
Differential assertion checking

S. K. Lahiri
Microsoft Research
Redmond, WA, USA

K. L. McMillan
Microsoft Research
Redmond, WA, USA

R. Sharma
Stanford University

CA, USA

C. Hawblitzel
Microsoft Research
Redmond, WA, USA

ABSTRACT
Previous versions of a program can be a powerful enabler
for program analysis by defining new relative specifications
and making the results of current program analysis more
relevant. In this paper, we describe the approach of differ-
ential assertion checking (DAC) for comparing versions of a
program with respect to a set of assertions. DAC provides
a natural way to write relative specifications over two pro-
grams. We introduce a novel modular approach to DAC by
reducing it to single program checking that can be accom-
plished by any program verifier. In particular, we leverage
automatic invariant generation to synthesize relative specifi-
cations for pairs of loops and procedures. We provide a pre-
liminary evaluation of a prototype implementation within
the SymDiff tool along two directions (a) soundly verify-
ing bug fixes in the presence of loops and (b) providing a
knob for suppressing alarms when checking a new version of
a program.

1. INTRODUCTION
There are several factors limiting the adoption of static

analysis tools in the hands of developers. For static asser-
tion checking, these include the need to define an assertion
(or specification) to check, to provide environment speci-
fications and to provide auxiliary invariants for loops and
procedures. Although many auxiliary invariants can be syn-
thesized automatically by invariant generation methods, the
undecidable nature (or the high practical complexity) of as-
sertion checking precludes complete automation for a general
class of user-supplied assertions.

It has often been proposed that utilizing previous versions
of an evolving program can significantly reduce the cost of
program analysis [21]. Such approaches run in two primary
directions. First, in the presence of program refactoring, two
versions can be checked for semantic equivalence to ensure
the correctness of the transformation [22, 9, 16]. Second,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

verification can be performed incrementally, for example by
carrying over invariants that are unaffected by the syntac-
tic changes [26]. Although these techniques are useful in
their own right, they are applicable in very limited contexts.
First, most software changes (including some called refactor-
ing) induce some behavioral change. Equivalence checking
is too strong for such cases. Moreover, incremental verifica-
tion can only be performed when the previous version does
not have any false warnings — unfortunately, this is too
strong a requirement for the usage of static analysis tools.
Such false warnings have to be either removed by manually
specifying additional invariants, or the tool has to resort to
ad-hoc heuristics to suppress a class of warnings. The for-
mer seriously undermines the productivity gained from the
use of static analysis, whereas the latter leads to brittle tools
that may suppress true bugs.

In this paper, we propose another direction for exploiting
previous versions of a program as an implicit specification,
which appears to opens up an interesting space for trading
off soundness for cost required to apply an assertion checker.
Our observation is simple:

We can often prove relative correctness between
two similar programs with respect to a set of
assertions statically with significantly lower cost
than ensuring absolute correctness.

Given a program P with a set of assertions A, one tradition-
ally asks whether there is an environment for P in which one
of the assertions in A fails. One can instead ask a relative
version of this question: given two versions P and P ′ con-
taining a set of assertions A: does there exist an environment
in which P passes but P ′ fails? We formalize this idea as the
problem of differential assertion checking (DAC): checking
two versions of a program with respect to a set of assertions.
Although this provides a weaker guarantee of correctness of
P ′, it closely corresponds to an interesting class of bugs (re-
gressions) that are often most relevant to a developer and
have a good chance of getting fixed. Moreover, we argue
that DAC has several desirable traits, when checking abso-
lute correctness is rife with false alarms:

1. DAC allows for writing natural relative specifications
without a lot of modeling (additional ghost variables)
to express the properties.

2. DAC can be used to show that bug fixes do not cause
additional regressions for a set of assertions.

3. Exploiting the structural similarity of programs P and
P ′ allows simple relative specifications to answer the
relative questions.

An idea similar to DAC was earlier proposed in the context
of filtering false alarms for concurrent programs [14] (we dis-
cuss subtle differences in Section 3). At a high level, one can
see this work as applying the idea towards evolving programs
and extending the idea to deal with unbounded loops and
recursion ([14] was restricted to bounded programs).

1.1 Motivating example

void StringCopy.1(
wchar t ∗dst ,
wchar t ∗src ,
int size)

{
wchar t ∗dtmp = dst,

∗stmp = src;
int i ;
for (i = 0;

∗stmp &&
i < size − 1;

i++)
∗dtmp++ = ∗stmp++;

∗dtmp = 0;
}

void StringCopy.2(
wchar t ∗dst ,
wchar t ∗src ,
int size)

{
wchar t ∗dtmp = dst,

∗stmp = src;
int i ;
for (i = 0;

i < size − 1 &&
∗stmp;
i++)

∗dtmp++ = ∗stmp++;
∗dtmp = 0;

}

Figure 1: Motivating example (in C): two versions
of StringCopy (Figure 1 [12]).

Consider the two versions of the procedure StringCopy

described in Figure 1. The version StringCopy.2 is a pro-
cedure for copying the contents of a char buffer src into
dst, described in an earlier work [12]. Let us first ignore
StringCopy.1, which is a buggy version of StringCopy.2.
In this paper, we adopt the convention that procedures on
the left side of the figures corrspond to buggy versions and
those on the right correspond to correct versions. Let us
illustrate the complexities of verifying the memory safety of
StringCopy.2 in isolation.

1. To specify memory safety, one needs to define the bounds
of a buffer for C programs (unlike Java or C#). This
can be accomplished by adding a ghost variable Bound

that maps each allocated pointer (such as dst) to a
non-negative integer. One possible way to specify the
memory safety is to precede any dereference *e with
the assertion assert Bound(e) > 0.

2. One needs a precondition that the bounds of dst and
src have some relationship with size, and the two
buffers are disjoint.

3. Finally, one needs to write a loop invariant to record
that dtmp always points inside the buffer pointed by
dst, among other things.

Even for such a simple procedure, specifying and verifying
the memory safety can be quite complex if the user is left to
define the assertions, environment conditions and interme-
diate invariants.

Now we define relative memory safety of StringCopy.2

with respect to StringCopy.1. First, observe that the dif-
ference in the two versions lies in the loop exit condition

where the conjunction (&&) is applied in reverse order —
this gives different behaviors due to the short-circuit seman-
tics of &&. We want to check that StringCopy.2 accesses
only the memory locations which StringCopy.1 accesses for
any input. We can define and check relative memory safety
in a generic fashion as follows:

1. Define an uninterpreted predicate Valid that maps each
pointer to a Boolean value. Each dereference *e is pre-
ceded by assert Valid(e).

2. Let ok.i be a global Boolean variable for String-

Copy.i procedure that is true if no assertion has failed.
We replace assert φ by code that sets ok.i to false if
φ is false. We say StringCopy.2 is correct relative to
StringCopy.1 if, when both start in the same state
(parameters and the heap) and both terminate, if the
former terminates in a state where ok.1 is true, then
the latter also terminates in a state satisfying ok.2.

