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ABSTRACT 
Enabling phones to infer whether they are currently in a 
pocket, purse or on a table facilitates a range of new inter-
actions from placement-dependent notifications setting to 
preventing “pocket dialing.” We collected data from 693 
participants to understand where people keep their phone in 
different contexts and why. Using this data, we identified 
three placement personas: Single Place Pat, Consistent Ca-
sey, and All-over Alex. Based on these results, we collected 
two weeks of labeled accelerometer data in-situ from 32 
participants. We used this data to build models for inferring 
phone placement, achieving an accuracy of approximately 
85% for inferring whether the phone is in an enclosed loca-
tion and for inferring if the phone is on the user. Finally, we 
prototyped a capacitive grid and a multispectral sensor and 
collected data from 15 participants in a laboratory to under-
stand the added value of these sensors. 

Author Keywords 
Context awareness; mobile sensors; phone placement 

ACM Classification Keywords 
H.5.m. Information interfaces and presentation (e.g., HCI): 
Miscellaneous.  

INTRODUCTION 
Throughout most of the world, mobile phones are ubiqui-
tous – it is truly the uncommon case to find someone who 
does not own a mobile phone. While a few studies have 
examined the proximity of people to their phones [1,8] and 
where people have them while out and about [4], we still 
know relatively little about how people manage the burden 
of carrying a device. While intuitively we know the set of 
places that people put their phones (e.g. pocket, bag, table), 
we lack much in the way of real facts. What are the possible 
places that people keep their phones? What are the factors 
that influence where a person puts her phone?  

If phones could reliably infer where they were placed, an 
entire set of new applications would be possible, including: 
placement-dependent notification settings, the ability to 

prevent accidental input when the phone screen had not 
been locked, supporting flexible authentication schemes, 
and adding context to other information that is being sensed 
and shared from the phone.  

Our goal is to build a broad understanding of how people 
manage where they keep their phones across different con-
texts (e.g. walking, driving, at home), and assess the capa-
bility of a variety of sensors to infer where the phone is 
being kept. First, we carried out a series of in-person inter-
views and a Mechanical Turk survey to understand how 
people manage the location of their phone in a variety of 
contexts. From this dataset, we identified three phone 
placement personas: Single Place Pat, Consistent Casey and 
All-over Alex, who have distinct placement behaviors.  

Informed by our understanding of phone placement, we 
then collected two weeks of accelerometer data from 32 
participants’ personal mobile devices. Using the experience 
sampling method (ESM), participants recorded how the 
device was being stored in-situ. To evaluate algorithms for 
inferring the placement or proprioception of the phone, we 
built and evaluated models using features from the in-situ 
accelerometer data. These models achieve accuracies of 
85% for two different two-class models (Enclosed vs. Out 
and On Person vs. Not) and 75% for a four-class model 
(Pocket, Bag, Out, Hand).  

Finally, we explored opportunities to improve the accuracy 
of the accelerometer-only models, using prototype sensors 
that leverage capacitive sensing (previously unexplored for 
this task), multi-spectral properties, and light/proximity 
sensing. We compare data gathered with these sensors in a 
laboratory setting, with resulting models achieving top ac-
curacy levels of 85% to 100%.  

Our results shed new light on where the phone is being kept 
and the tradeoffs between different sensing approaches for 
inferring phone placement. Specifically:  

• We contribute an in-situ assessment of using accel-
erometer data for inferring phone placement, where 
prior work has focused exclusively on the laboratory. 

• We assess the value of capacitive sensing for inferring 
phone placement, a modality not previously explored 

• We directly compare new and existing sensors, where 
previous work has only examined the value of individ-
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ual sensing techniques without a direct comparison to 
related sensing techniques. 

RELATED WORK 
Prior studies on phone proximity, placement, and methods 
for inferring placement informed our research. 

Studies Of Phone Placement 
Recently, researchers have questioned how often a person’s 
phone is in their immediate proximity. In 2006, Patel et al. 
found broad variation across participants with individual 
proximity levels for the phone being within arm’s reach, 
ranging from 17% to 85%. Whether or not the person was 
home, sleeping, or if it was the weekend had the biggest 
impact on behavior [8]. Dey et al. replicated that study in 
2011 with similar results: the phone was within arm’s reach 
53% of the time and within the room 88% of the time [1]. 
They also highlighted that a user’s context and routine af-
fected phone proximity, for example leaving the phone out 
when at home and carrying it in a pocket outside of the 
home. Our research complements these studies by examin-
ing the question of where the phone is being kept. 

More closely related, in 2005, Ichikawa, et al. conducted a 
large-scale interview study asking 419 people in Helsinki, 
Milan and New York where they keep their phones when 
they are out, why they chose this place, and if it was the 
usual place [4]. Their results were strongly divided by gen-
der, with 57% of men reporting that their phone was in their 
trouser pocket (8% for women), and 76% of women report-
ing that their phones were kept in a shoulder bag or back-
pack (10% for men). They also reported reasons that partic-
ipants identified for placing the phone outside of the normal 
location, including variations in clothing (e.g. no pockets), 
expecting a phone call, or not wanting to be interrupted. 
Informed by this research, our phone placement interviews 
look more broadly at placement in different contexts, which 
also enables us to develop phone placement personas. Our 
work contributes the first large-scale dataset that examines 
where people keep their phones throughout the day and 
how they make that decision. 

Inferring Phone Placement 
To better understanding where people keep their phones, 
we explore the extent to which phones might be able to 
infer their placement. Several efforts have focused on de-
tecting from accelerometer data where on the body an item 
is located while a user is walking [5,14], and also in combi-
nation with gyroscope data [11]. These systems leverage 
motion constraints of human anatomy to infer phone loca-
tion, all reporting accuracies of approximately 90% in la-
boratory experiments. None of these approaches attempt to 
classify any off-body locations (e.g., in a bag or on a desk). 

