example, Dropbox prefetches 9 subsequent photos in

a folder when a user opens the first photo. Several of the

applications (in darker gray) prefetch parts of an item,

e.g., as in the case of a movie on Lovefilm.com or a song

on Last.fm.

Interpretation: Developers recognize that caching

and prefetching hints from the application are useful to

the cache manager (either in the kernel or in the browser).

However, these hints are static and hardcoded, which

makes them non-portable. For example, the sequential

hint for an application developed for the desktop is lost if

the application would run as a service on the web. Caches

are not unified. Different browsers (e.g., Internet Ex-

plorer and Chrome) maintain their own caches and one

browser’s cache is not accessible to another’s. The ker-

nel cache manager and the browser cache manager also

operate independently and without coordination.

9

4.5 Performance expectations

In this section, we explore the performance of the differ-

ent containers. Remote storage containers often use the

local file system as a building block with a distributed

layer on top. These containers pay additional perfor-

mance penalties from multiple network hops. As we

have seen before, they also often use databases and key-

value stores, which have traditionally been rejected by

the local file system community [35]. How do these stor-

age containers perform when compared with the local file

system?

To get a comparable metric from containers that ser-

vice different media, we focus on first-byte latency as a

metric. This is the latency incurred from when a client

makes a request to when the first byte of the response is

received. This metric works well when file types are of

different length (e.g., a movie vs. a document). We ap-

proximate the first-byte latency from remote service by

summing up the Blocked, Connect, Send and Wait times

exposed by HttpWatch or Chrome Developer Tools (Net-

work Panel). These tools can measure precisely the time

when the response is received. To approximate the first-

byte latency from the local file system, on the other hand,

is slightly more difficult. We could measure any Blocked

time by subtracting the time when a disk request is ini-

tiated (DiskIo ETW trace) from the time when a file re-

quest was sent (FileIo ETW trace). The problem is that

we do not have a way to measure when a DiskIo request

is actually serviced by the disk, i.e., the disk might do its

own buffering of requests and introduce other queueing

delays not captured by our measurements.

As such, we go for a conservative measurement and

subtract the time when a disk request is completed

(DiskIo Completed ETW trace) from the time when a file

request was sent. Request sizes are small for the appli-

cations involved (4 kB-64 kB), hence our approximation

should not be that off. Figure 6 shows the results. Even

with the conservatively large latency in the local case, the

local file system still has the lowest average latency ob-

served. Performance across containers varies over four

orders of magnitude.

Interpretation: Developers have long used optimized

local file systems for performance [27, 40, 42]. For ex-

ample, the main argument against using databases as

a local container was based on performance [35]. A

database was perceived as slower. Non-enterprise users,

however, seem able to tolerate 4 orders of magnitude loss

in performance, as long as they get value out of the con-

tainers in other ways (e.g., the Facebook container allows

them to express relationships among data). This inter-

pretation is not a simple “performance does not matter”

statement. It is instead a call for being mindful when

evaluating a storage container solely on performance.

0.01

0.1

1

10

100

1000

10000

A
v

g
.

fi
rs

t
b

y
te

 l
a

te
n

cy
 (

m
s)

Figure 6: Performance from containers. Average, mini-

mum and maximum latency from 5 runs is shown. Y-axis

is in log scale.

5 Discussion and implications on design

Our I/O study points to several implications for future

file system design.

Support for multiple data structures: We observed

that different storage containers export different data

structures to application developers. The local file sys-

tem, for example, exports a file store, while several on-

line storage containers export graph stores. We argue

that a new metric for evaluating a new storage container

could be the number of co-existing data structures it sup-

ports. The intuition is that the more data structures are

supported natively, the easier it would be for application

developers to handle data and state. A key operation that

such a system has to provide would be loss-less transfor-

mation between data structures. As observed in this pa-

per, currently such transformations are lossy (e.g., when

copying a Facebook graph onto a flat file).

