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Abstract 
We propose a new photo-realistic, voice driven only (i.e. no 
linguistic info of the voice input is needed) talking head.  The 
core of the new talking head is a context-dependent, multi-
layer, Deep Neural Network (DNN), which is discriminatively 
trained over hundreds of hours, speaker independent speech 
data. The trained DNN is then used to map acoustic speech 
input to 9,000 tied “senone” states probabilistically. For each 
photo-realistic talking head, an HMM-based lips motion syn-
thesizer is trained over the speaker’s audio/visual training data 
where states are statistically mapped to the corresponding lips 
images. In test, for given speech input, DNN predicts the like-
ly states in their posterior probabilities and photo-realistic lips 
animation is then rendered through the DNN predicted state 
lattice. The DNN trained on English, speaker independent data 
has also been tested with other language input, e.g. Mandarin, 
Spanish, etc. to mimic the lips movements cross-lingually. 
Subjective experiments show that lip motions thus rendered 
for 15 non-English languages are highly synchronized with the 
audio input and photo-realistic to human eyes perceptually. 
 
Index Terms: deep neural net, voice driven, lip-synching, 
talking head. 

1. Introduction 
Talking heads have a wide range of applications, including 
video games and movie characters, assisted language teachers 
and virtual guides, etc. Highly realistic characters, such as 
those seen in movies, require team of expert artists and anima-
tors and involve months of manual effort. The idea of being 
able to automatically generate a facial animation from speech 
is therefore a highly attractive proposition. Given such a tech-
nique, an actor’s voice track could be used to automatically 
animate a facial model, particularly lip-synching. This has ad-
vantages over e.g. performance driven animation which addi-
tionally involves physically recording an actor’s performance 
using a capture system. Automatically speech driven anima-
tion also has great potential in online video games, such as 
World of Warcraft. In this case, the voice of a person speaking 
to their friends may be translated onto their virtual avatar, 
stepping to a more engaging and vivid user experience.  

Besides the quality auto lip-synching desired in these ap-
plications, another important aspect of any such system is that 
it should be robust to the sound of different people such that it 
should be able to generate appropriate actions given voices it 
has not heard before. Also, multi-lingual features become 
more and more indispensable as many applications like online 
video games and movies are distributed to different countries 
worldwide. Therefore, lip-synching, speaker and language in-
dependence are three problems we are trying to address in the 
automatic voice driven systems. 

In previous studies, two general approaches are usually 
considered: phoneme driven animation or direct mapping from 
audio to visual space.  

In direct audio-visual conversion, the main challenge in at-
tempting to automatically generate visual parameters from 
speech is to learn the complex many-to-many mappings be-
tween the signals. Massaro, et al. [1] use an artificial neural 
network to map the MFCC to visual parameters. Wang, et al. 
[2] use a single hidden Markov model to realize the mapping 
between Mel-Frequency Cepstral Coefficients (MFCC) and 
Facial Animation Parameters (FAP). Xie, et al. [3] propose a 
coupled HMM to realize video realistic speech animation. Fu, 
et al. [4] give a comparison of several single HMM based 
conversion approaches. Zhuang, et al. [5] propose a method 
using minimum converted trajectory error criterion to optimize 
the single Gaussian Mixture Model (GMM) training to im-
prove the audio-visual conversion. But these methods are in-
herently speaker dependent, the challenge is then to make such 
a system speaker independent, such that it can generate new 
animations from voice identities it has not heard before.  

Phoneme-based methods model the audio-visual data with 
different phone models. Sun, et al. [6] use phone-based key-
frame interpolation for lips animation. Xie, et al. [7] transform 
speech signals to phone labels with ASR, then mapping them 
to visemes using a fixed table, where the visemes are modeled 
by HMM. These models usually synthesize the visual parame-
ters from a phone sequence that is either provided by human 
labelers or by an automatic speech recognizer (ASR). While 
the former is expensive and subject to inconsistency resulting 
from human disagreement in phone labeling, the latter requires 
a well-trained speech recognizer that is usually complex and in 
need of handmade labels for training.  