Other approaches aim to be activity invariant by incorporat-
ing data from other sensors either in addition to or instead 
of the accelerometer. Sensay [12] used a light sensor in a 
lab environment to determine when a phone was in a trou-

ser pocket or out of the pocket. Discovery [7] used features 
derived from listening on the microphone and a multi-round 
classification approach to infer whether the phone was in a 
pocket or not with approximately 80% accuracy. 

The Polite Ringer II system [13] uses a combination of gy-
roscope, accelerometer, compass, light, and proximity sen-
sors to infer when the user picks up the phone to receive a 
call so that the ringtone volume could be muted when the 
phone is picked up. HandSense [15] contains two capacitive 
sensors on each side of a phone-shaped prototype to deter-
mine how the user is holding the device, which they can use 
to classify six different hand-grip configurations.  

In contrast to these unobtrusive techniques, others have 
explored approaches that could be observable by users. For 
example, activating the vibration motor on the device and 
detecting movement using the accelerometer [10], and a 
combination of active vibration and the emission of short 
‘beeps’ while listening on the microphone and accelerome-
ter to fingerprint the environmental response [6]. A poten-
tially less noticeable active approach uses a photo resistor 
and a light-to-frequency converter for sensing light from 
five LEDs (red, green, blue, infrared, and ultraviolet) [3]. 
Using their device, Harrison and Hudson tested 27 different 
placements and achieved an average accuracy of 87% in 
their testing. We replicated this device and include it in our 
laboratory study for comparison.  

Overall, this wide range of previous inference approaches 
covers disjoint pieces across the range of possible phone 
placement sensing methods with data collections and exper-
iments conducted in controlled laboratory settings. Our 
research goes beyond previous contributions by collecting 
data in-situ and directly comparing a range of existing and 
new sensing techniques for inferring phone placement.  

PHONE PLACEMENT INTERVIEWS 
We began our investigation of phone placement with 50 
short, semi-structured interviews with desk-based office 
workers in their usual office setting at our company. We 
approached participants in their offices and if they agreed to 
participate we asked: 

• What was the current location of her mobile 
phone. 

• Where she normally keeps the phone at work, at 
home while sleeping and awake, in the car, and 
while out walking around. 

• How she decides where to put her phone. 
• In how many of ten pre-identified places had she 

ever put her phone, and which of those places had 
the phone been in during the past 24 hours 

These interviews lasted five to ten minutes, and participants 
were offered entry into a raffle for a $30 dining voucher. In 
addition, we administered a modified version of this same 
survey (omitting the “right now” question) to participants in 



 

 

 

our ESM and laboratory studies (some participated in both 
and were only interviewed once). We had a total of 93 (37 
female) office worker participants (OWork). 

To understand the broader generalizability of our results, 
and avoid any possible bias from an internal office worker 
population, we deployed a survey based on our interview 
questions on Amazon’s Mechanical Turk (MTurk) to 600 
participants (242 female) located in the U.S. and paid each 
respondent U.S. $0.25. We made a few formatting changes 
to suit the nature of an online survey. Most notable is that 
instead of providing a free-text response for “How do you 
choose where to keep your phone?” we provided checkbox-
es with the categories identified from the interview re-
sponses. There was some evidence MTurk respondents 
have more diverse jobs than our internal population, e.g. 
65% spend less than 6 hours on a computer. 

After carefully comparing responses from the OWork and 
MTurk populations, we determined they were similar in 
most respects (e.g. median number of places participants 
reported putting their phones, most common places to put 
the phone right now, gender differences, etc.) giving us 
confidence both in the validity of the MTurk survey re-
sponses and generalizability of the behaviors observed. 
Given the similarity, we present all results together and note 
any large differences.  

In total, we report on data from 693 respondents (M: 414, 
F: 279). Most of our participants were between 20 and 39 
years old (76%, 527). Some MTurk participants were under 
20 (8%) and the rest of our participants were 40 and older. 
Respondents’ phone OSs were distributed across Android 
(39%), iPhone (24%), feature phones (22%), Windows 
Phone (8%), Blackberry (4%) and the rest (2%) were 
MTurk participants that did not indicate operating system. 
MTurk respondents had a larger percentage of Android and 
feature phones than the OWork respondents. 

How many places do people put their phone? 
From prior work [1,4,8], we identified 10 places that partic-
ipants might put their phone: a Front Trouser Pocket, Back 
Trouser Pocket, Jacket Pocket, Shirt Pocket, Purse, Back-
pack/Bag, Case on Belt, Out on Table or Desk, Out in Car, 
and In Hand. Of these, participants reported putting their 
phone in 2.8 places on average (med: 3, max: 8) in the last 
24 hours, and 4.8 places on average overall (med: 5, max: 
9). Our female respondents reported keeping their phones in 
significantly more places than men both overall (5.3 vs. 4.5, 
t(691) =7.06, p<0.001) and for the previous 24 hours, (3.1 
vs. 2.6, t(691) = 5.97, p <0.001). Additionally, 8% of par-
ticipants used a free response Other option to mention plac-
es including bed, nightstand, kitchen counter, and bra. 

Where is the phone? 
We asked 650 participants (M:394, F:256) where their 
phone was Right Now, (excludes ESM and lab study partic-
ipants). The most common location was Out on Table or 

Desk reported by 68% of respondents. Next was Front 
Trousers Pocket (13%), Purse (4%), Bag/Backpack (2%), 
Hand (2%), Back Trousers Pocket (1%), Case (1%), Car 
(1%), and Shirt (<1%). The places mentioned by the 7% of 
participants that answered Other, mostly MTurk respond-
ents, suggest participants were not in an office including 
having the phone on a bed or couch. 