3. Assuming the two loops are automatically extracted as
tail-recursive procedures (§ A) loop.1 and loop.2 re-
spectively, we show how to construct a composed pro-
cedure for the two loops and attach a simple relative
specification on the composed procedure.

pre stmp.1 == stmp.2 &&
dtmp.1 == dtmp.2 &&
Mem char.1 == Mem char.2 &&
i .1 == i.2 &&
size .1 == size.2 &&
ok.1 <==> ok.2

post ok.1 ==> ok.2 &&
dtmp.1 == dtmp.2

proc MS loop.1 loop.2(dst .1, ..., dst .2, ...);

Here pre refers to a precondition and post refers to a
postcondition, and Mem_char.i refers a global array
that models the state of the heap. Moreover, we show
how such a specification can be inferred using the tech-
niques in this paper.

Note that we did not require any precondition about the in-
puts to the program, nor any correlation about the bounds
nor any relationship with null-terminated buffers. This check-
ing succeeds and we have proven that StringCopy.2 has a
memory footprint no larger than StringCopy.1. On the
other hand, if one were to check the relative correctness of
StringCopy.1 with respect to StringCopy.2 under the rela-
tive memory safety specification, one would get a counterex-
ample where size equals 0 and pointer src does not satisfy
Valid. This counter-example captures the seeded bug: an
address that StringCopy.1 dereferences but StringCopy.2

does not.

1.2 Overview
In the rest of the paper, using the background developed

in § 2, we formalize the notion of differential assertion check-
ing (DAC) (§ 3), and illustrate its use for defining relative
specifications (§ 3.1). We provide an algorithm for check-
ing DAC modularly by transforming the relative correctness
problem into verifying assertions over a single composed pro-
gram (§ 4). This allows us to leverage any off-the-shelf pro-
gram verifier and invariant generation tools to check the rel-
ative correctness problem. We demonstrate a simple scheme

x ∈ Vars
R ∈ Relations
U ∈ Functions
e ∈ Expr ::= x | c | U(e, . . . , e) | old(e)
φ ∈ Formula ::= true | false | e relop e | φ ∧ φ |

¬φ | R(e, . . . , e) | . . .
s ∈ Stmt ::= skip | assert φ | assume φ | x := e |

havoc x | s; s | x := call f(e, . . . , e)
c ∈ CFStmt ::= L : | goto L1, . . . , Ln | return
f ∈ Body ::= c | s; f | f ; f
p ∈ Proc ::= int f(xf : int, . . .) : rf { fbody }

Figure 2: A simple programming language. The set
of goto statements do not form any cycles in the
control flow graph.

based on Houdini [8] that suffices for a class of programs
(§ 5.1). We have created a prototype implementation of our
method inside SymDiff [16], a semantic differencing tool.
We evaluate the tool along two different directions. First,
we use DAC to soundly verify that the version after a bug fix
is relatively correct with respect to the buggy version (§ 6.1).
Second, we show that DAC can provide a systematic knob
for suppressing alarms when analyzing a new version of a
program (§ 6.2). Together, the experiments indicate the po-
tential of DAC to be a generic framework to exploit previous
versions of a program.

2. BACKGROUND
Figure 2 describes a simple programming language (a sub-

set of the Boogie [2] programming language) with recur-
sive procedures and an assertion language. We assume that
loops are already desugared into this language (we describe
a method in § A). The language supports variables (Vars)
and various operations on them. Expressions (Expr) can
be variables, constants, or the result of applying a (possi-
bly interpreted) function U to a list of expressions. The
expression old(e) refers to the value of e at the entry to a
procedure. Formula represents Boolean valued expressions
and can be the result of (interpreted or uninterpreted) rela-
tional operations on Expr , Boolean operations ({∧,¬}), or
possibly quantified expressions (∀u : int.φ). Note that the
programming language is fairly expressive and can be used
to model arrays. An array can be modeled in this language,
by introducing two special functions sel ∈ Functions and
upd ∈ Functions; sel(e1, e2) selects the value of a map value
e1 at index e2, and upd(e1, e2, e3) returns a new map value
by updating a map value e1 at location e2 with value e3.

A state of a program at a given program location is a
valuation of the variables in scope (procedure parameters,
locals and global variables) and a program counter pc that
indicates the next statement to be executed. A program
consists of a set of basic blocks, where each basic block con-
sists of a statement s ∈ Stmt terminated with a control
flow statement CFStmt (goto or return statement). A goto
statement goto L1, . . . , Ln non-deterministically sets the pc

to any one of the n labels. We restrict the use of goto state-
ments to not form any cycles in the control flow graph. The
statement skip denotes a no-op. The statement assert φ is
used to statically check that the formula φ holds; assert φ
has no effect on the dynamic state. The statement assume φ

behaves as a skip when the formula φ evaluates to true in the
current state; else the execution of the program is blocked.
The assignment statement is standard, havoc x scrambles
the value of a variable x to an arbitrary value, and s; t de-
notes the sequential composition of two statements s and
t. Conditional statements are modeled by using the goto
statement and assume statements. Procedure calls are de-
noted using the call statement, and can have a side effect by
modifying one of the global variables.

Let Σ be the set of all states for a program. For any
procedure p ∈ Proc, we assume a transition relation Tp ⊆
Σ × Σ that characterizes the input-output relation of the
procedure p. In other words, two states (σ, σ′) ∈ Tp if there
is an execution of the procedure p starting at σ and ending
in σ′. The transition relations can be defined inductively on
the structure of the program and is fairly standard for our
simple language [2].

There are a host of tools for modeling most high level
languages (such as C, C#, Java) in this language (such as
Spec# [4], Havoc [5]). We only note that such translations
use the arrays to model the heap (e.g. an array per field
in Java) where the arrays are indexed by objects or point-
ers. We defer further discussion of the translations to these
earlier works.

3. DIFFERENTIAL ASSERTION CHECKING
In this section, we formalize our approach of differential

assertion checking (DAC). The basic concept of DAC ap-
pears in a previous work in the context of filtering false
alarms in verification of concurrent programs using sequen-
tial executions [14]. However, it was described in a simpler
setting where loops were unrolled and procedures were in-
lined a bounded number of times.

Before proceeding, we establish a few notations that we
follow in the paper unless explicitly stated otherwise. First,
we assume that any assertion assert φ is replaced by the as-
signment ok := ok∧φ to a global ok variable. Second, given
that we are considering two versions P1 and P2 of a pro-
gram, we suffix the names of procedures, globals (including
ok) and parameters with the version number. Third, we la-
bel a state σ as failing if ok variable is false in σ. Finally, we
assume a one-one (not necessarily onto) mapping between
the globals, procedures, and their parameters between the
two versions; we often equate states from two versions when
we really mean that the two states assign the same value to
the mapped variables of the two states.