There are examples that show that support for multiple

data structures is becoming more important. For exam-

ple, the SQL Server database has recently added support

for files [29], while Ren and Gibson argue for a file sys-

tem to add support for key-value records [38]. SwissBox

argues for cross-layer optimizations when supporting

multiple data-structures [1]. For example, the caching

and prefetching code could be shared but the policies

could be tuned to each data structure. Thereska et al. pro-

pose using redundant replicas one for each data structure

supported [41].

Distributed by default: We observed that data is

stored on multiple storage containers. No one storage

container holds all the data. As such, application devel-

opers and users are presented with a de facto distributed

system of the local file systems on their devices and sev-

eral cloud storage containers. However, each storage

container is primarily designed as a centralized silo. We

argue that a new metric for evaluating a new storage con-

10

tainer could be around the ability to communicate with

other containers. This could involve namespace man-

agement, message passing for transferring data and abil-

ity to be provenance-aware [32]. There are examples

that show that inter-service communication is becoming

important. Some online services today allow users to

connect with other storage containers, particularly Face-

book (e.g., both YouTube and Flickr allow users to have

their videos and photos directly posted in their Face-

book timeline) and we see a number of emerging appli-

cations [14, 23] moving into this direction.

Support for possessions: As reported by Odom et al.,

people are keeping a large collection of data and they

are anxious about issues around ownership and posses-

sion [33]. The authors identify several design criteria

to partially alleviate that anxiety. First, “knowing what

you have” implies that the storage system allows the user

to enumerate and interact with all their data. Second,

“retaining guardianship” implies that the storage system

should have a demonstrable way to prove to the users

that their data is safe. Third, “giving rights or access

to others” implies implementing more natural ways to

do access control than the current (and, as observed in

Section 4.3, mostly broken) mechanisms. Fourth, “being

able to relinquish possession” implies the right to get rid

of data we own. This is very hard to do today partially

due to the lack of co-ordination among storage contain-

ers. As such, we highlight access control and one of the

sub-areas of storage system design that requires a com-

plete re-design.

More qualitative evaluation: We observed that tra-

ditional quantitative metrics, e.g., around performance,

are insufficient to evaluate a new storage container. We

argue that system designers should gently incorporate

more qualitative evaluation metrics. These are necessar-

ily “softer” metrics around new user experiences enabled

(e.g., from having support for multiple data structures or

the ability to relinquish possession). As systems become

more reliable and reach a performance plateau, the fo-

cus should necessarily shift to these new metrics for the

design of a new system.

6 Related work

We believe our study is the first to explore the storage se-

mantics and I/O behavior of different storage containers

hosted both on personal devices and in the cloud. Our

methodology builds on several studies on file systems’

performance and usage and studies on online services. A

long series of studies on file systems starts with Satya-

narayanan’s analysis of files stored on the Carnegie Mel-

lon University’s file server in 1981 [39]. The metrics

considered were content, size, and functional lifetime of

files. Following the evolution of user applications and

operating systems, a number of studies have looked into

improving file systems’ performance, particularly cache

management [4, 21, 36, 43] and scalability [21]. These

measurements have been conducted mostly in academic

and research computing environments and rarely in com-

mercial and production environments [37].

Harter et al. [20] extended the previous studies to pro-

ductivity and multimedia applications on Apple desktop

devices. It revealed a surprisingly complex picture of

how applications handle files and persistent data, and

debunked several assumptions on locality of accesses,

atomic operations, role of databases etc.

We believe file systems have changed more radically

than the above studies imply. The trend is for users and

developers to have access not just to the music, movies,

photos and documents stored on their personal device,

but to most music and movies ever produced, photos ever

taken and documents ever written, whether their own or

belonging to others. Hence, our measurements necessar-

ily span different storage containers and go beyond the

desktop file system.

Because of this radical shift in the way users store data,

some of the metrics we measure are necessarily unique

from the above studies as well. We focus on the diver-

sity of data structures and namespaces, properties of data

transformations and ability to support nuanced forms

of access control. Other metrics (e.g., around caching,

prefetching and performance) have been discussed be-

fore but we provide new, relevant measurements.