In response to the above issues, we propose to use the con-
text dependent triphone tied state as the intermediate represen-
tation in converting from speech to lips.  This is inspired by 
the high state accuracy achieved by recent success of context 
dependent, multi-layer deep neural network in ASR tasks. CD-
DNN-HMMs [8], [9] are a recent very promising and possibly 
disruptive acoustic model. For speaker-independent single-
pass recognition, it achieved relative error reductions of 16% 
on a business-search task, and of up to one-third on the 
Switchboard phone-call transcription benchmark [10], which 
are trained with error back-propagation [11] using the frame-
based cross-entropy (CE) objective, over discriminatively 
trained GMM-HMMs. And [12] shows most the gain will be 
carried over to tasks with much larger acoustic mismatch and 
variety data sets. 

In this paper, we propose a voice driven talking head 
based on the decoded tied state sequence from a context-
dependent, multi-layer, DNN trained over hundreds of hours 
of speaker independent data. For given speech input, DNN 
predicts likely states in terms of their posterior probabilities. 
Photorealistic lip animation is then rendered through the DNN 
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predicted state lattice with the HMM lips motion synthesizer. 
Objective and subjective experiments show that the voice 
driven lip-synching is robust to recognition errors, speaker 
differences, and even language variations.    

The rest of the paper is organized as follows: Section 2 
gives an overview of the whole system; Section 3 and 4 briefly 
review the CD-DNN-HMM model training and HMM-based 
talking head model training; Section 5 introduces our proposed 
method, followed by experimental results and discussions in 
Section 6 and conclusions in Section 7. 

2. System overview 
Fig.1 shows the block diagram of the whole system, which 
contains two, training and conversion, phases. 

In training, a context-dependent, multi-layer, Deep Neural 
Network (DNN) is first trained with error back-propagation 
procedure over hundreds of hours of speaker independent data. 
A highly discriminative mapping between acoustic speech in-
put and 9000 tied states is thus established. Additionally, an 
HMM-based lips motion synthesizer is trained over a speak-
er’s audio/visual data and where each state is statistically 
mapped to its corresponding lips images. In conversion, for 
given speech input, DNN predicts likely states in terms of their 
posterior probabilities. Photorealistic lip animation is then 
rendered through the DNN predicted state lattice with the 
HMM lips motion synthesizer. Next, we will introduce the 
training and conversion modules one by one. 

3. The context-dependent deep-neural-
network HMM 

A deep neural network (DNN) is a conventional multi-layer 
perceptron (MLP[13]) with many hidden layers, where train-
ing is typically initialized by a pretraining algorithm. Below, 
we describe the DNN; briefly touch upon its training in prac-
tice. Extra details can be found in [9]. 

3.1. Deep neural network 

A DNN models the posterior probability ��|�(�|�) of a class s 
given an observation vector o, as a stack of (L+1) layers of 
log-linear models. The first L layers, ℓ = 0, … , � − 1, model 
posterior probabilities of conditionally independent hidden 
binary units ℎℓ given input vectors 
ℓ, while the top layer L 
models the desired class posterior as, 

��|�ℓ ℎℓ�
ℓ� = ∏ ���ℓ(�ℓ)∙��ℓ

���ℓ(�ℓ)∙�����ℓ(�ℓ)∙�    ,     0 ≤�ℓ
��� ℓ < �        (1) 

��|�! (�|
!) = ��"ℓ(�#)

∑ ��"ℓ (�#)"
= ��%&'*+�-!(
!)�           (2) 

-ℓ
ℓ� = (.ℓ)/
ℓ + 3ℓ                                             (3)                          
with weight matrices  .ℓ  and bias vector 3ℓ , where ℎ�ℓ  and 
-�ℓ(
ℓ) are the j-th component of ℎℓ and -ℓ
ℓ�, respectively. 
The precise modeling of ��|�(�|�) requires integration over all 
possible values of ℎℓ across all layers which is infeasible. An 
effective practical trick is to replace the marginalization with 
the “mean-field approximation” [14]. Given observation �, we 
set 
4 = �  and choose the conditional expectation 
56|7ℓ 8ℎℓ�
ℓ9 = : ;-ℓ
ℓ�>  as input 
ℓ��  to the next layer, 
with component-wise sigmoid :�(-) = 1/(1 + @AB�). 