Definition 1. (Differential assertion checking) Given two
procedures p1 and p2, p2 has a differential error with respect
to p1 (denoted as DAC (p2, p1)) if there exists an input state
σ such that (1) there exists a state σ′

1 such that (σ, σ′
1) ∈ Tp1

and σ′
1 is non-failing, and (2) there exists a state σ′

2 such that
(σ, σ′

2) ∈ Tp2 and σ′
2 is failing.

We define a procedure p2 to be relatively correct with re-
spect to p1 if DAC (p2, p1) does not hold.

The above definition differs from the definition of differ-
ential error (DiffErr(p2, p1)) [14] in a subtle way. The dif-
ference lies in whether we insist the input σ to be non-failing
for every execution in p1 (in DiffErr(p2, p1)) as opposed to
be failing on some execution in p1 (in DAC (p2, p1)). We pro-
vide a simple example that distinguishes the two views. For
this example, DAC (p2, p1) holds as there is a state (empty)

proc p1() {
havoc x;
if (x) assert false ;

}

proc p2() {
assert false ;

}

from which p1 succeeds (when the internal variable x is as-
signed false) and p2 fails. However, DiffErr(p2, p1) does not
hold because there is no input state from which all execu-
tions are non-failing for p1. It is easy to observe that if
DiffErr(p2, p1) holds then DAC (p2, p1) holds, but not oth-
erwise.

The definition of DiffErr was motivated by comparing
concurrent interleaved executions with their sequential coun-
terparts. We adopt the slightly modified definition for DAC
to several reasons. First, the check for DAC (p2, p1) can be
encoded very naturally using single program verifiers:

assume i1 == i2 && g1 == g2;
call p1(i1); call p2(i2);
assert (ok.1 ==> ok.2);

where we use i and g to denote parameters and globals. On
the other hand, the DiffErr check is more complicated be-
cause checking it is undecidable even for bounded programs
without quantifiers. This added complexity is not needed for
comparing similar versions of a program; we have found that
internal non-deterministic choices are less common. When-
ever non-determinism is present (say reading chars using
scanf), the choices can be aligned on the two sides to return
the same arbitrary sequence of choices in the two programs
(see [16]). In such a modeling, the non-deterministic choices
become reads from an input array, thereby making the array
part of the input of the two programs.

3.1 Relative specifications
Recall that writing meaningful specifications often require

access to a host of ghost state that is not present explicitly
as part of the program state (§ 1.1). In addition to checking
existing assertions in the two versions differentially, DAC
also facilitates writing relative specifications using the same
syntax of single program assertions. Instead of defining the
buffer overrun checks on the two programs and checking
them differentially, it often helps to pose questions such as:
are there inputs for which P2 accesses buffer regions that
are not accessed by P1? Such specifications can be written
by introducing an uninterpreted predicate Valid and adding
an assertion before accessing any pointer p: assert Valid(p).
Such a specification will be useless for checking a single
program (every pointer dereference might be flagged as a
warning), but will naturally provide a relative specification.
Moreover, such a specification can be strengthened using
semantics of the particular property that is desired. For ex-
ample, when checking for non-null pointer dereferences, one
can constrain the predicate by adding an axiom:

axiom(∀x : int :: x 6= 0⇒ Valid(p))

Similarly, while checking for buffer overflows, one can add
an axiom:

axiom(∀x : int, y : int :: x ≤ y ⇒ Valid(y)⇒ Valid(x))

This will allow the DAC to not show a warning when the
program P2 accesses an index that is smaller than an index

accessed by P1. This is specially useful when the entire his-
tory of indices accessed by P1 is not stored (especially while
doing a modular proof of DAC (§ 4) that only records an
abstraction of the history of accesses on the two programs).
Finally, one can even capture properties such as equivalence
of two procedures (modulo termination). For a procedure
p ∈ P , let o be the set of out parameters and g be the set
of globals modified by p. If we assert ValidEQ(o, g) (for an
uninterpreted predicate ValidEQ) on the post-state of p and
then perform DAC on two versions p1 and p2, then the rel-
ative specification is correct if and only if the two programs
are equivalent.

4. MODULAR DAC
In the previous section, we defined the problem of DAC (p2, p1)

for a pair of procedures p1 and p2. In this section, we pro-
vide a mechanism to check for DAC (p2, p1) (or rather verify
that p2 is relatively correct with respect to p1) in a proce-
dure modular manner. In other words, we will verify the
relative correctness without inlining the callers inside a pro-
cedure, but rather using some specifications. We provide
a program transformation technique that compiles the rel-
ative correctness check of two programs P1 and P2 into a
single composed program, which can be analyzed by an off-
the-shelf program verifier. In particular, the transformation
allows us to leverage existing invariant inference mechanisms
for single programs for inferring relative specifications. The
transformations is not specific to the problem of differen-
tial assertion checking, and is applicable whenever there is
a need to compare two programs.

4.1 Composed program

proc f1(x1): r1
modifies g1
{

s1;
L1:

w1 := call h1(e1);
t1
}

proc f2(x2): r2
modifies g2
{

s2;
L2:

w2 := call h2(e2);
t2
}

Given two programs P1 and P2 each containing a set of
procedures, and a one-one mapping between procedures, let
us consider two particular mapped procedures f1 ∈ P1 and
f2 ∈ P2. We have specified the modified set of globals for
each procedure using modifies keyword. For ease of expo-
sition, we have assumed that the read set of a procedure is
a superset of the set of modified variables.

Figure 3 describes a composed procedure MS_f1_f2 that is
constructed for each pair of mapped procedures. First, note
that the signature (parameters, modifies sets) of the proce-
dure is a disjoint union of the signatures of the individual
procedures. The body of MS_f1_f2 consists of sequential
composition of the bodies of f1 and f2, in addition to some
extra instrumentation. Since loops are already extracted as
tail-recursive procedures, the body of any procedure con-
tains no loops.

The instrumentations consist of two parts. The first part
consists of storing the input and the output state at each call
site. The second part consists of constraining the outputs of
pairs of call sites (from different programs) to be the result

proc MS f1 f2(x1,x2) returns (r1 , r2)
modifies g1, g2
{

// initialize call witness variables
b l1 , b l2 , ... := false , false , ...;

[[s1 ;]]
L1:

i l1 , gi l1 := e1, g1 ; //store inputs
call w1 := h1(e1);
b l1 := true; //set call witness
o l1 , go l1 := w1, g1; //store outputs

[[t1 ;]]

[[s2 ;]]
L2:

i l2 , gi l2 := e2, g2 ; //store inputs
call w2 := h2(e2);
b l2 := true; //set call witness
o l2 , go l2 := w2, g2; //store outputs

[[t2 ;]]

//one block for each pair of call sites
//for a pair of mapped procedures
....
if (b l1 && b l2) { //for (L1,L2) pair

//store the globals
st g1 , st g2 := g1, g2;

g1, g2 := gi l1 , gi l2 ;
call k1, k2 := MS h1 h2(i l1, i l2);
assume (k1 == o l1 && g1 == go l1);
assume (k2 == o l2 && g2 == go l2);

// restore globals
g1, g2 := st g1 , st g2 ;

}
...

return;
}

Figure 3: Composed procedure for f1 and f2.

of executing the corresponding composed procedure over the
input states at the two call sites. This allows us to infer facts
about pairs of procedure calls and to apply them in context.

