
Writing Handwritten Messages on a Small Touchscreen

Wolf Kienzle

Microsoft Research

Redmond, WA, USA

wkienzle@microsoft.com

Ken Hinckley

Microsoft Research

Redmond, WA, USA

kenh@microsoft.com

ABSTRACT

We present a method for composing handwritten messages

on a small touchscreen device. A word is entered by

drawing overlapped, screen sized letters on top of each

other. The system does not require gestures or timeouts to

delimit characters within a word—it automatically

segments the overlapping strokes and renders the message

in real-time as the user is writing. The auto-segmentation

algorithm was designed for practicality; it is extremely

simple, requires only public domain data for training, and

runs very fast on low-power devices. Drawings may also be

included with the text. Experimental data indicates the

effectiveness of our system, even for novice users.

Author Keywords

handwriting; ink; messaging; notes; mobile input

ACM Classification Keywords

H.5.2. [Information interfaces and presentation]: User

Interfaces – Input devices and strategies, Interaction styles

INTRODUCTION AND RELATED WORK

Handwriting offers advantages over typing for personal

communication. Handwritten notes contain subtle personal

cues through writing style and drawings that cannot be

expressed by typed text. Many of today’s communication

devices—notably smartphones and tablet computers—have

touchscreens capable of recording handwriting, and several

commercial applications employ handwriting for note

taking and messaging. Unfortunately, handwriting on a

touchscreen requires either a stylus, or a surface large

enough for a finger to write with sufficient precision. This

poses a problem for the small screens of mobile devices.

In this paper we present a new method for entering

handwritten notes on a small touchscreen. It allows the user

to write words with their finger by drawing screen-sized

characters on top of each other (Fig. 1). Our key

contributions are 1) a straightforward interface that does not

require the user to delimit characters by means of gestures

or timeouts, and 2) a segmentation algorithm which is

simple to implement, requires only public available training

data, and runs extremely fast on low-power devices.

Fig. 1. Chat application for handwritten messages. Left:

Conversation view. Right: A user writing the letter t.

Several commercial applications support small-screen

writing. In Use Your Handwriting [7], the user writes

characters in the phone’s landscape mode. Touching the far

left side of the screen (or waiting for a timeout) accepts the

writing and clears the screen for more input. A downside of

this approach is that the user must organize her input

spatially such that 1) the “accept and clear” action is

triggered, and 2) the proper amount of space surrounds each

segment, since segments are concatenated by including

leading and trailing whitespace. Also, the landscape

orientation necessitates frequent rotation of the device.

Another similar application, Handwriting [6], uses a two-

finger swipe gesture to arrange ink segments on the screen.

By contrast, our method does not require the user to

manually arrange text segments, or attend to timeouts or

trigger locations on the screen. Instead, we automatically

detect overlapping segments and present the “untangled”

result to the user in real-time, without a noticeable delay.

Automatic segmentation has been studied in mobile text

entry: so-called overlapped recognition systems have been

developed for English [1], Japanese [3], and Chinese [4].

Unistroke alphabets avoid the character segmentation

problem, and can allow eyes-free input [12], but require the

user to learn a new gesture set to enter text. PocketTouch

[11] allows the user to write overlapping characters on a

touch surface through fabric. It segments lowercase English

characters using stroke classifiers and a set of simple rules,

then converts them to text with a handwriting recognizer.

The key difference between recognition approaches and our

method is that we never recognize characters—we only

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to

post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.
MobileHCI '13, August 27 - 30 2013, Munich, Germany

Copyright 2013 ACM 978-1-4503-2273-7/13/08…$15.00.

http://dx.doi.org/10.1145/2493190.2493200

mailto:Permissions@acm.org
http://dx.doi.org/10.1145/2493190.2493200

detect character boundaries to untangle and render the

handwritten message. Keeping users’ personal handwriting

in this way introduces an aesthetic quality that is not found

in recognition systems (but see [13]). Furthermore, stroke

segmentation is a much simpler problem than handwriting

recognition. This keeps the computation efficient, allowing

for true real-time feedback (at ~40Hz), even with our

prototype implementation. Also, this approach facilitates

unusual words or expressive spellings (e.g., “whoooah”),

since our technique does not require a dictionary.

 Fig. 2. Left: Swipes across the writing pad are used to delete

strokes, mark word ends, and toggle draw mode (right).

USER INTERFACE

The proposed interface consists of a large writing pad (5cm

× 5cm) and a display panel at the top (Fig. 1, right). The

display panel is two lines of text high (2cm) and can be

scrolled vertically using an up/down swipe gesture.