Although an equivalent percentage of male (67%) and fe-
male (69%) participants reported having their phone on the 
table right now, we saw a similar gender difference in 
phone placement around trouser pockets and purses to what 
Ichikawa [4] observed. A significantly higher percentage of 
men (20%) reported having their phone in their front trou-
ser pocket compared to women (4%, Pearson chi-square 
χ2(1, N=650)=35.48 p<0.001). Conversely, all 27 partici-
pants that reported having their phone in their purse right 
now were female (11% of females asked). 

More generally, the most common places all 693 partici-
pants reported putting their phones in the last 24hrs (partic-
ipants could specify multiple) were similar to the Right 
Now results. On a Table or Desk was selected by 83% of 
respondents followed by Front Trouser Pocket (64%), Car 
(51%), Purse (28%), Bag (19%), Back Trouser Pocket 
(16%), Jacket (13%), Shirt Pocket (4%), and Case on Belt 
(3%). Not surprisingly, a significantly larger percentage of 
men (84%) put their phone in their Front Trouser Pocket in 
the last 24 hours as compared to women (34%, χ2(1, 
N=693)=178.48 p<0.001). We did find it somewhat surpris-
ing that the 16% of participants who indicated they used a 
Back Trousers Pocket (16%), had a higher percentage of 
women (23%) compared to men (11%, χ2(1, N=693)=15.74 
p<0.001). Again, a significantly higher percentage of wom-
en (69%) reported putting the phone in a Purse compared to 
men (<1%) and also for non-purse bags (29% vs. 12%, χ2(1, 
N=693)=31.26, p<0.001).  

Where is the phone for different contexts? 
Table 1 shows where participants told us they put their 
phone in four different contexts: Walking, Driving, Home 
While Awake and in the Office. Participants could indicate 
more than one location and the average number of locations 
ranged from 1.4 (Driving) to 1.6 (Walking). For simplicity 
we merged three categories that received few responses into 
other categories. Trousers includes both front and back 
pockets as back pocket was less than 1% except when 
Walking when it was 8%. Jacket includes shirt pocket 
which was less than 1% for every context and Other in-
cludes case on belt which was 3% or less for every context.  

At Home or in the Office about half our participants put 
phones on a table, and slightly under half of our participants 
keep their phones out while Driving. Response rates ap-
peared consistent across men and women for these places. 
Combinations of contexts and places for which a signifi-
cantly higher percentage of male or female participants 



 

 

 

indicated that combination are annotated with an M or F re-
spectively. Again we see the preference of men for trouser 
pocket and women for purses across contexts. We were 
somewhat surprised how few people indicated their phone 
was in a purse or bag at Home. The larger percentage of 
Other locations for Driving include passenger seat, cup-
holder, and center console. In several of the at-Home Other 
responses, participants indicated they had no particular 
place for the phone and were likely to carry it with them.  

We also asked participants about where they kept their 
phone while sleeping. Based on the interviews we added the 
options of nightstand and bed to the MTurk survey. 
Nightstand (39%), Table (35%), and Bed (16%) accounted 
for 90% of the 920 locations participants reported. We were 
surprised by the prevalence of bed responses; two partici-
pants even used the Other option to tell us they kept the 
phone under the pillow. Another surprise was that 16 of the 
Other responses were floor. In the interviews, participants 
explained that the phone had to be on the floor because that 
was the location of the nearest plug to the bed. The only 
gender difference was that a significantly larger percentage 
of male respondents (52%) specified table as a location as 
compared to women (37%, χ2(1, N=693)=16.37 p<0.001).  

How consistent are participants?  
To understand whether participants tended to choose a sin-
gle location to keep their phone across activities (e.g. in 
their trouser pocket or purse), used a consistent but different 
location for different context (e.g. purse while walking, out 
in car when driving), or had many different places they put 
their phone we examined the number of places respondents 
indicated they put their phone for each context. 

Only 7% (47) participants indicated they put their phone in 
the same place regardless of activity or location, we termed 
this group Single Place Pats. Given the common usage of 
the front trouser pocket by men, we initially thought these 
participants might all be men. We found to our surprise this 
group had a similar percentage of male (32, 8% of male 
respondents) and female (15, 5%) participants. However, 
not surprisingly the single location where participants kept 
the phone differed by gender. Male participants primarily 
used the front trouser pocket (28 participants, 25 male), and 
women used purses and bags (13 total, 11 female). In addi-
tion a few participants indicated their single location was a 
belt case (2), car (2), jacket (1), or back trouser pocket (1).  

37% (259) of our participants were Consistent Caseys who 
specified a single, but different place for each of walking, 
driving, and at home. Again both men (38%) and women 
(37%) reported this behavior. Slightly more than half of 
these Consistent Caseys (57%) specified a different place 
for each activity, while the rest (43%) had two of the same 
places and one different; consistent with Single Place Pats, 
front trouser pocket was the most common duplicated place 
for men and purse for women.  

The final group of participants with distinct placement be-
havior were All-over Alexs who reported more than 2 places 
for each of walking, driving and at home when awake. This 
was 17% of our participants (121) and was made up of sim-
ilar percentages of men (16%) and women participants 
(19%). These participants indicated on average 7.6 different 
places across Walking, Driving and at Home.  

