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ABSTRACT 

We present a method for composing handwritten messages 

on a small touchscreen device. A word is entered by 

drawing overlapped, screen sized letters on top of each 

other. The system does not require gestures or timeouts to 

delimit characters within a word—it automatically 

segments the overlapping strokes and renders the message 

in real-time as the user is writing. The auto-segmentation 

algorithm was designed for practicality; it is extremely 

simple, requires only public domain data for training, and 

runs very fast on low-power devices. Drawings may also be 

included with the text. Experimental data indicates the 

effectiveness of our system, even for novice users. 
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INTRODUCTION AND RELATED WORK 

Handwriting offers advantages over typing for personal 

communication. Handwritten notes contain subtle personal 

cues through writing style and drawings that cannot be 

expressed by typed text. Many of today’s communication 

devices—notably smartphones and tablet computers—have 

touchscreens capable of recording handwriting, and several 

commercial applications employ handwriting for note 

taking and messaging. Unfortunately, handwriting on a 

touchscreen requires either a stylus, or a surface large 

enough for a finger to write with sufficient precision. This 

poses a problem for the small screens of mobile devices. 

In this paper we present a new method for entering 

handwritten notes on a small touchscreen. It allows the user 

to write words with their finger by drawing screen-sized 

characters on top of each other (Fig. 1). Our key 

contributions are 1) a straightforward interface that does not 

require the user to delimit characters by means of gestures 

or timeouts, and 2) a segmentation algorithm which is 

simple to implement, requires only public available training 

data, and runs extremely fast on low-power devices.  

 
 

 

 

 

 

 

 

 

 

 

Fig. 1. Chat application for handwritten messages. Left: 

Conversation view. Right: A user writing the letter t. 

Several commercial applications support small-screen 

writing. In Use Your Handwriting [7], the user writes 

characters in the phone’s landscape mode. Touching the far 

left side of the screen (or waiting for a timeout) accepts the 

writing and clears the screen for more input. A downside of 

this approach is that the user must organize her input 

spatially such that 1) the “accept and clear” action is 

triggered, and 2) the proper amount of space surrounds each 

segment, since segments are concatenated by including 

leading and trailing whitespace. Also, the landscape 

orientation necessitates frequent rotation of the device. 

Another similar application, Handwriting [6], uses a two-

finger swipe gesture to arrange ink segments on the screen. 

By contrast, our method does not require the user to 

manually arrange text segments, or attend to timeouts or 

trigger locations on the screen. Instead, we automatically 

detect overlapping segments and present the “untangled” 

result to the user in real-time, without a noticeable delay.  

Automatic segmentation has been studied in mobile text 

entry: so-called overlapped recognition systems have been 

developed for English [1], Japanese [3], and Chinese [4]. 

Unistroke alphabets avoid the character segmentation 

problem, and can allow eyes-free input [12], but require the 

user to learn a new gesture set to enter text. PocketTouch 

[11] allows the user to write overlapping characters on a 

touch surface through fabric. It segments lowercase English 

characters using stroke classifiers and a set of simple rules, 

then converts them to text with a handwriting recognizer.  

The key difference between recognition approaches and our 

method is that we never recognize characters—we only 
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detect character boundaries to untangle and render the 

handwritten message. Keeping users’ personal handwriting 

in this way introduces an aesthetic quality that is not found 

in recognition systems (but see [13]). Furthermore, stroke 

segmentation is a much simpler problem than handwriting 

recognition. This keeps the computation efficient, allowing 

for true real-time feedback (at ~40Hz), even with our 

prototype implementation. Also, this approach facilitates 

unusual words or expressive spellings (e.g., “whoooah”), 

since our technique does not require a dictionary. 

 Fig. 2. Left: Swipes across the writing pad are used to delete 

strokes, mark word ends, and toggle draw mode (right). 

USER INTERFACE 

The proposed interface consists of a large writing pad (5cm 

× 5cm) and a display panel at the top (Fig. 1, right). The 

display panel is two lines of text high (2cm) and can be 

scrolled vertically using an up/down swipe gesture. 