We describe each of the steps in detail with respect to a
pair of call sites from f1 and f2 respectively. At a given
call site (say for label L1), we store the arguments and the
input value of global variables into local variables (i_l1 and
gi_l1) respectively. Since f1 only modifies globals from g1,
it suffices to store this subset of globals. Similarly, we record
the returned value and the globals after return into local
variables (o_l1 and go_l1) respectively. Each call site also
has a local Boolean witness variable (b_l1) that is initialized
to false and set to true after the call has returned. The
figure shows the transformation of the two particular call
sites; other call sites in the remainder of the procedures are
similarly instrumented (indicated by the double brackets in
“[[si;]]”).

After the instrumentation of the bodies of the two proce-
dures, we add a conditional block for each pair of mapped

call sites. The blocks are guarded by the Boolean witness
variables for the call sites; these blocks are executed only
when the corresponding call sites were encountered in an
execution and both returned. Each block first stores the
values of the globals into local st_gi variables. Next, it
calls the composed procedure MS_h1_h2 (this time for the
pair of callees), with the calling contexts restored from the
gi_li variables, passing stored arguments i_li as inputs to
the composed procedure. The return values (returns and
globals) are constrained to be the recorded values from af-
ter the two calls, using the assume statements. Finally, the
globals are restored from the st_gi variables, erasing the
effect of the call.

We use the notation σ1 ⊕ σ2 to denote a composed state
consisting of a state from the two programs with disjoint
signatures.

Theorem 1. For two programs P1 and P2 and two proce-
dure p1 ∈ P1 and p2 ∈ P2, (σ1, σ

′
1) ∈ Tp1 and (σ2, σ

′
2) ∈ Tp2

if and only if (σ1 ⊕ σ2, σ
′
1 ⊕ σ′

2) ∈ TMS p1 p2 .

Proof. We only sketch the main ideas here. The first
part of MS p1 p2 has the effect of executing p1 and p2 in
parallel, recording the pre- and post-states of the procedure
calls in ghost variables. The second part always has a termi-
nating execution and has no effect. That is, by induction on
recursion depth, we can assume the theorem for the call to
MS h1 h2. This guarantees a behavior for which the subse-
quent assume statements are true. Moreover the program’s
global state is restored. Thus the net effect of MS p1 p2 is
simply to execute p1 and p2.

Theorem 1 illustrates that the transformation performed
is not just limited to performing differential assertion check-
ing, but provides a general method to exploit similarity
between procedures in program proving. The main power
of the transformation comes from providing the additional
composed procedures over which one can write specifications
towards the proof of a final specification (like DAC). An in-
variant inference engine now has the extra flexibility to infer
invariants about the composed procedures in addition to the
procedures in P1 and P2.

Consider two versions of Foo where the second version
accesses fewer indices in the array a.

var a .1:[int] int ;
const MAX: int;
proc Foo.1() {

var i : int , t : int ;
i := 0;
while (i <= MAX) {

assert Valid(i);
t := a.1[i];
i := i + 1;

}
}

var a .2:[int] int ;
const MAX: int;
proc Foo.2() {

var i : int , t : int ;
i := 0;
while (i < MAX) {

assert Valid(i);
t := a.2[i];
i := i + 1;

}
}

Let us assume that the loops are extracted into procedures
Loop.1 and Loop.2 respectively. Our approach will gener-
ate the following composed method MS_Loop.1_Loop.2. The
relative specification (using the keyword post) says that if
the values of i and ok are equal at the start of a loop exe-
cution, then Loop.2 fails less often than Loop.1. This is an
inductive specification, and also sufficient to prove the DAC
property for the outer procedures Foo.1 and Foo.2.

proc Loop.1(i .1, t .1)
returns (i .1’, t .1’);

modifies ok.1

proc Loop.1(i .2, t .2)
returns (i .2’, t .2’);

modifies ok.2

post (i .1 == i.2 && old(ok.1) <==> old(ok.2))
==> (ok.1 ==> ok.2)

proc MS Loop.1 Loop.2(i.1, t .1, i .2, t .2)
returns (i .1’, t .1’, i .2’, t .2’);

modifies ok.1, ok.2

The example also illustrates one other important aspect.
The specifications of composed procedures typically have the
above form, but are not entirely trivial to obtain. If we
had included the equality t.1 == t.2 alongside i.1 == i.2

our specification would have been too weak, since t is not
initialized on entry to the loops. Mutual specifications are
often mostly independent of the actual effect of procedures
(a great advantage) but may not be the trivial equality over
all the state variables in scope.

4.1.1 Relative vs. absolute specifications
On the other hand, let us consider the complexity of the

specifications w ithout the composed procedure. To prove
the DAC property on the two versions of Foo, one will need
to provide the following precondition for Foo.1:

pre forall j :: 0 <= j && j <= MAX ==> Valid(j)

Informally, this provides the weakest precondition of Foo.1
to ensure that the procedure does not fail. To prove the DAC
property, we will need a loop invariant on Loop.2 procedure:

pre 0 <= i.2 && i.2 <= MAX

Although this is another way to prove the DAC property, it
demonstrates that one may require program specific (possi-
bly quantified) invariants (since it talks about MAX) that may
become arbitrarily complex to specify and more difficult to
infer. On the other hand, the relative specification used for
proving the DAC property using the composed procedure
can be fairly easy to guess as it may depend little on details
of the actual procedures.

5. INFERRING RELATIVE CONTRACTS
Since the composed procedures have the same syntax as

the underlying procedures in Pi programs, we can use any
invariant inference technique that can be used to gener-
ate invariants for Pi programs. In particular, we can use
ideas based on abstraction interpretation [6], abstraction-
refinement based [15] predicate abstraction techniques [10],
and interpolants [19]. However, any invariant synthesis tech-
nique is necessarily incomplete and might either be limited
by the underlying domain or may diverge trying to find the
inductive invariant. Therefore, it is wise to inject some do-
main knowledge while looking for invariants for proving dif-
ferential properties like DAC .

In general, there are two forms of contracts for a com-
posed procedure such as MS f1 f2 in Figure 3. The pre-
condition of such a procedure would be a predicate over
the parameters and globals (i1, i2, g1, g2), and the postcon-
dition would be predicate over the input and output param-
eters and globals (i1, i2, old(g1), old(g2), r1, r2, g1, g2) — we

assume that the read sets are also included in gi globals. Fur-
ther, many natural two-state postconditions have the form
φ(i1, i2, old(g1), old(g2)) ⇒ ψ(r1, r2, g1, g2). Finally, each of
φ and ψ usually relate mapped variables (whenever such a
mapping can be easily obtained by matching names or types)
from the two programs using relations such as equality, in-
equality and Boolean implications.