How do you decide where to keep your phone? 
To understand how participants decide where to put their 
phone, we analyzed the responses to an open-ended ques-
tion asked during the OWork interviews. First, one author 
generated codes for 50 of the responses. Then two authors 
independently coded all responses. Conflicting codes were 
resolved through discussion. These codes were used as op-
tions on the MTurk survey. We believe the ability to select 
reasons rather than provide a free response explains why 
MTurk participants on average selected more reasons (2.8) 
as compared to our OWork interviewees (1.7). Note that the 
percentages do not add up to 100 because responses could 
be coded for multiple categories. We saw no gender differ-
ences in the reasons reported. 

Accessibility/Receive Notifications (83%): Participants in 
this category wanted to have their phones on their body or 
as convenient as possible to reach. 426 of the 575 partici-
pants (74%) in this category explicitly noted they wanted 
the phone to be close so that they would be able to receive 
notifications and calls. As one participant said “[I] need to 
be able to hear/feel it, needs to be accessible, so no purse.” 

Don’t Lose/Habit (77%): These participants had a default 
location where they would put their phone, often because 
they did not want to forget where they had put their phone. 

 Walk Drive Home 
(awake) 

Office* 

Trousers 50% M+ 26 % M+ 20% M+ 24% M+ 

Purse 14% F+ 13% F+ 5% F+ 7% F+ 

Bag 8% F 5% F 2% 7% 

Jacket 9% 4% M 2% 7% 

Hand 14%  3% 11% 0 

Table 1% <1% 52% 49% 

Out In Car <1% 42% 1% 1% 

Other 4% 7% 7%  4% 

Total 1083 1002  1039  135 

Table 1: Where participants place their phone in different 
activities and locations. Respondents could indicate more 
than one place. Most popular place is bolded per column. 

*N=693 for each column except office where locations were 
only asked of the 93 OWork participants. F denotes a signifi-

cantly higher percentage of female participants indicated 
this location based on Chi-square, M for males. + denotes 

Chi-square significance p< 0.001, all others p < 0.01 



 

 

 

Of the 537 people in this category, 383 (71%) people ex-
plicitly indicated not wanting to lose their phone. 

Safety of the Phone (49%): Participants in this category 
wanted to ensure that their phone was secure and protected. 
Specific concerns included falling out of a pocket, getting 
scratched by keys, or being sat on in the back pocket. Inter-
estingly, a larger percentage of All-over Alex participants 
(67% ) indicated safety as a decision factor than Consistent 
Caseys. (47%, χ2(1, N=380)=13.04, p<0.001). 

Comfort (38%): Participants identified that some places 
they would otherwise like to keep the phone were uncom-
fortable. A few participants were concerned about health 
and radiation, but for most the concern was physical dis-
comfort from keeping the phone in a trouser pocket, partic-
ularly while sitting. Comfort concerns may lead to more 
locations; a higher percentage of All-over Alex participants 
(50%) selected comfort compared to Single Place Pats 
(23%) and Consistent Caseys (32%) (χ2(1,N=169)=10.63, 
p<0.001, χ2(1,N=380)=12.36, p<0.001). 

Minimize Distraction (11%): Participants put their phone 
in particular places so that it would not interrupt them. This 
is the opposite of the first category, although some partici-
pants fit into both categories: “alarm at night so [it needs to 
be] close by, pockets aren't big enough so hand or purse, 
keep it close by unless [I] don't want to be disturbed.” 

Other (3%): A few participants mentioned other reasons, 
the most common was charging as a factor that affects 
where they put their phone. e.g. “[I] like to keep it plugged 
[in], tend to keep it nearby, comfort is important.”   

ESM PHONE PLACEMENT STUDY 
To collect sensor data in-situ that we could use to train and 
evaluate phone placement models we used the experience-
sampling method (ESM) to collect accelerometer data from 
32 participants’ personal smartphones in conjunction with a 
ground-truth label describing the phone’s placement. These 
in-situ labels complement the retrospective self-report data 
from the Phone Placement interviews. While interview par-
ticipants were undoubtedly as complete as possible, in-situ 
survey data enriches our understanding of where users 
choose to keep their phones.  

Data Collection 
We built a data collection application, “Where’s Your 
Phone?” (WYP) on the Windows Phone 7.5 platform. WYP 
collects 10 seconds of accelerometer data (three dimensions 
at 50 Hz) roughly every 30 minutes. It then prompts the 
participant to answer “Where was your phone at 
XX:XXpm?” Below this question, participants were given 6 
choices including Other and I Don’t Know. Each category 
had a few sub-categories. (See Table 2 for all 23 sub-
categories). We chose categories based on the Phone 
Placement interview responses to minimize the number of 

situations when ESM participants would need to enter free-
text Other responses. 

Unanswered surveys expired when the next set of accel-
erometer data was collected and unlabeled accelerometer 
data was deleted. Participants specified a bedtime at which 
WYP turned off and a wake time at which it resumed. Par-
ticipants could also “snooze” WYP for up to two hours at a 
time. Survey responses and corresponding accelerometer 
data were automatically uploaded to a server. 

We recruited 32 participants (16 M, 16 F) from a Windows 
Phone 7.5 email list. Fifty-nine percent of participants were 
between 20 and 39 years old and the rest were older. Partic-
ipants received $10 plus $0.25 per survey response (max $4 
/day) as a gift card at the conclusion of their two week 
study period after a short final interview.  

ESM Survey Responses 
Our participants submitted 5,524 ESM responses, although 
the number submitted varied across participants (med: 
147.5, min: 29, max: 358). The total number of responses 
from male (52%, 2847) and female (48%, 2677) partici-
pants was similar. It is important to acknowledge the poten-
tial limitations in the comprehensiveness of the ESM re-
sponses; times when phones are away from their owner 
would be under-reported.  