Writing Pad 

The user can employ her normal writing style to make 

strokes on the writing pad, using upper and lower case 

English letters, numbers, and punctuation. The writing pad 

provides space for about 1-3 characters, depending on how 

large the user writes. The user can position and space 

characters horizontally without restriction; vertically, the 

full height of the writing pad always corresponds to one line 

of text. We provide swipe gestures (Fig. 2) to delete the last 

stroke (left), delete the last word (up), mark the end of a 

word (right), and switch between text and draw mode 

(down). To avoid accidental activation, swipe gestures must 

cross the outer boundary of the writing pad. 

Display Panel 

The display panel shows up to two lines of handwritten 

text. The current stroke (the one that is being drawn on the 

writing pad) gets updated upon every touch event on the 

writing pad. This allows the user to visually verify her input 

in real-time. Stroke segmentation and layout runs on a 

background thread that updates the display panel 

asynchronously. It gets triggered (if not currently busy) by 

every touch event and takes about 20ms to run. As a result, 

the display panel shows the final composed message 

evolving in real-time as the user writes on the writing pad. 

To lay out a segmented word, we group strokes by 

character and align the character bounding boxes 

horizontally, separated by small spaces (about one stroke 

width). A wider horizontal space is inserted at the end of 

each word. Character positions are not adjusted vertically. 

Also, we retain the relative stroke positions from the 

writing pad within each character. In some cases the 

assumptions behind this simple scheme do not hold, e.g., if 

a user puts down the device in the middle of a symbol and 

tries to finish later. For the first version of our system, 

however, we found this simple and predictable approach 

work well. In the future this may be replaced by a more 

sophisticated layout algorithm. 

Note that we do not provide visual feedback on the writing 

pad while the user articulates character strokes. During 

preliminary tests we experimented with a fading ink trace 

on the writing pad. It was unclear whether this helped users 

write more accurately. Also, some users reported that they 

felt more efficient attending to the display panel, which also 

shows their input in real-time, and in context of the entire 

word. For the present version of our system we decided to 

promote this behavior and make the interface less visually 

busy by not showing ink on the writing pad. 

Draw Mode 

The interface allows the user to add small drawings to the 

text. A drawing differs from a character in that stroke 

segmentation is turned off during its composition. To 

compose a drawing, the user brings the interface into draw 

mode by using the down gesture, or by toggling the draw 

button. In draw mode, ink is displayed on the writing panel, 

as shown in Fig. 2 (right). This is based on the assumption 

that unlike characters, drawings are custom creations that 

require potentially many strokes and a magnified view 

during composition. The draw mode toggle button was 

added to indicate that the system is in draw mode even if 

there are no strokes on the writing pad. Deletion gestures 

can be used in draw mode as well. To finish a drawing, the 

user either toggles the draw mode button or makes a word-

end gesture. Drawings are treated as words when the 

message is displayed, i.e., they are separated from adjacent 

words or drawings by whitespace. There is no limit on the 

number of drawings in a message. 

Every stroke has a bit associated with it that indicates 

whether it was entered in draw or text mode. Assume the 

user “backspaces” through a number of strokes and 

eventually deletes the last stroke of a drawing: at that point 

the system switches to draw mode and displays all strokes 

of that drawing on the writing pad, so that the entire 

drawing can be edited. Likewise, the system reverts to text 

mode if the user “backspaces” through the entire drawing. 

Tap-to-Correct 

As with any system that interprets natural user input, there 

are cases when the output does not match the user’s intent. 

For our segmentation algorithm, errors result in characters 

rendered on top of each other, or broken up into pieces. 



 Fig. 3. Correction of a segmentation error. Left: user taps on 

mis-segmented part of the word. Top right: best alternate 

segmentation (see text) is used and affected strokes are 

highlighted for 200ms. Bottom right: result after correction. 

We allow the user to correct segmentation errors by tapping 

on the mis-segmented part of the word in the display panel 

(Fig. 3). When the display panel is tapped, we find the most 

likely segmentation that differs at the tapped location 

(approx. 5mm radius), but keeps other parts of the word 

unchanged. This is described in more detail in the algorithm 

section below. The affected strokes are highlighted for a 

short amount of time to indicate what has changed. Tap 

corrections can be made any time anywhere on the display 

panel. The tap gesture has no effect on drawings.  