3.2. Training 
DNNs, being ‘deep’ MLPs, can be trained with the well-
known error back-propagation procedure (BP) [11]. Because 
BP can easily get trapped in poor local optima for deep net-
works, it is helpful to ‘pretrain’ the model in a layer-growing 
fashion. [10] shows that two pretraining methods, deep belief 
network (DBN) pretraining [15, 16, 17] and discriminative 
pretraining, are approximately equally effective. 

The CD-DNN-HMM’s model structure (phone set, HMM 
topology, tying of context-dependent states) is inherited from a 
matching GMM-HMM model that has been ML-trained on the 
same data. That model is also used to initialize the class labels 
�(&)through forced alignment.  

DNN training is an expensive operation. The model used 
in this paper has 7 layers of 2k hidden nodes and 9304 senones. 
The total number of parameters is 45.4 million, with the ma-
jority being concentrated in the output layer. Using a single 
server equipped with a highend NVidia Tesla S2070 GPGPU, 
it took 10 days to train this model. 

4. HMM-based photo-realistic talking head 
The voice driven animation is retargeted to a photo-realistic 
avatar [18]. Below, we briefly review the process of how to 
build such a talking head model. 

In training, audio/visual footage of a speaker is used to 
train the statistical audio-visual Hidden Markov Model (AV-
HMM). The input of the HMM contains both the acoustic fea-

Figure 1: Framework of the proposed voice-driven lip-synching with DNN.  
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tures and the visual features. The acoustic features consist of 
Mel-Frequency Cepstral Coefficients (MFCCs), their delta and 
delta-delta coefficients. The visual features include the PCA 
coefficients and their dynamic features. The contextual de-
pendent HMM is used to capture the variations caused by dif-
ferent contextual features. Also, the tree-based clustering tech-
nique is applied to the acoustic and visual features respectively 
to improve the robustness of the HMM.  

In synthesis, the input phoneme labels and alignments are 
firstly converted to a context-dependent label sequence. 
Meanwhile, the decision trees generated in the training stage 
are used to choose the appropriate clustered state HMMs for 
each label. Then a parameter generation algorithm is used to 
generate the visual parameter trajectory in the maximum prob-
ability sense. The HMM predicted trajectory is used to guide 
the selection of succinct mouth sample sequence from the im-
age library. The remaining task is to stitch the lips image se-
quence into a full face background sequence. 

5. DNN-based lip-synching generation 
Once the DNN and talking head model get ready, for given 
speech input, we use DNN predicts likely states in terms of 
their posterior probabilities. Then realistic lip motion can be 
rendered from the predicted state sequence with the talking 
head model synthesizer. 

5.1. Feature extraction 
13-dimensional PLP features with rolling-window mean-
variance normalization and up to third-order derivatives, 
which for the GMM-HMM systems is reduced to 39 
dimensions by HLDA, while in DNN training we directly use 
52 dimensions feature before HLDA, because [10] shows 
DNN can learn HLDA implicitly.  

5.2. State sequence decoding 
The CD-DNN-HMM model gets the features as input and gen-
erates the posterior probability of every state for every frame 
according to Eq. 1-3. For decoding and lattice generation, the 
“senone” posteriors are converted into the HMM’s emission 
likelihoods by dividing the “senone” priors �(�):   
 

 log C(�|�) = log �(�|�) − log �(�) + log C(�)  (4) 
 

where � is a regular acoustic feature vector augmented with 
neighbor frames (5 on each side in our case), C(�) is unknown 
but can be ignored as it cancels out in best-path decisions.  

After converting DNN generated state posteriors to likeli-
hoods, standard decoding can be carried out within the HMM 
framework. With phone list and phone trigram, phone decod-
ing results can be generated; with word dictionary and word 
trigram language model, we can get word decoding results. 
Both word and phone decoding can generate “senone” se-
quences as byproduct. However, we find it beneficial to sim-
plify it to do state sequence decoding directly, which is time 
saving, no language dependent constraints. 