We believe the ground-truth labels are most useful for 
showing the breadth of places participants placed their 
phones, especially the additional sub-categories we coded 
from the Other responses (see Table 2). To account for the 
differing number of responses per participant, we calculated 
how many different participants reported putting their 
phone in a particular place in addition to total number of 
responses for a category, so we could see which categories 
are common across participants.  

Out was by far the most common top-level category with 
63% of responses (3504) contributed by all 32 participants. 
The sub-category Desk made up 47% (1646) of these from 
31 participants, then In-Hand (564, 32 participants), Table 
(442, 28 participants), Counter (314, 23 participants), and 
Nightstand (241, 23 participants). Several interesting places 
matching survey responses were reported in the Out-other 
responses across participants including couch/chair (134 
from 24 participants), bed (53 responses from 14), floor (31 
responses from 13), lap (19 from 7) and shelf (19 responses 
from 5). We saw only one difference in reporting based on 
gender, 61% of the Table responses came from women.  

Pocket was the next most frequently reported top-level cat-
egory (22%, 1230, from 29 participants). Consistent with 
the survey data, we saw gender differences, 74% of Pocket 
responses were from men and 26% from women. The Front 
Trousers Pocket was the most common sub-category (984, 
26 participants, 15 M, 11 F). That gender split seems sur-
prising; however, even though 11 women reported Front 



 

 

 

Trousers Pocket at least once, most of the responses (76%) 
are from men. Conversely, the 413 Bag reports (8% overall, 
18 participants contributing) are 91% from women.  

Though responses about phone placement while Driving are 
less frequent (270 from 26 participants), they do highlight 
the diversity of places people put their phones. Responses 
were split between Cup Holder (109, 15 participants), Pas-
senger Seat (72, 13 participants), Cradle (48 from 7), Lap 
(15 from 9 participants) and others with smaller numbers 
including the Center Console, Dashboard and Door. Note 
that participants do not necessarily have a single location in 
the car; half of participants reported more than one location. 

Using their Phone Placement interview data we calculated 
whether any ESM participants were Single Place Pats  
(1 participant), Consistent Caseys (6) or All-Over Alexs (4). 
The other participants either did not clearly indicate a single 
preferred location (overall or per context) or did not have 
enough locations to be considered All-Over Alexs.  

Participants’ ESM response behavior seemed to correspond 
with this categorization. 56% of the 307 responses by the 
Single Place Pat participant indicated his phone was in his 
front trouser pocket. He also only ever reported having his 
phone in 8 of the 23 sub-categories. Matching the behavior 
of having a few consistent locations, the three most com-
mon places the six Caseys reported having their phones 
accounted for an average of 73% of their responses. They 
also only ever reported having their phone in an average of 
9.2 different sub-categories. From the four All-over Alexs, 
we saw reports from more sub-categories, 11 on average). 
Three of the All-over Alex ESM participants had over 100 
ESM responses, which were fairly evenly spread across 
sub-categories; their top three categories accounted for only 
61% of responses on average and they had on average 7 
categories that each received fewer than 10% of responses. 

The GPS data we collected with each ESM response al-
lowed us to categorize responses that happened at a partici-
pant’s Home, Work, Other or Unknown location (11% of 
responses do not have GPS data due to technical failures). 

We did not observe any surprises. For example, 69% of 
responses for the car were made in Other locations; people 
reported their phone being Out roughly evenly across Home 
(32%), Other (32%), and Work (26%); and Pocket is much 
more common in Other places (50%) than at Home (16%) 
or Work (12%).  

The ESM study highlights the rich diversity of places that 
participants put their phones and allowed us to collect la-
beled sensor data in-situ. 

Modeling Phone Placement from In-Situ Data 
To evaluate whether phones can infer the places that people 
put their phones in the ESM and Phone Placement studies, 
we used the labeled accelerometer data collected in-situ by 
our ESM participants. We extracted the following features 
over each axis of one-second windows of accelerometer 
data as inspired by previous work [5,11,13,14]: 

• mean; variance; RMS 
• interquartile range; 25%, 50%, 75% quartiles 
• the sum of detail coefficients across the first 5 

wavelet levels 

We used these features to evaluate models for three classi-
fication problems (below). All models were built using the 
Weka Tooklkit’s SMO SVM with a polynomial kernel [2]. 
We chose these features and the SMO algorithm by exper-
imenting with pilot data we collected earlier. Results are 
reported from a leave-one-participant-out cross-validation. 

We chose each of the following classification problems 
based on the results from the studies in the previous section:  

Enclosed or Out: whether the phone is out and potentially 
visible to a user, or if it is put away. Applications for this 
model include preventing pocket dial, and knowing whether 
or not visual notification mechanisms (e.g.: flashing light or 
screen) will be noticed. This model achieved a mean accu-
racy of 85.3%. The confusion matrix can be seen in Table 
3a, along with precision and recall values. 

On Person or Not: whether or not the phone is on the user. 
Applications for this model include dynamic notification 

Category Original Sub-Categories Sub-Categories from  
“Other” responses 

Enclosed 
Class 

On Person 
Class 

4-Class 

Bag Backpack, purse, shoulder 
bag, other 

None Enclosed Other Bag 

Car Cradle, cup holder, dash-
board, lap, passenger seat, 
other 

Center console, pocket on 
door 

Out Other (except 
for ‘lap’) 

Out 

Out Table, nightstand, in hand, 
desk, counter, other 

Couch/chair, couch/chair arm, 
cradle/charge station, floor, 
lap, shelf 

Out Other (except 
for ‘in hand’ and 
‘lap’) 

Out (except 
for ‘in hand’) 

Pocket Trousers front, trousers back, 
shirt, jacket, other 

Apron, armband, holster Enclosed On Person Pocket 

Table 2:  Phone placement labels and corresponding classifications. Note that two more categories existed that were not includ-
ed for any classifications: “Do not know”, which participants answered when they weren’t sure where the phone was, and 

“Other” responses which we could not code into any of the existing or newly created categories. 
 