SEGMENTATION ALGORTIHM 

In our approach, the user only marks word boundaries by 

means of the space gesture (“mark end of word”); ink 

strokes within a word are automatically segmented into 

characters using the following method.  

  
Fig. 4: The stroke segmentation graph for N = 4 strokes. Any 

path from node 4 to node 0 represents a stroke segmentation. 

Its score is the sum of traversed edge weights sik. 

Assume we want to segment a word consisting of N strokes. 

For every stroke i = 1...N we compute four scores sik  

k = 1...4 describing how likely stroke i is the last stroke in a 

k-stroke character. Now consider a graph (Fig. 4) with  

N + 1 nodes, one for each stroke i = 1...N plus one extra 

start node labeled ‘0’, and with directed edges pointing 

from each node back to its (up to) four predecessors. An 

edge from node i to node i − k corresponds to grouping 

strokes (i − k + 1),...,i into one character and is weighted by 

the corresponding score sik. Every path from node N to node 

‘0’ represents a segmentation of our N strokes into 

characters. To determine the most likely segmentation we 

find the path with the maximum sum of edge weights. This 

is a standard shortest path problem, solved efficiently using 

dynamic programming in O(N) time and space [9]. 

Character Models 

End-of-character scores are computed as sik= fk(vi), where vi 

is a vector of features describing stroke i, and fk is a 

statistical model of how likely a stroke is the last one in a  

k-stroke character. The feature vector vi contains 269 

values, including the bounding box position, dimensions, 

area, aspect ratio, the stroke length, an eight-bin slope 

histogram, and slopes at the beginning and end of the 

stroke. It also holds the same numbers for up to two 

neighbor strokes in both directions, (i − 2),...,(i + 2), 

provided these exist (missing values are set to −1). Finally, 

it includes bounding box features for the union and 

intersection of neighboring bounding boxes. We did not 

include timing information or features that depend on 

sampling rates; those can vary across devices. More 

features could be added if higher model accuracy is needed. 

We use boosted decision stumps for our four end-of-

character models: fk(vi) = ∑ j=1..n hjk(vi), i.e. sums of n step 

functions hjk on the individual dimensions of vi. Models are 

trained discriminatively with AdaBoost [5], using all end 

of-k-stroke-character strokes in the training data as positive 

examples and the remaining strokes as negative examples. 

Model Training 

In a preliminary experiment, five participants wrote phrases 

on our test device. We recorded stroke data, manually 

labeled character boundaries, and trained our four character 

models. The accuracy of the resulting system was good, but 

not sufficient. To get significantly more training data we 

decided to simulate strokes using a publicly available data 

set of 11,000 handwritten English characters from 60 

writers [2] and a corpus of the 25,000 most frequent words 

in English Twitter conversations [10]. To simulate a word 

entered on our writing pad, we draw a random word from 

the Twitter corpus. Then, for each character we draw a set 

of ink strokes from the handwriting data set. The position 

and size of the simulated strokes are randomly perturbed 

such that their mean and variance match the data from our 

preliminary (but real) data set. Relative stroke positions 

within a character are not randomized. This corresponds to 

the same assumption we make during rendering, i.e. that 

relative stroke positions are preserved within a character.  

We generated 500,000 strokes and trained our character 

models with n = 256 stumps each. The training code was 

written in Matlab and took less than a day to run on a 

desktop computer. Segmentation accuracy of the full 

system was validated using a hold out set of 10,000 

simulated words. We found that 7.7% of the validation 

words had segmentation errors. The system performance on 

real user data is described in the user study below. 

CORRECTION ALGORITHM 

When the user taps the display panel to correct a 

segmentation error, we find the closest word to the tap 

location and divide its strokes into three categories: strokes 

for which the segmentation should change (within 5mm of 

the tap location), may change (adjacent to must-change 

strokes), or is frozen (everything else). Then we compute 

the m = 32 most likely segmentations that are feasible, i.e. 

leave the frozen strokes’ segmentation unchanged. We 



achieve this by removing edges from the segmentation 

graph (Fig. 4) that would lead to alternate segmentations for 

frozen strokes, and finding the m highest scoring remaining 

paths. The correction segmentation is defined as the path 

that 1) changes at least one of the strokes that should 

change and 2) has the smallest impact on strokes that may 

change. This rule favors localized corrections, but also 

allows larger areas to change if the local change requires it. 