5.1 Conjunctive relative specifications
We describe a simple scheme for synthesizing a subset of

above specifications, namely conjunctive relative specifica-
tions. For each composed procedure we automatically gen-
erate a set of candidate preconditions and candidate postcon-
ditions and use the Houdini algorithm [8] to infer a subset
of these that are inductive for the program and proves the
specification. Houdini performs a greatest fix-point com-
putation starting with the set of all candidate contracts as
live (preconditions and postconditions) and kills a candidate
when it cannot be proved modularly assuming the other live
candidates. The process is repeated until either no candi-
date can be removed, or the desired specification can no
longer be proved. In the former case, a sufficient inductive
invariant has been synthesized for the specification; the lat-
ter case indicates either the property does not hold or the
set of candidates is insufficient. For Boogie programs, one
can use an efficient implementation of Houdini algorithm
using the /contractInfer switch in Boogie [28].

Now, we describe the set of candidates that are auto-
matically generated for each composed procedure such as
MS f1 f2 in Figure 3. For simplicity, we also assume that
each program Pi has a single entry procedure (say p0i) that
is not called from within Pi and all procedures in Pi have
a body. For each fi (i ∈ {1, 2}), let us denote Ii as in-
parameters, Mi as the ref set of globals, Ri as the out-
parameters and Gi as the mod set of globals. For each pro-
cedure other than the entry procedure, we first define the
sets Vi as Ii ∪Mi (for preconditions) and Ri ∪Gi (for post-
conditions). For any pair of mapped variables v1 ∈ V1 and
v2 ∈ V2, we add the following expressions as either precondi-
tions or postconditions: (i) {v1 ⇒ v2, v2 ⇒ v1} for Booleans,
(ii) {v1 ≤ v2, v2 ≤ v1} for integers and (iii) {v1 = v2} other-
wise. Given these candidates, Houdini algorithm generates
the strongest inductive conjunctive invariant (if any) over
these candidates that can prove the DAC specification.

6. EVALUATION
In this section, we describe an implementation and evalua-

tion of DAC inside SymDiff [16]. SymDiff is an infrastruc-
ture for leveraging program verification techniques for com-
paring programs. The tool is agnostic to source languages
(C, Java, C#, x86) as it operates on the Boogie interme-
diate verification language. It currently has a front-end for
C programs (using the Havoc [5] tool) that we use for our
experiments. Internally, SymDiff leverages the efficient ver-
ification condition generation in Boogie [3] along with the
Z3 [7] theorem prover to verify loop-free and call-free frag-
ments. The implementation of DAC consists of around 800
lines of C# code and mainly performs the following program
transformations: (i) introduces an ok variable and rewrites
the assertions present in a program, (ii) generates the com-
posed procedures (Figure 3), (iii) adds the DAC specification
for the entry procedures, and (iv) generates the candidate
contracts for the composed procedures (§ 5.1). In addition,

for each procedure p, it adds a postcondition ok ⇒ old(ok)
— this captures the semantics that the ok variable can only
transition from true to false.

In the next two subsections, we describe our experience
with applying DAC towards two directions. First, we eval-
uate the inference of relative specifications for verifying bug
fixes for a set of small C examples with unbounded loops
(§ 6.1). Next, we evaluate the effectiveness of DAC as a
mechanism for filtering alarms for evolving programs com-
pared to checking assertions on a single program (§ 6.2).

6.1 Verifying bug fixes
Table 1 describes the result of performing DAC on a set of

C examples (except iter which is a hand written Boogie
example). Each example contains between one and three
procedures with at least one loop. The first two examples
are already described in this paper, iter in Section 4 and
strcpy in Figure 1. The rest of the examples are drawn
from the Verisec suite containing “snippets of open source
programs which contained buffer overflow vulnerabilities, as
well as the corresponding patched versions.” [29]. For each of
these benchmarks, we add an assertion assert Valid(p) before
any dereference to a pointer expression p. This includes
array accesses where a[i] is treated as ∗(a + n ∗ i) for an
array whose base type occupies n bytes. Performing DAC
checks that the corrected version is dereferencing only the
memory locations which the buggy version does and the bug
fix has not inadvertently increased the memory footprint.

Example # Glbs # Cands # Infrd
iter 2 13 6
strcpy 19 29 28
apache-1 23 88 72
madwifi-1 36 187 59
madwifi-2 30 141 117
sendmail-1 20 77 49
sendmail-2 24 65 56

Table 1: Bug fix verification results. “Glbs” denotes
globals in the Boogie translation of each program,
“Cands” denotes candidate preconditions or post-
conditions, “Infrd” denotes the subset of “Cands”
that were inferred by Houdini.

The examples in the Verisec suite range from around
20 to 50 lines of C code (see Figure 4 for the sendmail-1

example). Table 1 indicates that the number of global vari-
ables is non-trivial in each example (except iter which is
a manually encoded Boogie program). These globals (gen-
erated by Havoc [5]) model various aspects of C semantics
including maps for each pointer types and fields, allocation
status of pointers, and deterministic sequence of values re-
turned by functions such as nondet_int (Figure 4). Finding
the right relative specifications can be extremely time con-
suming given the sizes of product programs. Therefore, the
inference is quite invaluable in discovering the relative in-
variants needed to prove the DAC property, even for these
small C examples. Only one example (apache-1) required
an additional (absolute) specification not generated by our
tool — it specifies that a loop index variable never decreases.
For rest of the benchmarks, we were able to automatically
infer contracts which were sufficient to prove that the mem-

ory footprint of the correct version was no larger than the
footprint of the buggy version.

The pair of procedures for sendmail-1 in Figure 4 illus-
trates a couple of challenges for differential reasoning. First,
note that the fix resets the counter fb to 0 under some con-
dition. Therefore, the values of fb on the two programs will
get out of sync after fb reaches MAXLINE, since the buggy
program will continue to increment fb. Hence the precondi-
tion of the composed procedure for the loops only satisfies
the specification fb.2 ≤ fb.1. Second, if Valid is completely
unconstrained, one may not be able to prove the DAC prop-
erty modularly without using quantifiers in the invariants to
record the history of accesses in the first loop. Instead, we
constrain Valid by the axiom ∀x, y :: x ≤ y ∧ Valid(y) ⇒
Valid(x) (§ 3.1), allowing the simple relative specifications
to prove the DAC property.

int main (void)
{

...
fb = 0;
while ((c1 = nondet int ())

! = EOF) {
/∗ BAD ∗/
fbuf [fb] = c1;
fb++;
}
/∗ force out partial

last line ∗/
if (fb > 0) {
/∗ BAD ∗/
fbuf [fb] = EOS;
}
return 0;
}

int main (void)
{

...
fb = 0;
while ((c1 = nondet int ())

! = EOF) {
/∗ OK ∗/
fbuf [fb] = c1;
fb++;
if (fb >= MAXLINE)

fb = 0;
}
/∗ force out partial

last line ∗/
if (fb > 0) {
/∗ OK ∗/
fbuf [fb] = EOS;
}
return 0;
}

Figure 4: Example of modular bug fix verification
(sendmail-1). The “BAD” and “OK” denote buggy
and fixed buffer accesses respectively.