 

 

 

preferences (a primary concern from survey respondents, 
e.g. whether or not to vibrate) and progressive authentica-
tion (whether the user has to reauthenticate, based on 
whether she could have been separated from the phone 
since last authenticated). This model achieved a mean accu-
racy of 85.7% (Table 3b). 

In Bag, In Pocket, Out, or In Hand: where the phone is at 
a finer granularity. This is useful for the “find my phone” 
functionality (e.g., “your phone has been in a bag since 
11:22 am,” a concern expressed in survey responses) and 
for sharing the user/phone’s context to provide social 
awareness. The performance of this model was lower than 
for the previous two models, as we expect when increasing 
the number of classes. The model achieved a mean accura-
cy of 75.4%, with Out being the most accurately classified, 
followed by Pocket. Bag and Hand performed much worse.  

Error Analysis and Discussion 
In the case of the four-class model, several notable items 
stand out. First, it is important to note that Bag and Hand, 
which performed quite poorly, also had distinctly fewer 
instances in our dataset than Pocket and Out.  

The accelerometer can be thought of as capturing the orien-
tation of the device, however unlike sitting out on a table 
(where it usually sits flat either face-up or face-down), a 
phone may be placed in a bag any number of ways, depend-
ing on the style of the bag, the orientation of its pockets, 
etc. Furthermore, at any given time a bag may or may not 
be being carried by a person, which could make some of 
these features confusing with other classes (e.g, pocket). 

INFERING PLACEMENT WITH MORE SENSORS 
To assess what sensing modalities would be most useful to 
augment an accelerometer-only approach to inferring phone 
placement, we conducted a laboratory study. While a lab 
study loses some of the external validity of our previous in-
situ study, we were able to test a variety of prototype devic-
es that we could not deploy in the field. 

Additional Sensing Modalities 
With a focus on different ways of disambiguating confusing 
situations from the ESM study, we brainstormed sensors 

(some based on prior work) that might improve the classifi-
cation. We identified several criteria as important for the set 
of sensors we would test. First, we wanted to maximize 
privacy and minimize computational expense, in hopes that 
our solution could run continuously in the background on 
mobile devices. These criteria combined to defeat computer 
vision or audio-based approaches. Another criterion was 
that the techniques should ultimately not disturb the user. 
This eliminated some of the previously proposed tech-
niques, which emit sound [6] or activate the vibration motor 
[10]. This left us with the following sensors: 

Proximity Sensor and Light Sensor: These sensors al-
ready exist on many of today’s mobile devices. It would be 
preferable to collect this data in the field, but a combination 
of technical limitations for accessing those sensors and the 
variety of configurations that lacked these sensors on the 
device made data collection during the ESM study infeasi-
ble. In this study, we collected the data using a development 
phone that gave us access to all sensors on the device. 

Two-Dimensional Capacitive Array: While nearly all 
mobile devices use capacitive technology in their 
touchscreens, most processing of the capacitive input is 
done in hardware. As a result, we built a prototype capaci-
tive-sensing device similar to that of Saponas, et al.’s Pock-
etTouch [9]. Our device reports a raw capacitance signal 
from a 10 by 20 grid at roughly 100 hertz. The device was 
designed in a form factor similar to that of today’s mobile 
phones (see Figure 1a). The most apparent capability of this 
sensor is detecting when a hand grasps a phone. Perhaps 
less obvious is that this sensor also detects the presence of a 
person’s leg through the lining of a trouser pocket. 

Multi-Spectral Sensor: Following as closely as we could 
to the approach taken by Harrison and Hudson [3], we con-
structed a sensing device comprised of red, green, blue, 
ultraviolet, and infrared LEDs, a photo resistor, and a 
TSL235R light-to-frequency converter (Figure 1bc). The 
device was controlled by an Arduino Pro Mini, logging 
readings from the two sensors to an on-board microSD 
card. While the current form of the device does not fully 
satisfy our criterion of not disturbing the user, we believe 

a) Enclosed vs. Out b) On Person vs. Other c) Pocket vs. Bag vs. Out vs. Hand 

 enclosed out 

enclosed 1690 599 

out 337 3742 

precision 0.74 0.92 

recall 0.83 0.86 
 

 onPerson other 

onPerson 2335 402 

other 511 4120 

precision 0.85 0.86 

recall 0.89 0.82 
 

 pocket bag out hand 

pocket 1570 25 73 335 

bag 141 32 85 28 

out 188 25 2961 194 

hand 124 44 308 235 

precision 0.78 0.11 0.88 0.33 

recall 0.78 0.25 0.86 0.30 
 

Table 3: Results from the ESM study for each of three classification prob-
lems. For all three confusion matrices, the labels on the left represent the 
correct class, and the labels on the top row indicate the predicted class.  



 

 

 

that a carefully engineered version of this sensor might be 
nearly unnoticeable. Like the capacitive sensor, we con-
structed this device to mirror the form factor of a phone. 

Data Collection 
Using these three devices (development phone, capacitive-
sensing prototype, and multi-spectral sensor), we collected 
data from 15 participants (6 Female). 73% of participants 
were between 20 and 39 years old and the rest were older.  

We asked participants to bring anything that they might 
normally put their phone into including jackets, purses, or 
other bags. We collected data from each participant in any 
of the following places that they report having kept their 
phone: front trousers pocket, back trousers pocket, jacket 
pocket, bag/purse, and hand. We chose these based on our 
Phone Placement survey responses. To increase the external 
validity of this study, we did not have participants put our 
sensing devices in places that they would not normally put 
their phone. While this meant that we would capture more 
data for some participants than for others, it also maximizes 
the realism of our collected data. 