Writing Pad

The user can employ her normal writing style to make

strokes on the writing pad, using upper and lower case

English letters, numbers, and punctuation. The writing pad

provides space for about 1-3 characters, depending on how

large the user writes. The user can position and space

characters horizontally without restriction; vertically, the

full height of the writing pad always corresponds to one line

of text. We provide swipe gestures (Fig. 2) to delete the last

stroke (left), delete the last word (up), mark the end of a

word (right), and switch between text and draw mode

(down). To avoid accidental activation, swipe gestures must

cross the outer boundary of the writing pad.

Display Panel

The display panel shows up to two lines of handwritten

text. The current stroke (the one that is being drawn on the

writing pad) gets updated upon every touch event on the

writing pad. This allows the user to visually verify her input

in real-time. Stroke segmentation and layout runs on a

background thread that updates the display panel

asynchronously. It gets triggered (if not currently busy) by

every touch event and takes about 20ms to run. As a result,

the display panel shows the final composed message

evolving in real-time as the user writes on the writing pad.

To lay out a segmented word, we group strokes by

character and align the character bounding boxes

horizontally, separated by small spaces (about one stroke

width). A wider horizontal space is inserted at the end of

each word. Character positions are not adjusted vertically.

Also, we retain the relative stroke positions from the

writing pad within each character. In some cases the

assumptions behind this simple scheme do not hold, e.g., if

a user puts down the device in the middle of a symbol and

tries to finish later. For the first version of our system,

however, we found this simple and predictable approach

work well. In the future this may be replaced by a more

sophisticated layout algorithm.

Note that we do not provide visual feedback on the writing

pad while the user articulates character strokes. During

preliminary tests we experimented with a fading ink trace

on the writing pad. It was unclear whether this helped users

write more accurately. Also, some users reported that they

felt more efficient attending to the display panel, which also

shows their input in real-time, and in context of the entire

word. For the present version of our system we decided to

promote this behavior and make the interface less visually

busy by not showing ink on the writing pad.

Draw Mode

The interface allows the user to add small drawings to the

text. A drawing differs from a character in that stroke

segmentation is turned off during its composition. To

compose a drawing, the user brings the interface into draw

mode by using the down gesture, or by toggling the draw

button. In draw mode, ink is displayed on the writing panel,

as shown in Fig. 2 (right). This is based on the assumption

that unlike characters, drawings are custom creations that

require potentially many strokes and a magnified view

during composition. The draw mode toggle button was

added to indicate that the system is in draw mode even if

there are no strokes on the writing pad. Deletion gestures

can be used in draw mode as well. To finish a drawing, the

user either toggles the draw mode button or makes a word-

end gesture. Drawings are treated as words when the

message is displayed, i.e., they are separated from adjacent

words or drawings by whitespace. There is no limit on the

number of drawings in a message.

Every stroke has a bit associated with it that indicates

whether it was entered in draw or text mode. Assume the

user “backspaces” through a number of strokes and

eventually deletes the last stroke of a drawing: at that point

the system switches to draw mode and displays all strokes

of that drawing on the writing pad, so that the entire

drawing can be edited. Likewise, the system reverts to text

mode if the user “backspaces” through the entire drawing.

Tap-to-Correct

As with any system that interprets natural user input, there

are cases when the output does not match the user’s intent.

For our segmentation algorithm, errors result in characters

rendered on top of each other, or broken up into pieces.

 Fig. 3. Correction of a segmentation error. Left: user taps on

mis-segmented part of the word. Top right: best alternate

segmentation (see text) is used and affected strokes are

highlighted for 200ms. Bottom right: result after correction.

We allow the user to correct segmentation errors by tapping

on the mis-segmented part of the word in the display panel

(Fig. 3). When the display panel is tapped, we find the most

likely segmentation that differs at the tapped location

(approx. 5mm radius), but keeps other parts of the word

unchanged. This is described in more detail in the algorithm

section below. The affected strokes are highlighted for a

short amount of time to indicate what has changed. Tap

corrections can be made any time anywhere on the display

panel. The tap gesture has no effect on drawings.

SEGMENTATION ALGORTIHM

In our approach, the user only marks word boundaries by

means of the space gesture (“mark end of word”); ink

strokes within a word are automatically segmented into

characters using the following method.

Fig. 4: The stroke segmentation graph for N = 4 strokes. Any

path from node 4 to node 0 represents a stroke segmentation.

Its score is the sum of traversed edge weights sik.

Assume we want to segment a word consisting of N strokes.