The full correction computation takes only about 25ms.  

The corrected segmentation may be the one intended by the 

user. Depending on future experimental data we may need 

to extend the correction interface. However, anecdotal 

evidence indicates that the current approach is surprisingly 

effective considering its simple design (a single tap). A 

more sophisticated correction method may not be an 

improvement if it requires giving up this simplicity.  

USER STUDY 

We conducted a small field experiment to find out the 

degree to which users are interested in communicating via 

handwriting, and how effective they are at composing 

messages using our interface. We recruited five female and 

seven male subjects, between age 28 and 50, one of them 

left-handed. Nine subjects reported that they type messages 

on their phone at least once a day. We used an HTC 7 

Trophy smartphone with the chat application shown in Fig. 

1. After a one minute tutorial on how to write and use 

gestures, participants practiced using three randomly 

selected phrases from [8]. Then they entered ten more 

phrases for which we recorded gestures and timings. 

Subjects were asked to verify that messages are segmented 

correctly before they hit the “send” button.  

Overall, subjects indicated they would use the system for 

personal correspondence (avg = 6.25, SD = 0.98, on a 7-

point Likert scale, 1=strongly disagree, 7=strongly agree), 

and found it easy to use (avg = 6.41, SD = 0.67). In free-

form comments, users liked the personal aspect (6x) and the 

simple/fun experience (4x). On the less positive side, users 

commented that letters were sometimes mis-segmented 

when written in a particular style (3x) and that sliding a 

finger required more manual effort than typing (3x). 

Text entry speeds were averaged over the ten trials and 

ranged between 9.0 and 20.8 words per minute among the 

twelve subjects (avg = 12.7, SD = 3.5, median=11.1). 

Averaged across subjects, about one in eight words 

contained deletion or correction gestures (avg = 12.5%, SD 

= 9.4%, median = 10.1%, min = 2.7%, max = 30%). This is 

higher than the estimated 7.7% word error rate from our 

simulations. It indicates that our simulations do not capture 

some aspects of the real world, e.g., particular writing 

styles. The gap could also be caused by a different effect: 

for example, when writing the word ’cat’, the vertical 

stroke of the ‘t’ is often merged with the ‘a’ to form a ‘d’, 

since this is the most likely configuration at this point. As 

soon as the ‘t’ gets crossed, however, it gets segmented 

correctly. We found that some subjects tend to correct 

prematurely in these cases, i.e. they delete and re-enter a 

stroke instead of providing the next stroke to resolve the 

ambiguity. This effect is not captured by our simulation. 

CONCLUSION 

We have developed a method for entering handwritten 

notes on a mobile touchscreen device. Initial feedback 

suggests that even novice users are able to use it effectively. 

Since we do not recognize or produce text, but rather only 

human-readable segmentations of strokes, there is not a 

clear basis to compare our error rates with those of existing 

text entry techniques, such as touch-screen keyboards. In 

practice, as observed in our studies, users found the word 

error rate (12.5%) well within the usable range—and 

similar to that of many touchscreen text entry techniques 

reported in the literature.  The only errors in our system are 

either too much, or too little, white space between adjacent 

strokes. We observed that such errors have little impact on 

readability, or may even go unnoticed; by contrast, 

character-level errors in text entry systems can easily 

change meaning of words, especially in conjunction with a 

dictionary. Furthermore, if the user chooses to correct an 

error, a single tap on the mis-segmented character often 

suffices, which is a small cost compared to (say) correcting 

a misrecognized word in a handwriting recognition system. 

We are exploring new application contexts, and ways to 

refine the technique with longitudinal data. More generally, 

our work illustrates an interesting class of technologically-

mediated communication—one that preserves personal 

expression in conveying a message to another human—

rather than imposing the taxes on users’ time and attention 

that full-on handwriting recognition and error correction 

require for translation to machine-readable text. 
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