For each place participants normally keep their phone, they 
completed a series of activities to simulate the various con-
ditions that the device might encounter in everyday life 
while in the placement. For all placements except 
bag/purse, the activities were: sitting on a couch, sitting on 
a desk chair, standing in place, and walking around. We did 
not have participants sit for the back trousers pocket place-
ment. For the bag/purse we had participants let the bag sit 
on the floor, stand while holding the bag, and walk while 
carrying the bag. Participants spent 20 seconds on each 
activity. Because each device had at least one sensor that 
was directional (e.g., toward leg in a trouser pocket), we 
collected all data for each placement with each device fac-
ing both inwards and outwards. We collected from two de-
vices at a time to minimize the number of trials. 

Surfaces 
Unlike the other placements, most of the variation in plac-
ing a device on a surface involves finding a variety of sur-
faces. Thus we collected the surface-specific data ourselves, 
following a similar process to the other placements: we 
recorded data from each device in the two orientations of 

facing-up and facing-down. In total we collected data for 18 
surfaces, including tables, desks, chairs, couches, on and in 
a metal filing cabinet, and even on a pillow. 

Assembling the Data 
For each placement (e.g., pocket or desk), we collected data 
from our three prototypes in two orientations each (e.g. 
facing-in and facing-out). We assembled these six sensor 
recordings for each placement into a single virtual-
recording. This simulates a virtual device with the union of 
sensing capabilities from our three prototypes. This means 
that a single instance of collected data included: capacitive 
data (facing forward and backward), multispectral data (fac-
ing forward and backward), phone light/proximity sensor 
data (facing forward and backward), and phone accelerome-
ter readings. We only considered one set of phone accel-
erometer readings because the second set from the phone 
facing the other direction was redundant. 

Feature Extraction 
We extracted features from the accelerometer facing one 
direction and our other sensors facing two directions. This 
allowed us to simulate a device with sensors on two sides. 

Following Harrison and Hudson’s approach, our multi-
spectral features are one reading from each of the light-to-
frequency converter and photo resistor for each of no-light, 
red, blue, green, UV, and IR. For the light and proximity-
sensor on the phone, we took the mean over the 20 second 
window of the ambient-light level and the binary proximity 
state. Lastly, we took the mean over a one second window 
at each “pixel” in the capacitive sensing grid and computed 
three features over the grid: mean over pixels, median pixel 
value, number of non-zero pixels (pixels with some capaci-
tance sensed). We used the same accelerometer features 
over a one second window as in the ESM study from the 
previous section. 

Classification Technique 
Our classification technique and evaluation followed that of 
the ESM study: a leave-one-participant-out cross-
validation, where we counted each person or surface as a 
separate participant. We analyzed the lab study data by ad-
dressing the same classification tasks that we identified for 
the ESM study: Enclosed or Out, On Person or Not, and In 
Bag, In Pocket, Out or In Hand. Like the ESM data, we 
constructed Enclosed or Out models using Weka’s SMO 
SVM with a polynomial kernel. When we experimented 
with pilot data, we discovered that the On Person or Not 
and In Bag, In Pocket, Out or In Hand problems were clas-
sified much better using Weka’s implementation of Ran-
dom Forest. Thus, we employ a Random Forest classifier 
for those problems in our lab study. 

Results 

Enclosed or Out 
Perhaps unsurprisingly, the phone’s light and proximity 
sensor seems to be the most useful sensor for classification, 

Figure 1: Sensor Prototypes. (a) Capacitive-sensing, (b) 
Multi-spectral sensor interior and (c) exterior. 



 

 

 

yielding an average accuracy of 98%. Beyond this, there 
seems to be some evidence that the accelerometer can help 
to disambiguate the few errors made using light/proximity 
only, even achieving 100% accuracy in one case. 

On Person Or Not 
By contrast, when classifying whether or not the phone was 
on the participant, the light/proximity sensor performed the 
worst of each of the individual sensors (71%). In this case, 
the capacitive sensor was the single most useful sensor, 
achieving an accuracy of 88% on its own. Again the addi-
tion of accelerometer is most helpful, improving the accu-
racy to 90%, while the multispectral and light/proximity 
sensors do not seem to improve the accuracy. The capaci-
tive sensing grid was likely so helpful because it can sense 
grasping of a device as well as detect a person’s leg through 
the lining of many trouser pockets. 

In Bag, In Pocket, Out, or In Hand 
In the four-way classification, the accelerometer performs 
the best of any single sensor (79%), with the multispectral 
sensor also demonstrating its value (76%). Interestingly, the 
combination of these two sensors is not as valuable as the 
combination of the accelerometer with the light/proximity 
sensor, which achieved a combined accuracy of 83%. Ulti-
mately, the combination of accelerometer, light/proximity 
sensor, and capacitive sensor is most effective, achieving an 
accuracy of 85%. The errors in this model come primarily 
from confusion over when the device is in a pocket or a 
bag. We had hoped that the capacitive sensor would be 
more valuable in this case, helping to disambiguate between 
being in a bag and being up against somebody’s skin. Re-
gardless, the overall improvement from accelerometer-only 
is still quite notable. 

Comparison with ESM Data 
Overall, there were not major differences between the ac-
celerometer-only models in the lab study and those from the 

ESM study, even though the ESM data came from a broad 
variety of different devices and was collected in-situ. 