For every stroke i = 1...N we compute four scores sik

k = 1...4 describing how likely stroke i is the last stroke in a

k-stroke character. Now consider a graph (Fig. 4) with

N + 1 nodes, one for each stroke i = 1...N plus one extra

start node labeled ‘0’, and with directed edges pointing

from each node back to its (up to) four predecessors. An

edge from node i to node i − k corresponds to grouping

strokes (i − k + 1),...,i into one character and is weighted by

the corresponding score sik. Every path from node N to node

‘0’ represents a segmentation of our N strokes into

characters. To determine the most likely segmentation we

find the path with the maximum sum of edge weights. This

is a standard shortest path problem, solved efficiently using

dynamic programming in O(N) time and space [9].

Character Models

End-of-character scores are computed as sik= fk(vi), where vi

is a vector of features describing stroke i, and fk is a

statistical model of how likely a stroke is the last one in a

k-stroke character. The feature vector vi contains 269

values, including the bounding box position, dimensions,

area, aspect ratio, the stroke length, an eight-bin slope

histogram, and slopes at the beginning and end of the

stroke. It also holds the same numbers for up to two

neighbor strokes in both directions, (i − 2),...,(i + 2),

provided these exist (missing values are set to −1). Finally,

it includes bounding box features for the union and

intersection of neighboring bounding boxes. We did not

include timing information or features that depend on

sampling rates; those can vary across devices. More

features could be added if higher model accuracy is needed.

We use boosted decision stumps for our four end-of-

character models: fk(vi) = ∑ j=1..n hjk(vi), i.e. sums of n step

functions hjk on the individual dimensions of vi. Models are

trained discriminatively with AdaBoost [5], using all end

of-k-stroke-character strokes in the training data as positive

examples and the remaining strokes as negative examples.

Model Training

In a preliminary experiment, five participants wrote phrases

on our test device. We recorded stroke data, manually

labeled character boundaries, and trained our four character

models. The accuracy of the resulting system was good, but

not sufficient. To get significantly more training data we

decided to simulate strokes using a publicly available data

set of 11,000 handwritten English characters from 60

writers [2] and a corpus of the 25,000 most frequent words

in English Twitter conversations [10]. To simulate a word

entered on our writing pad, we draw a random word from

the Twitter corpus. Then, for each character we draw a set

of ink strokes from the handwriting data set. The position

and size of the simulated strokes are randomly perturbed

such that their mean and variance match the data from our

preliminary (but real) data set. Relative stroke positions

within a character are not randomized. This corresponds to

the same assumption we make during rendering, i.e. that

relative stroke positions are preserved within a character.

We generated 500,000 strokes and trained our character

models with n = 256 stumps each. The training code was

written in Matlab and took less than a day to run on a

desktop computer. Segmentation accuracy of the full

system was validated using a hold out set of 10,000

simulated words. We found that 7.7% of the validation

words had segmentation errors. The system performance on

real user data is described in the user study below.

CORRECTION ALGORITHM

When the user taps the display panel to correct a

segmentation error, we find the closest word to the tap

location and divide its strokes into three categories: strokes

for which the segmentation should change (within 5mm of

the tap location), may change (adjacent to must-change

strokes), or is frozen (everything else). Then we compute

the m = 32 most likely segmentations that are feasible, i.e.

leave the frozen strokes’ segmentation unchanged. We

achieve this by removing edges from the segmentation

graph (Fig. 4) that would lead to alternate segmentations for

frozen strokes, and finding the m highest scoring remaining

paths. The correction segmentation is defined as the path

that 1) changes at least one of the strokes that should

change and 2) has the smallest impact on strokes that may

change. This rule favors localized corrections, but also

allows larger areas to change if the local change requires it.

The full correction computation takes only about 25ms.

The corrected segmentation may be the one intended by the

user. Depending on future experimental data we may need

to extend the correction interface. However, anecdotal

evidence indicates that the current approach is surprisingly

effective considering its simple design (a single tap). A

more sophisticated correction method may not be an

improvement if it requires giving up this simplicity.

USER STUDY

We conducted a small field experiment to find out the

degree to which users are interested in communicating via

handwriting, and how effective they are at composing

messages using our interface. We recruited five female and

seven male subjects, between age 28 and 50, one of them

left-handed. Nine subjects reported that they type messages

on their phone at least once a day. We used an HTC 7

Trophy smartphone with the chat application shown in Fig.

1. After a one minute tutorial on how to write and use

gestures, participants practiced using three randomly

selected phrases from [8]. Then they entered ten more

phrases for which we recorded gestures and timings.

Subjects were asked to verify that messages are segmented

correctly before they hit the “send” button.