In addition to the examples, a vast majority of the re-
maining examples from the Verisec suite contain fixes of
two categories. In the first case, occurrences of strcpy(char
*dest, char *src) was replaced by strncpy(char *dest,

char *src, size_t size). Since these are library proce-
dures, we were tempted to write a relative specification that
says that whenever the input states (the dest and src point-
ers and the heap array for char *) to the two procedures are
identical and strcpy does not fail, then strncpy does not
fail. However, this is not sound as strncpy can access more
indices than strcpy in the dest array to fill up the indices
up to size with null. If we specify the actual preconditions
of the two procedures using ghost states to store the sizes
of buffers (similar to § 1.1), all of the fixed versions can be
proved directly without the need for any loop invariants or
relative reasoning. In other words, DAC does not bring any
value in verifying these bug fixes. For the other cases, the
fixes correspond to invoking strncpy with a smaller value of
the size argument in the fixed version. Although we have
not verified these examples, we believe a relative specifica-
tion of the following form on these library procedures will
allow us to verify the fixes without additional ghost states.

post (dest .1 == dest.2 && src.1 == src.2 &&
old(Mem char.1 == Mem char.2) &&
size .1 <= size.2 && old(ok.1 <==> ok.2))

==>
ok.1 ==> ok.2

proc MS strncpy.1 strncpy.2(dest .1, src .1, size .1,
dest .2, src .2, size .2);

Hence, we have demonstrated that DAC can be used for
verification of bug fixes. Starting from buggy and correct
versions of programs from a standard buffer overflow bench-
mark, DAC automatically infers relative contracts and proves
that the bug fix does not introduce dereferences of new lo-
cations; hence, eliminating the possibility of a regression.

6.2 Filtering warnings
In this section, we evaluate the trade offs of differential

reasoning as a mechanism for filtering warnings from a pro-
gram verifier for evolving programs. When a single program
is analyzed for some specification (say memory safety) by
a verifier, for some programs, invariably there is a flood of
warnings. Many such warnings are false alarms due to the
limitations of static checking. A developer in such a situa-
tion will need some knobs which can lead him to warnings
of interest. In evolving software projects, a user is often less
concerned with warnings that were present in the earlier re-
leases.

In this section, we perform two case studies for exploring
such knobs: with benchmarks from Software-artifact Infras-
tructure Repository [25] and Windows device drivers [30].
For this section, we check the DAC property with respect
to the absence of null dereference errors. Each dereference
of a pointer p is preceded with an assertion about Valid(p).
Unlike the previous section, we however do not solely focus
on changes that correspond to introduction or bug fixes for
this class of assertions.

For the purpose of this section, we have done several re-
strictions and simplifications. First, the loops present in
any procedure is unrolled two times. This is done to sepa-
rate the benefits of DAC from the precision gain obtained
by using an invariant inference engine. Second, we only con-
sider one candidate postcondition for the composed proce-
dure where the mapped procedures are semantically equal.
This is the default summary considered by SymDiff for per-
forming equivalence checking. In other words, the summary
of the composed procedure MS p1 p2 is limited to either the
procedure equivalence or the trivial summary true.

We instantiate the framework with five configurations: (i)
single: each procedure in P2 (without taking P1 into ac-
count) affected by the change is checked modularly without
any preconditions and callee postconditions. This is the de-
fault behavior of the static analysis performed by Havoc.
(ii) sound: when analyzing P1 and P2 differentially, we use
the candidate summaries described above for the callees.
(iii) unsound: we assume that callees do not modify the
ok variables. This amounts to unsoundly assuming that
callees do not fail even when called from different states in
P2 compared to P1. (iv) bogus: we unsoundly assume that
callees are equivalent including the effect on the ok variables.
(v) nonmodular: we check DAC non-modularly by inlining
callees and do not use any specifications. We have designed
the different options to compare modular DAC (represented
closest by sound) with (a) non-differential reasoning (sin-

gle), (b) non-modular DAC (nonmodular), (c) effect of in-
creasing unsoundness (unsound and bogus), which in turn
restricts the adversarial environments a static analysis can
consider while analyzing a procedure, on a large class of
examples. Note that the degree of unsoundness increases
in going from sound to unsound to bogus. These modular
analyses try to find a single input for an internal proce-
dure for which P1 does not fail, but P2 does. On the other
hand, nonmodular performs an analysis assuming equal in-
puts only for the entry procedures and not for the inter-
nal procedures. As expected, our experiments demonstrate
that sound ⊇ unsound ⊇ bogus and sound ⊇ nonmodular in
terms of versions that have warnings. We have also observed
that the runtime of nonmodular is often 10-100 times more
expensive compared to the modular approaches.

Table 2 describes the results on the siemens and space
suite of C benchmarks, available from the Software-artifact
Infrastructure Repository [25]. Each program in this suite
has several versions (the column versions) that correspond
to injecting various bugs encountered during the develop-
ment of these benchmarks. However, these bugs are usu-
ally functional bugs (changing some conditional or mutating
an arithmetic operation) that often do not manifest in null
dereference errors. As can be seen from the table, the num-
ber of warnings (110 versions out of a total of 127 versions
in 848 procedures) arising while checking null dereference
absolutely (single) can be quite high, even when focusing
on the procedures impacted by the change. In comparison,
number of warnings progressively decreases with the use of
sound, unsound, and bogus options. The nonmodular rep-
resents the true set of DAC errors; however, inlining does
not scale to large programs such as space. Out of these
warnings, we have confirmed that 2 warnings in schedule

are true null-dereference bugs caused by the change. We
also notice that unsound and bogus options are very similar
in nature, except that more procedures can fail in unsound

(e.g. schedule2).
Figure 5 (from schedule2) shows an example where per-

forming differential reasoning allowed suppressing a warning
generated by single. On analyzing just a single procedure,
every dereference of job is flagged as a warning, since the
input value of job can be null. DAC is able to show relative
correctness: the second program does not dereference a null
pointer if the first one does not.

For the same example, the difference in unsound and bo-

gus can be seen by looking at the caller upgrade_prio of
get_process (that is syntactically unchanged) (either ver-
sion in Figure 6). unsound flags a warning because it expects
get_process to return different values in P1 and P2 for the
job variable after its call to get_process (since the two ver-
sions of get_process are not equal), whereas bogus does
not.

Finally, Figure 6 shows an example where a false warning
was caused due to a missing specification of a callee (again
from schedule2): whenever get_process returns a positive
value in the status variable, the variable job is initialized
to a non-null value. Hence, even with strong unsound as-
sumptions made by bogus for the callees, modular DAC can
still cause false warnings due to missing summaries.