DISCUSSION 

Capacitive Sensing Best for Detecting “On Person” 
Ensuring they would receive notifications was a primary 
factor in how our survey respondents decided where they 
put their phone. Results from the lab study show that the 
most successful sensing strategies for inferring whether or 
not the phone is On Person all involved the use of the ca-
pacitive sensor. This is particularly notable for several rea-
sons. First, capacitive sensing has not been previously ex-
plored as a tool for inferring phone placement. Additional-
ly, today’s smartphones already employ capacitive technol-
ogy in their touchscreens, though the raw capacitance is not 
accessible in software. Finally, if capacitive sensors were 
accessible, additional applications could benefit (e.g. [9]). 

Challenges Detecting Placement in Bags 
Survey data indicated that phones are frequently placed in 
bags and purses; however our models performed quite poor-
ly on this class. This represents an important problem that 
remains unsolved by the techniques that we examined here. 
Our data suggests that there are enough differences between 
bags that generalized models may not be effective. Because 
most people use a fairly small number of bags, one solution 
(while clunky) would be to place RFID tags in the few 
places in a bag where users keep their phones, though a 
fully automatic phone-based solution is clearly preferable. 

Applying Phoneprioception 
Our promising Phoneprioception results enable several new 
interactive device capabilities we are excited to explore.  

Placement-based Notification Preferences: Accessibility, 
primarily for receiving notifications, was the most common 
phone placement decision factor reported by our partici-
pants. Using Phoneprioception would enable a person to set 
placement-specific notification preferences (e.g., vibrate if 

 

Enclosed 
 

Enclosed 
P/R 

Not 
Enclosed 

P/R 
On-

Person 

On-
Person 

P/R 

Not On-
Person 

P/R 

Pocket/ 
Bag/ 
Out/ 
Hand 

Pocket 
P/R 

Bag 
P/R 

Hand 
P/R 

Out 
P/R 

Accelerometer (AC) 89% 81/93 95/86 82% 80/79 84/85 79% 76/67 52/63 88/88 88/91 

Light/Proximity (L/P) 98% 97/99 99/97 71% 55/69 82/71 70% 85/63 0/0 84/76 78/84 

Multispectral (MS) 89% 91/86 88/92 80% 80/75 80/84 76% 6563 48/59 84/80 97/94 

Capacitive (CAP) 58% 13/67 95/57 88% 87/85 89/90 73% 77/69 39/57 82/73 78/85 

ACC + L/P 100% 99/100 100/99 84% 82/81 86/87 83% 81/72 45/58 95/91 95/98 

ACC + MS 92% 89/93 95/92 82% 80/78 84/85 78% 77/63 24/36 88/94 98/97 

ACC + CAP 85% 80/86 90/85 90% 88/88 91/91 79% 73/66 48/64 88/85 93/92 

ACC + L/P + MS 99% 98/99 99/98 80% 79/74 80/84 81% 82/67 30/48 91/98 98/95 

ACC + L/P + CAP 97% 99/95 96/99 90% 90/87 90/92 85% 82/77 52/61 91/89 100/100 

ACC+L/P+MS+CAP 98% 98/98 98/98 88% 89/84 88/91 85% 85/72 36/63 96/95 100/98 
Table 4: Accuracy and (P)recision/(R)ecall for all combinations of lab study sensors across the three classification problems.  



 

 

 

in my front pocket; turn on the screen if sitting out on a 
table first and then ring, etc) and explore whether different 
phone placements coincide with a desire to change notifica-
tions preferences. For example, using vibration is a useful 
ringing preference when in a trouser pocket, but can be 
quite jarring if it vibrates while sitting on a hard surface.  

Preventing Pocket Dial: Despite the fact that proximity 
sensors have become nearly universal on smartphones, ac-
cidental interaction with a phone’s touchscreen remains a 
nuisance. Phoneprioception enables the phone to infer that 
input may be accidental. When a phone detects that it is 
“enclosed,” it could lock the screen, or require some intelli-
gent input before initializing a phone call. 

Dynamic Authentication Requirements: Authentication 
on mobile phones can be painful, both because of the small 
interaction space and because of the frequency with which 
people interact with their phones. However, using 
Phoneprioception, if the phone was confident it had been 
“on person” since the last time the user authenticated, it 
might not require reauthentication or use a less rigorous 
form of authentication. 

Phoneprioception As Contextual Information: At its 
most basic, Phoneprioception exposes a new piece of con-
textual information for the phone. We expect phone place-
ment context could be useful to share with others (e.g.: pre-
dicting whether or not somebody will respond to a phone 
call) or as an additional piece of information for the “Find 
My Phone” service available on many platforms (e.g.: 
“your phone is at home in your backpack”), which could be 
quite useful to our All-over Alex participants. 

As application developers consider using Phoneprioception 
we think it will be interesting to study people’s response to 
applications that change behavior based on phone place-
ment. What happens when there is an unintended behavior 
triggered by where the phone is placed? Will participants 
change their own behavior to fit this new capability of 
Phoneprioception or will they reject it? 

Beyond the Phone 
While we focused on smartphones, we believe the results 
have implications for a broad array of devices: mobile 
health technology, music players, cameras, remote controls, 
and of course tablets. While sensor placement may vary for 
some of these devices, and not all placements will be equal-
ly likely across the devices (e.g., many tablets do not fit in 
trouser pockets), the basic capabilities of Phoneprioception 
outlined in this paper should apply beyond the specific form 
factor of the phone. 

CONCLUSION 
Phoneprioception could be used in many ways to enable 
new user experiences. In this research we have broadly ex-
plored where people keep their phones throughout the day 
and in a variety of contexts through interviews and an in-

situ ESM data collection. From this data we identified three 
placement personas: Single Place Pat, Consistent Casey and 
All-over Alex. We demonstrated that reasonably accurate 
classifications are possible with sensors that are already 
industry-standard, and that the addition of several other 
low-cost sensors further improve this performance. 
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