Our study builds on studies on online social sites

such as YouTube, Flickr, Facebook as well. Regard-

ing caching and prefetching, studies have shown that

YouTube videos clearly exhibit small-world character-

istics thus providing additional metadata that can be

exploited to improve caching at server’s proxies and

achieve higher download speeds [7, 8, 15]. A study

on Facebook, showed strong daily and weekly tempo-

ral clusters of communication and data sharing among

college students [16].

7 Summary

Users have radically changed where they store their data

and how they access it. The emergence of data-structure-

rich, always-online storage containers has led to a dif-

ferent storage architecture where the traditional desktop

or single-namespace file system is just one of many par-

ticipants. This paper presents detailed measurements of

I/O and network behavior of a large class of home, per-

sonal and enterprise applications storing data on these

diverse containers. We introduce a new set of relevant

measurement metrics and discuss their implications on

future storage system design.

11

References

[1] G. Alonso, D. Kossmann, and T. Roscoe. SwissBox: An archi-

tecture for data processing appliances. In CIDR, 2011.

[2] Amazon. Kindle cloud reader. https://read.amazon.com/.

[3] Apple. iCloud. https://www.icloud.com/.

[4] M. G. Baker, J. H. Hartman, M. D. Kupfer, K. W. Shirriff, and

J. K. Ousterhout. Measurements of a distributed file system.

SIGOPS Oper. Syst. Rev., 25(5):198–212, Sept. 1991.

[5] L. Barkhuus. The mismeasurement of privacy: using contextual

integrity to reconsider privacy in HCI. In Proc. of CHI, pages

367–376, 2012.

[6] D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Vajgel. Finding a

needle in Haystack: Facebook’s photo storage. In Proc. of OSDI,

Vancouver, BC, Canada, 2010. USENIX Association.

[7] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. B. Moon. I

tube, you tube, everybody tubes: analyzing the world’s largest

user generated content video system. In Proc. of IMC, pages 1–

14. ACM, 2007.

[8] X. Cheng, C. Dale, and J. Liu. Statistics and social network of

YouTube videos. In 16th International Workshop on Quality of

Service, IWQoS ’08, pages 229–238, June 2008.

[9] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein,

P. Bohannon, H. Jacobsen, N. Puz, D. Weaver, and R. Yerneni.

PNUTS: Yahoo!s hosted data serving platform. In Proc. of 34th

VLDB, volume 1, pages 1277–1288, 2008.

[10] Dropbox. Dropbox. https://www.dropbox.com.

[11] Facebook. Facebook. http://www.facebook.com/.

[12] Facebook. Graph API. http://developers.facebook.com/

docs/reference/api/.

[13] Flickr. Flickr. http://www.flickr.com/.

[14] Friday. http://www.fridayed.com.

[15] P. Gill, M. Arlitt, Z. Li, and A. Mahanti. YouTube traffic char-

acterization: a view from the edge. In Proceedings of the 7th

ACM SIGCOMM Conference on Internet Measurement, IMC ’07,

pages 15–28. ACM, 2007.

[16] S. A. Golder, D. M. Wilkinson, and B. A. Huberman. Rhythms of

social interaction: Messaging within a massive online network. In

3rd International Conference on Communities and Technologies,

volume 30, pages 1–16, 2007.

[17] Google. Chrome developer tools: Network panel. https:

//developers.google.com/chrome-developer-tools/

docs/network.

[18] Google. Google docs. https://docs.google.com/.

[19] Google. YouTube. http://www.youtube.com/.

[20] T. Harter, C. Dragga, M. Vaughn, A. C. Arpaci-Dusseau, and

R. H. Arpaci-Dusseau. A file is not a file: understanding the I/O

behavior of Apple desktop applications. In Proceedings of the

Twenty-Third ACM Symposium on Operating Systems Principles,

SOSP ’11, pages 71–83, New York, NY, USA, 2011. ACM.

[21] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols,

M. Satyanarayanan, R. N. Sidebotham, and M. J. West. Scale

and performance in a distributed file system. ACM Trans. Com-

put. Syst., 6:51–81, February 1988.