Overall, subjects indicated they would use the system for

personal correspondence (avg = 6.25, SD = 0.98, on a 7-

point Likert scale, 1=strongly disagree, 7=strongly agree),

and found it easy to use (avg = 6.41, SD = 0.67). In free-

form comments, users liked the personal aspect (6x) and the

simple/fun experience (4x). On the less positive side, users

commented that letters were sometimes mis-segmented

when written in a particular style (3x) and that sliding a

finger required more manual effort than typing (3x).

Text entry speeds were averaged over the ten trials and

ranged between 9.0 and 20.8 words per minute among the

twelve subjects (avg = 12.7, SD = 3.5, median=11.1).

Averaged across subjects, about one in eight words

contained deletion or correction gestures (avg = 12.5%, SD

= 9.4%, median = 10.1%, min = 2.7%, max = 30%). This is

higher than the estimated 7.7% word error rate from our

simulations. It indicates that our simulations do not capture

some aspects of the real world, e.g., particular writing

styles. The gap could also be caused by a different effect:

for example, when writing the word ’cat’, the vertical

stroke of the ‘t’ is often merged with the ‘a’ to form a ‘d’,

since this is the most likely configuration at this point. As

soon as the ‘t’ gets crossed, however, it gets segmented

correctly. We found that some subjects tend to correct

prematurely in these cases, i.e. they delete and re-enter a

stroke instead of providing the next stroke to resolve the

ambiguity. This effect is not captured by our simulation.

CONCLUSION

We have developed a method for entering handwritten

notes on a mobile touchscreen device. Initial feedback

suggests that even novice users are able to use it effectively.

Since we do not recognize or produce text, but rather only

human-readable segmentations of strokes, there is not a

clear basis to compare our error rates with those of existing

text entry techniques, such as touch-screen keyboards. In

practice, as observed in our studies, users found the word

error rate (12.5%) well within the usable range—and

similar to that of many touchscreen text entry techniques

reported in the literature. The only errors in our system are

either too much, or too little, white space between adjacent

strokes. We observed that such errors have little impact on

readability, or may even go unnoticed; by contrast,

character-level errors in text entry systems can easily

change meaning of words, especially in conjunction with a

dictionary. Furthermore, if the user chooses to correct an

error, a single tap on the mis-segmented character often

suffices, which is a small cost compared to (say) correcting

a misrecognized word in a handwriting recognition system.

We are exploring new application contexts, and ways to

refine the technique with longitudinal data. More generally,

our work illustrates an interesting class of technologically-

mediated communication—one that preserves personal

expression in conveying a message to another human—

rather than imposing the taxes on users’ time and attention

that full-on handwriting recognition and error correction

require for translation to machine-readable text.

REFERENCES
1. A. Bharath and S. Madhvanath. Freepad: a novel handwriting-based

text input for pen and touch interfaces. IUI 2008, pp. 297–300.

2. D. Llorens et al. The UJI penchars database: A pen-based database of
isolated handwritten characters. LREC ’08 (Lang. Resources & Eval.).

3. H. Shimodaira et al. On-line overlaid handwriting recognition based on

substroke HMMs. In Intl. Conf. Document Analysis and Recognition

(ICDAR), pp. 1043–1047, 2003.

4. Y. Zou et al. Overlapped handwriting input on mobile phones. Intl.
Conf. Document Analysis & Recognition (ICDAR 2011), pp. 369–73.

5. Y. Freund and R. Schapire. A decision-theoretic general-ization of on-

line learning and an application to boosting. In Computational

Learning Theory, LNCS Vol. 904, pp. 23–37. Springer, 1995.

6. Cocoa Box Design LLC. http://www.cocoabox.com/, 2010.

7. Gee Whiz Stuff LLC. http://www.geewhizstuff.com/, 2012.

8. I. MacKenzie and R. Soukoreff. Phrase sets for evaluating text entry
techniques. CHI 2003 Extended Abstracts, pp. 754–755.

9. L. R. Rabiner. A tutorial on hidden markov models and selected

applications in speech recognition. Proc. IEEE, 77(2):257–286, 1989.

10. A. Ritter, C. Cherry, and B. Dolan. Unsupervised modeling of Twitter

conversations. In Human Language Technologies, HLT ’10, pp. 172–
180. ACL, 2010.

11. S. Saponas, C. Harrison, and H. Benko. PocketTouch: through-fabric

capacitive touch input. UIST 2011, pp. 303–308.

12. H. Tinwala and I. S. MacKenzie. Eyes-free text entry on a touchscreen

phone. Toronto Intl Conf Sci & Tech (TIC-STH), pp. 83–88, 2009.

13. J. LaViola and R. Zeleznik. MathPad2: A System for the Creation and
Exploration of Mathematical Sketches. SIGGRAPH 2004, p. 432-40.

http://www.cocoabox.com/
http://www.geewhizstuff.com/