Table 3 shows the result of comparing two versions of
sample device drivers in the Windows Device Driver Kit
(WinDDK) [30]. The drivers for Windows Vista were con-
sidered as P1 and the drivers for Windows 7 were consid-

Name single sound unsound bogus nonmodular versions LOC #procs

PrintTokens 5 (6) 5 (6) 0 (0) 0 (0) 0 5 565 18
PrintTokens2 6 (6) 3 (3) 0 (0) 0 (0) 0 10 508 19
Replace 32 (103) 10 (44) 4 (4) 4 (4) 2 32 562 21
Schedule 9 (17) 6 (14) 3 (3) 3 (3) 3 9 410 18
Schedule2 8 (16) 5 (36) 3 (7) 3 (3) 3 10 306 17
TotInfo 12 (12) 6 (8) 2 (2) 2 (2) 2 23 405 7

Space 38 (688) 15 (179) 10 (101) 10 (10) MO 38 9128 136

Total 110 (848) 50 (290) 22(117) 22 (22) 10+ 127 11884 236

Table 2: Name is the name of the benchmark; version is the number of different versions analyzed. LOC is lines
of code and #procs is the number of procedures in each program. The numbers x(y) mean that x versions and
y procedures show warnings. “MO” is a out-of-memory exception.

Name Diff SymDiff single sound unsound bogus nonmodular LOC #procs

firefly 1 1 1 1 1 1 1 634 7
moufilter 4 2 0 0 0 0 0 504 6
pciide 4 0 1 0 0 0 0 182 5
sfloppy 14 6 11 1 1 1 2 3404 20
diskperf 4 4 4 3 2 2 2 2319 24
event 1 1 0 0 0 0 1 555 5
cancel 3 1 0 1 0 0 0 476 5

Total 31 15 16 6 4 4 6 8074 72

Table 3: Name is the name of the benchmark; Diff is the number of procedures syntactically modified between
Vista and Win7 SymDiff is the number of procedures for which the summary is true for the composed procedure.
LOC is lines of code and #procs is the number of procedures in Win7 driver.

int
get process (prio , ratio , job)

int prio ;
float ratio ;
struct process ∗∗ job ;

{
...
if (ratio < 0.0 ||

ratio > 1.0)
return(BADRATIO);

...
∗job = ∗next;
if (∗job) {

...
return(TRUE);

}
else return(FALSE);

}

int
get process (prio , ratio , job)

int prio ;
float ratio ;
struct process ∗∗ job ;

{
...
if (ratio < 0.0 ||

ratio >= 1.0)
return(BADRATIO);

...
∗job = ∗next;
if (∗job) {

...
return(TRUE);

}
else return(FALSE);

}

Figure 5: Difference between “Single” and “Sound”
on schedule2. The line in italics shows the change.

ered as P2. The first column shows the name of the driver.
The second column shows the number of procedures which
were syntactically modified in going from Vista WinDDK
to Win7 WinDDK for the same driver. The third column
shows the number of functions which SymDiff failed to
prove equivalent. Again the results are expected: the num-
ber of alarms are more for absolute correctness (single)
than relative correctness. The sound strategy raises more
alarms than the unsound and bogus strategies.

int upgrade prio(prio , ratio)
int prio ;
float ratio ;

{
int status ;
struct process ∗ job ;
if (prio < 1 ||

prio > MAXLOPRIO)
return(BADPRIO);

if ((status =
get process (prio ,
ratio , &job)) <= 0)

return(status);
job→ priority = prio + 1;
...

}

int upgrade prio(prio , ratio)
int prio ;
float ratio ;

{
int status ;
struct process ∗ job ;

if ((status =
get process (prio ,
ratio , &job)) <= 0)

return(status);
job→ priority = prio + 1;
...

}

Figure 6: Imprecision in bogus

The experiments illustrate the potential of modular DAC
towards providing a set of systematic knobs to narrow down
the set of warnings resulting due to the program modifica-
tion.

7. RELATED WORK
The idea of performing relative correctness checking is

certainly not new; it goes back at least to checking simu-
lation between two designs (usually at different levels of ab-
straction) using refinement mappings [1]. In contrast, DAC
specifications are not necessarily refinement checks; the as-
sertions present in a given program can be used to induce

the relative specification. Moreover we do not require the
specification of a refinement mapping given that the two
programs under consideration are at the same level of ab-
straction. The most popular form of relative specifications
for programs is equivalence checking. Such specifications
come up most naturally while performing and checking com-
piler optimizations [27, 23, 20]. Translation validation [23,
20] is a technique that compares the source program and
the compiled program for equivalence. Recent approaches
including regression verification [9], differential symbolic ex-
ecution (DSE) [22] and SymDiff [16] have used equivalence
checking for comparing different versions of a program, using
a very constrained form of intermediate relative specification
(namely, equivalence). In contrast to these works on equiv-
alence checking, DAC can be used to check more general
relative specifications for evolving programs. Although DSE
provides differential summaries (for loop-free and recursion-
free procedures) for arbitrary program changes, it does not
provide a decision problem that DAC provides. In our ex-
perience with SymDiff, separating intended changes from
unintended ones is the hardest problem when displaying dif-
ferences to a user; DAC provides an intuitive specification
whose violations are expected to be interesting for a user.
Moreover, the DAC specifications need not be very program
specific and can talk about relative specifications (such as
using the Valid predicate for checking memory safety dif-
ferentially) that are fairly abstract and thus applicable to
most programs. Finally, unlike previous approaches we pro-
vide a mechanism to leverage any off-the-shelf program ver-
ifier and invariant inference engine to check these relative
specifications. The idea of comparing two programs with
respect to assertions present has been suggested in previous
works [17, 14, 24], but they do not provide a mechanism to
specify or generate intermediate relative specifications, espe-
cially for loops. Gu et al. [11] investigate the completeness of
a bug fix with distance-bounded weakest precondition, but
cannot provide any soundness guarantees in the presence of
unbounded loops and recursion. Mutual summaries [13] pro-
vide a mechanism for writing relative specifications by using
axioms on pairs of procedures. These mutual summaries
can be seen as postconditions on the composed procedures.
However, the approach cannot leverage any off-the-shelf pro-
gram verifiers and invariant inference engines to discover rel-
ative specifications.

8. CONCLUSION
In this work, we have described DAC as a mechanism

for trading off cost for guarantees obtained while verifying
evolving programs. We have reduced checking DAC to anal-
ysis of a single program that can utilize any program veri-
fication and invariant inference tool. We have provided an
implementation of a simple scheme for automating the in-
ference. We are currently integrating other tools based on
interpolants [19] to generate relative specifications when the
current scheme does not suffice.

APPENDIX
A. LOOPS

In this section, we describe how loops are transformed into
tail-recursive procedures. 1 Although extracting loops as

1The exact Boogie options to be specified are /print-

tail-recursive procedures is fairly standard, our approach dif-
fers from previous approaches [18] by avoiding non-determinism
in modeling the extracted procedure. This is important
when comparing two programs; internal non-determinism
makes program comparison difficult [14]. Our approch re-
quires that the control flow graph is reducible, i.e., there is
only one entry point for a loop. This assumption is true
for almost any program generated from high-level languages
such as C and Java.