[22] HttpWatch. Httpwatch. http://www.httpwatch.com/.

[23] Jolicloud Me - Your Personal Cloud. http://www.jolicloud.

com/me.

[24] Last.fm. Last.fm. http://www.last.fm/.

[25] Lovefilm.com. Lovefilm.com. http://www.lovefilm.com/.

[26] D. Mazières, M. Kaminsky, M. F. Kaashoek, and E. Witchel.

Separating key management from file system security. In Proc.

of SOSP, pages 124–139, Charleston, South Carolina, United

States, 1999. ACM.

[27] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry. A fast

file system for UNIX. ACM Trans. Comput. Syst., 2(3):181–197,

Aug. 1984.

[28] Microsoft. Event tracing. http://msdn.microsoft.com/.

[29] Microsoft. Filestream overview. http://technet.microsoft.

com/en-us/library/bb933993.aspx.

[30] Microsoft. Skydrive. https://skydrive.live.com/.

[31] Microsoft. Transactional NTFS (TxF). http://msdn.

microsoft.com.

[32] K.-K. Muniswamy-Reddy, P. Macko, and M. Seltzer. Provenance

for the cloud. In Proc. of FAST, San Jose, California, 2010.

USENIX Association.

[33] W. Odom, A. Sellen, R. Harper, and E. Thereska. Lost in transla-

tion: Understanding the possession of digital things in the cloud.

In CHI ’12: Proceedings of the International Conference on Hu-

man factors in Computing Systems, Austin, TX, 2012.

[34] W. Odom, J. Zimmerman, and J. Forlizzi. Teenagers and their

virtual possessions: design opportunities and issues. In Proc. of

CHI, pages 1491–1500, 2011.

[35] M. A. Olson. The design and implementation of the inversion file

system. In Proc. USENIX Winter Conference, 1993.

[36] J. K. Ousterhout, H. Da Costa, D. Harrison, J. A. Kunze,

M. Kupfer, and J. G. Thompson. A trace-driven analysis of the

UNIX 4.2 BSD file system. In Proc. of SOSP, pages 15–24, New

York, NY, USA, 1985. ACM.

[37] K. K. Ramakrishnan, P. Biswas, and R. Karedla. Analysis of file

I/O traces in commercial computing environments. In Proceed-

ings of the 1992 ACM SIGMETRICS joint international confer-

ence on Measurement and modeling of computer systems, SIG-

METRICS ’92/PERFORMANCE ’92, pages 78–90, New York,

NY, USA, 1992. ACM.

[38] K. Ren and G. Gibson. TableFS: Embedding a NoSQL database

inside the local file system. Technical Report CMU-PDL-12-103,

Carnegie Mellon University, May 2012.

[39] M. Satyanarayanan. A study of file sizes and functional lifetimes.

In Proceedings of the eighth ACM symposium on Operating sys-

tems principles, SOSP ’81, pages 96–108, New York, NY, USA,

1981. ACM.

[40] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishimoto,

and G. Peck. Scalability in the XFS file system. In Proc. of the

1996 Annual Conference on USENIX Annual Technical Confer-

ence, ATEC ’96, San Diego, CA, 1996. USENIX Association.

[41] E. Thereska, P. Gosset, and R. Harper. Multi-structured redun-

dancy. In Proc. of HotStorage, Boston, MA, 2012.

[42] E. Thereska, J. Schindler, J. Bucy, B. Salmon, C. R. Lumb, and

G. R. Ganger. A framework for building unobtrusive disk main-

tenance applications. In Proc. of FAST, San Francisco, CA, 2004.

USENIX Association.

[43] W. Vogels. File system usage in Windows NT 4.0. SIGOPS Oper.

Syst. Rev., 33(5):93–109, Dec. 1999.

[44] Wikipedia. Microsoft Sharepoint. http://en.wikipedia.org/

wiki/Microsoft SharePoint.

[45] Wikipedia. Winfs: Windows future storage. http://en.

wikipedia.org/wiki/WinFS.

12

