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Abstract—Peak power management of datacenters has
tremendous cost implications. While numerous mechanisms
have been proposed to cap power consumption, real datacenter
power consumption data is scarce. Prior studies have either
used a small set of applications and/or servers, or presented
data that is at an aggregate scale from which it is difficult
to design and evaluate new and existing optimizations. To
address this gap, we collect power measurement data at
multiple spatial and fine-grained temporal resolutions from
several geo-distributed datacenters of Microsoft corporation
over 6 months. We conduct aggregate analysis of this data
to study its statistical properties. We find evidence of self-
similarity in power demands, statistical multiplexing effects,
and correlations with the cooling power that caters to the IT
equipment.

With workload characterization a key ingredient for systems
design and evaluation, we note the importance of better
abstractions for capturing power demands, in the form of
peaks and valleys. We identify attributes for peaks and val-
leys, and important correlations across these attributes that
can influence the choice and effectiveness of different power
capping techniques. We characterize these attributes and their
correlations, showing the burstiness of small duration peaks,
and the importance of not ignoring the rare but more stringent
or long peaks. The correlations between peaks and valleys
suggest the need for techniques to aggregate and collectively
handle them. With the wide scope of exploitability of such
characteristics for power provisioning and optimizations, we
illustrate its benefits with two specific case studies. The first
shows how peaks can be differentially handled based on our
peak and valley characterization using existing approaches,
rather than a one-size-fits-all solution. The second illustrates a
simple capacity provisioning strategy for energy storage using
the peak and valley characteristics.
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I. INTRODUCTION

The cost, scalability and environmental concerns arising
from the power consumption of datacenters has come under
extensive scrutiny. While much of the prior work in the
area has looked to reduce energy of computing and cooling
systems, the importance of how this energy is dissipated
over time (i.e. the power) has gained a lot of recent attention.
Power dissipation, particularly the peak or high power draws,
impact both operational (op-ex) and capital (cap-ex) expen-
ditures. Electric utilities can charge differentially (op-ex) for
peaks (e.g. [4]), especially if such high power draws coincide
with high demand across the grid because of supply-demand
mismatches that can lead to potential black or brown-outs.

Peak power draws also determine the capacity of the power
distribution and cooling infrastructure that is provisioned
within the datacenter. Prior studies [6], [15] have pointed out
that provisioning costs can range between $10-20 per watt,
which is incurred even if that watt is not actually consumed.

To address this problem, numerous prior optimizations
have been proposed. However, there is a lack of real world
datacenter power consumption data to guide the design and
enable thorough evaluation of these optimizations. Detailed
power consumption data at different temporal scales (from
seconds to months) and spatial granularities (from servers,
chassis, racks, to datacenters) for datacenters serving impor-
tant workloads is not easily available. This paper intends to
fill this critical void by providing an in-depth analysis of
measured power characteristics from the datacenter infras-
tructure of Microsoft corporation.
Power Characterization: Workload characterization is a
key ingredient to the design and analysis of any system
that is intended to cater to this workload. It can provide
important guidelines regarding how to design the system to
handle the average, or a high percentile, of the workload.
It also provides the benchmarking ability to evaluate how a
given system would perform. More importantly, it can help
identify attributes of the workload that stress the system,
quantify the statistical properties of these attributes, and
exercise these properties in fine tuning and evaluating the
system for the future. Such a design can perform much
better than one based on just a particular load or trace of the
past. The statistical properties enable an easier analysis to
quickly examine performance behavior, system design and
capacity planning issues, etc., compared to a time consuming
design and evaluation loop that may require access to the
fine-resolution data over an extensive period of time (that
may not necessarily be accessible to everyone).

Recognizing these benefits, there have been several prior
efforts at workload characterization for different system
design issues, e.g. web, media and cloud services [1], [9],
[16], [10], networking [20], [34], file and I/O systems
[26], [14], memory system errors [27], impact of datacenter
temperature on failures [5], etc., and using these for different
optimizations.