State sequence decoding is to find an optimal state se-
quence given the tied state lattice estimated by the DNN. One 
way is to simply choose the most likely tied state at each 
frame, but this will cause different states switching frequently 
along the path so that the faces finally rendered are shaky. To 
avoid this, we further constrain the state transition between 
neighboring frames. The optimization function is formulated 
as the product of likelihood and the state transition probability: 

�(E�F|G�F) = C(��|��) ∗ I C(�J|�J)C(�JA�, �J)
F

J�K
       (5) 

G�F = ���K … �F is the tied state sequence, C(�JA�, �J) is the 
non-normalized state transition probability between neighbor-
ing frames. If �JA�and �J are the same state, or they belong to 
the same central phone class, C(�JA�, �J) is set to 1; otherwise 
C(�JA�, �J) is set to a constant value less than 1 and serves as a 
penalty to this transition. Adding transition cost forces the 
state path to be relatively smooth while maximizing the total 
probability. The value of transition penalty is later determined 
through a greedy search experiment on a development data set, 
where under different penalty setting the difference of the final 
converted lips movement trajectory between the ground truth 
is calculated and the one that minimizes the difference is cho-
sen. Our goal is to find the best state sequence GM�F  that maxim-
izes �(E�F|G�F). Applying Viterbi search to Eq. 5, the best path 
GM�Fcan be found.  

5.3. Lip motion rendering 

Once the optimal state sequence GM�F  is ready, the audio-visual 
HMM N trained for the talking head in section 4 can predict 
the lip motion visual trajectory in a maximum probability 
sense [19]. The best visual trajectory O = [O�P, OKP, ⋯ , OFP]P is 
determined by maximizing the following likelihood function. 
log CO�GM�F, N� = logCO|R̂(T), UV(TT)�                                           

= − 1
2 OPUV(TT)A�O + OPUV(TT)A�R̂(T) + X�Y�&, (6) 

where 

R̂(T) = \R̂�̂�
(T), R̂�̂^

(T), ⋯ , R̂�̂_
(T)`P ,                                 (7) 

UV(TT)A� = bc*d \∑V�̂�
(TT)A�, ∑V�̂^

(TT)A�, ⋯ , ∑V�̂_
(TT)A�`

P
. (8) 

By setting h
hi log CO�GM�F, N� = 0, where O = .jk[19], we 

obtain Om�nJ by solving a weighted least square solution.  
The HMM predicted visual trajectory Om�nJ is then used to 

render the photo-realistic lip movement for our talking head. 

6. Experimental results 

6.1. Experiment setup 
The CD-DNN-HMMs model in the paper is trained using the 
309-hour Switchboard-I training set [20]. The system uses 13-
dimensional PLP features with rolling-window mean-variance 
normalization and up to third-order derivatives, 52 dimensions 
in CD-DNN-HMM, reduced to 39 dimensions by HLDA in 
GMM-HMM. The speaker-independent cross-word triphones 
use the common 3-state topology and share 9304 CART-tied 
states. The model is trained on alignment by 60 mixtures 
GMM-HMM with 7 data sweep, consistent of 52x11 dimen-
sions in input layer, 7 layers of 2k hidden nodes and 9304 
senones in output layer. The WER on Hub5’00 SWB test set is 
reduced from 26.2 to 17.2. 

The HMM-based talking head model is trained with an 
AV database recorded by ourselves, called MT dataset for 
convenience. This dataset has 497 video files with correspond-
ing audio track, each being one English sentence spoken by a 
single native speaker with neutral emotion. The video frame 
rate is 30 frames/sec. For each image, Principle Component 
Analysis (PCA) projection is performed on automatically de-
tected and aligned mouth image, resulting in a 60-dimensional 
visual parameter vector. Mel-Frequency Cepstral Coefficient 
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(MFCC) vectors are extracted with a 20ms time window shift-
ed every 5ms. The visual parameter vectors are interpolated up 
to the same frame rate as the MFCCs. The A-V feature vectors 
are used to train the HMM models using HTS 2.1 [21] for lip 
motion rendering. 

To evaluate the performance of our proposed method, we 
first test it on the MT dataset which has the AV recordings so 
that the voice driven lip motion can be compared with the 
original recordings by objective measurement. We also com-
pare the method using tied state decoding with the traditional 
word and phone decoding. Then we test it on a more challeng-
ing dataset which contains 15 different languages spoken by 
different speakers. As this multi-lingual dataset is audio only, 
the results are evaluated subjectively by AB test. 