We illustrate our approach informally using the example
below where we use goto statements to model various control
flow constructs present in high-level languages:

L0:
s1;
goto L0; //continue
s2;
goto L1; //break/jmp/return
s3;
goto L0; //loopback

L1:
s4;

The loop is replaced by the following code fragment, where
we use “[[s]]” to denote transforming any loops recursively
inside a statement s.

L0: i ’ := call L0 loop(i);
[[s1 ;]]
assume false; //goto L0;
[[s2 ;]]
goto L1; //break/jmp/return
[[s3 ;]]
assume false; //goto L0;

L1:
[[s4 ;]]

Here i represents the non-global variables in scope. In
addition to the call to the tail recursive procedure L0_loop,
the interesting aspect is the duplication of the last iteration
of the loop body after the recursive call. The purpose of
this is to handle goto statements that jump out of the loop
(such as goto L1) [18]. The body of the tail recursive pro-
cedure transforms jumps to the loop head as tail-recursive
calls. The main change to make the extracted procedure
deterministic is to replace the jumps outside the loop by a
statement that restores the state of the return and globals
to the initial state.

proc L0 loop(i): i ’ {
i ’ := i ;
[[s1 ;]]
i ’ := call L0 loop(i ’); // tail−recursive call
return;
[[s2 ;]]
i ’ := i ; g := old(g); return; // restore state
[[s3 ;]]
i ’ := call L0 loop(i ’); // tail−recursive call
return;
}

B. REFERENCES
[1] M. Abadi and L. Lamport. The existence of refinement

mappings. Theor. Comput. Sci., 82(2):253–284, 1991.

Instrumented /extractLoops /deterministicExtract-
Loops.

[2] M. Barnett, B. E. Chang, R. DeLine, B. Jacobs, and
K. R. M. Leino. Boogie: A modular reusable verifier
for object-oriented programs. In FMCO ’05, LNCS
4111, pages 364–387, 2005.

[3] M. Barnett and K. R. M. Leino. Weakest-precondition
of unstructured programs. In PASTE ’05, pages
82–87, 2005.

[4] M. Barnett, K. R. M. Leino, and W. Schulte. The
Spec# programming system: An overview. In CASSIS
’05, LNCS 3362, pages 49–69, 2005.

[5] J. Condit, B. Hackett, S. K. Lahiri, and S. Qadeer.
Unifying type checking and property checking for
low-level code. In POPL, pages 302–314, 2009.

[6] P. Cousot and R. Cousot. Abstract interpretation : A
Unified Lattice Model for the Static Analysis of
Programs by Construction or Approximation of
Fixpoints. In Symposium on Principles of
Programming Languages (POPL ’77). ACM Press,
1977.

[7] L. de Moura and N. Bjørner. Z3: An efficient SMT
solver. In TACAS ’08, pages 337–340, 2008.

[8] C. Flanagan and K. R. M. Leino. Houdini, an
annotation assistant for esc/java. In International
Symposium of Formal Methods Europe (FME ’01),
2001.

[9] B. Godlin and O. Strichman. Regression verification.
In DAC, pages 466–471, 2009.

[10] S. Graf and H. Säıdi. Construction of abstract state
graphs with PVS. In Computer-Aided Verification
(CAV ’97), LNCS 1254, pages 72–83, June 1997.

[11] Z. Gu, E. T. Barr, D. J. Hamilton, and Z. Su. Has the
bug really been fixed? In International Conference on
Software Engineering (ICSE’10), pages 55–64. ACM,
2010.

[12] B. Hackett, M. Das, D. Wang, and Z. Yang. Modular
checking for buffer overflows in the large. In
International Conference on Software Engineering
(ICSE’06), pages 232–241. ACM, 2006.

[13] C. Hawblitzel, M. Kawaguchi, S. K. Lahiri, and
H. Rebêlo. Mutual summaries and relative
termination. Technical Report MSR-TR-2011-112,
Microsoft Research, 2011.

[14] S. Joshi, S. K. Lahiri, and A. Lal. Underspecified
harnesses and interleaved bugs. In Principles of
Programming Languages (POPL’12), pages 19–30.
ACM, 2012.

[15] R. P. Kurshan. Computer-Aided Verification of
Coordinating Processes: The Automata-Theoretic
Approach. Princeton University Press, 1995.

[16] S. K. Lahiri, C. Hawblitzel, M. Kawaguchi, and
H. Rebêlo. Symdiff: A language-agnostic semantic diff
tool for imperative programs. In Computer Aided
Verification (CAV’12), volume LNCS 7358, pages
712–717, 2012.

[17] S. K. Lahiri, K. Vaswani, and C. A. R. Hoare.
Differential static analysis: opportunities,
applications, and challenges. In Workshop on Future
of Software Engineering Research (FoSER’10), pages
201–204. ACM, 2010.

[18] A. Lal, S. Qadeer, and S. K. Lahiri. A solver for
reachability modulo theories. In Computer Aided

Verification (CAV’12), volume LNCS 7358, pages
427–443, 2012.

[19] K. L. McMillan. An interpolating theorem prover. In
Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’04), volume LNCS 2988,
pages 16–30, 2004.

[20] G. C. Necula. Translation validation for an optimizing
compiler. In ACM SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI ’00), pages 83–94, 2000.

[21] D. Notkin. Longitudinal program analysis. In
Workshop on Program Analysis For Software Tools
and Engineering (PASTE ’02), page 1. ACM, 2002.

[22] S. Person, M. B. Dwyer, S. G. Elbaum, and C. S.
Pasareanu. Differential symbolic execution. In
SIGSOFT FSE, pages 226–237, 2008.

[23] A. Pnueli, M. Siegel, and E. Singerman. Translation
validation. In Tools and Algorithms for Construction
and Analysis of Systems (TACAS ’98), pages 151–166,
1998.

[24] D. A. Ramos and D. R. Engler. Practical, low-effort
equivalence verification of real code. In Computer
Aided Verification (CAV’11), volume LNCS 6806,
pages 669–685, 2011.

[25] Software-artifact Infrastructure Repository. Available
at http://sir.unl.edu/portal/index.html.

[26] O. Sokolsky and S. A. Smolka. Incremental model
checking in the modal mu-calculus. In Computer Aided
Verification (CAV’94), volume LNCS 818, pages
351–363, 1994.

[27] R. Tate, M. Stepp, Z. Tatlock, and S. Lerner. Equality
saturation: a new approach to optimization. In
Principles of Programming Languages (POPL ’09),
pages 264–276, 2009.

[28] The Boogie Verifier. Available at
http://boogie.codeplex.com.

[29] Verisec Suite. Available at
http://se.cs.toronto.edu/index.php/Verisec_Suite.

[30] Microsoft Windows Driver Kit (WDK).
http://www.microsoft.com/whdc/devtools/ddk/default.mspx.