6.2. Objective results 
We try the three different decoding methods on the MT dataset, 
state, phone, and word decoding, to compare their impact on 
the final lip rendering results. The DNN decoded state accura-
cy on the MT test set is about 50%, similar to the number re-
ported on Switchboard test set. Table 1 shows the word error 
rate (WER) and phone error rate (PER) of word and phone 
decoding.  

The voice driven lip rendering results are first compared 
with the results of the ground truth label (Table 2). Then they 
are compared with the original lip recordings (Table 3). Both 
objectively measured by root-mean-square error (RMSE), av-
erage correlation coefficient (ACC) of the PCA parameter tra-
jectories. In each cell of Table2&3, the first number represents 
the average results of all the 20 PCA dimensions; the second 
number represents the results of the first PCA dimension. Both 
the RMSE and ACC results show that the result of using state 
decoding is statically close to that of using word or phone de-
coding. In some cases, word decoding generates slightly better 
results than the state decoding method by considering syntac-
tic information (dictionary and language model). However, 
word decoding may also suffer serious errors when encounter-
ing out of vocabulary (OOV) words which are unavoidable. 
Fig. 2 shows a test case in our dataset in which  “herb was as 
ready for new adventures as he was for new ideas.” is misrec-
ognized as “i heard was ready ...” We can see that when the 
word decoding errors happen at the beginning, the derived 
PCA trajectory of the first 300 frames drift away from the 
ground truth trajectory. In contrast, state decoding is robust to 
OOVs and pronunciation variations because there are no 
phone set, dictionary, and language model constraints.  

 
Table 1. WER & PER for word and phone DNN decoding 

 WER(%) PER(%) 
word 16.20 11.85 
phone N/A 18.00 

 
Table 2. Voice driven results vs. Ground truth label 

 Word Phone Tied state 
RMSE 185/490 241/638 234/616 
ACC 0.85/0.94 0.76/0.90 0.76/0.91 

 
Table 3. Voice driven results vs. Original recordings 

 Word Phone Tied State Ground Truth 
RMSE 385/923 411/996 353/833 408/993 
ACC 0.54/0.83 0.49/0.81 0.49/0.81 0.60/0.87 

6.3. Subjective results 
We do A/B subjective test between our state decoding voice 
driven results and the results with the ground truth labels. Ten 
pairs of video sentences are generated from the audios in MT 
dataset. Each pair of video clips is shuffled randomly. Eight 
volunteers participant this AB test, they are asked to choose 
the one they think better lip-synched, or choose equal if they 
can’t decide. Fig.3 shows no dominate preference to either the 
ground truth or the state decoding results. It means the voice 
driven lip motion is close to as if we know the ground truth. 
 

 
Figure 3: Results of A/B test: ground truth vs. state decoding. 

 
In another subjective experiment, we test the proposed 

method on 15 different non-English languages. We choose 2 
audio sentences from each language, so there are total 30 sen-
tences for each decoding method and in total 90 pairs between 
the three decoding methods. We divide the 90 pairs into 3 ses-
sions. Each participant takes one session. There are 9 people 
taking part in this test. Fig.4 shows that in most cases, state 
decoding results are better than phone and word decoding re-
sults. It is interesting to see that the English trained DNN can 
decode other foreign languages as a sequence of “seones” and 
use them to render convincing lip motion highly synchronized 
with audio. The results demonstrate that the proposed voice 
driven lip synching is language independent.   

Video stimuli used in the experiments are available at:    
research.microsoft.com/en-us/projects/voice_driven_talking_head/ 

 

 
Figure 4: Results of A/B test in 15 non-English languages. 

7. Conclusions 
We propose a voice driven talking head based on the decoded 
tied state sequence from a context-dependent, multi-layer, 
DNN trained over speaker independent English data. By using 
the context dependent triphone tied state as the intermediate 
representation in converting from speech to lips, the proposed 
method is independent of speaker and language variations. Ob-
jective and subjective experiments show that lip motions thus 
rendered are highly synchronized with the audio input and 
photo-realistic to human eyes perceptually.  

0% 20% 40% 60% 80%100%

Ground Truth vs State
level decoding

Better

Equal

Worse

0% 20% 40% 60% 80% 100%

Word vs. Phone
Word vs. State
Phone vs State Better

Equal

Worse

Figure 2: PCA trajectory in presence of a recognition error. 
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