While one could take load characteristics and extrapolate
them to power demands (using appropriate utilization to
power translation models, e.g. [3], [22], [6], [17]), there are



several additional considerations: datacenters host multiple
workloads and subsystems, with a complex set of inter-
actions and correlations that could possibly exist across
the workloads or subsystems and it is not clear if the
extrapolations would hold at the aggregate (temporal and
spatial) level. Moreover, power modeling is still an active
area of research, with both linear and non-linear correlations
between load or utilization and power being suggested [7],
[6], and model accuracy may be insufficient for safety
critical power capping operations. Instead, direct power
measurement based characterization can avoid some of these
deficiencies.
Datacenter Power Characterization: Power measurement
and characterization, in most prior works, has typically
used a few (datacenter) applications and/or a few servers
at best. For instance, observations of around 20 servers in
a production datacenter in [28] show under-utilization, with
the highest power peaks caused by virus scans. A study from
IBM [29] examined the temporal and spatial correlation of
power consumption in small clusters, each with about 20
servers. A similar characterization of MSN messenger work-
load [8] has shown opportunities for better provisioning via
intelligent workload placement. The most notable large scale
undertaking to study datacenter power demands from the
provisioning perspective is the published effort from Google
[6]. This study identified the headroom for over-provisioning
IT equipment within the existing power infrastructure at
different spatial scales. The study was more intended to
portray the potential of power under-provisioning, rather
than as a characterization effort for capturing the statistical
properties of the power demands, and their impact on
the effectiveness of different power capping and/or power
demand shaping knobs. As we will show, a more detailed
abstraction (as in our peak and valley attributes) of the
characteristics is necessary for these purposes, rather than an
aggregate power demand represented as a simple Cumulative
Density Function.

To our knowledge, this is the first effort to undertake
a systematic characterization of the power consumption of
large computing infrastructures, that can be used for the
design and evaluation of effective power demand shaping
knobs.
Power Capping/Demand Shaping: Broadly, there are three
primary categories of power capping knobs which as noted
above has both cap-ex and op-ex benefits. Considering the
power distribution network as a hierarchy flowing from
incoming utility lines, to step-down transformers, UPS units,
and Power Distributions Units, that subsequently feed to
chassis and racks, and finally to individual outlets for each
server, power capping knobs can be employed at one or more
of these levels in the hierarchy.Temporal knobs include load
scheduling or deferral, which temporally move portions of
the load from peaks to valleys to shave the former. These
may be implemented through dynamic voltage-frequency

scaling (DVFS) techniques that slow down the execution,
admission control techniques that drop load during peak
demand, or by delaying execution to a low demand time
(valleys) [21], [24], [7], [32], [23], [30], [2], [33]. Spatial
knobs leverage heterogeneity of power demands at any time
across the datacenter, and either statistically multiplexing
their low probability simultaneous occurrence to co-locate
them within a level [25], [11], [6] or migrate workloads
to regions in the hierarchy with headroom (valleys) from
regions that are operating at their peak [11], [8], [19], [2]. A
recent set of knobs leverages energy storage devices (ESDs),
such as batteries, ultra-capacitors, etc., to provide just-in-
time extra capacity for power peaks by hoarding required
capacity (energy) in previous valleys (when demand was
lower) [12], [13], [18], [31]. Depending on where they
are placed in the power distribution hierarchy, ESDs can
suppress peaks from propagating higher up in the hierarchy.
Overview: In general, the efficacy of all these power cap-
ping knobs depends on peak and valley characteristics of
power draws in the power hierarchy. For example, temporal
deferrals require subsequent valleys large enough to spill
over the work from a previous peak. Spatial migration
requires a valley elsewhere in the hierarchy to overlap with a
peak to be suppressed. ESDs require sufficient valleys, either
in number or magnitude, to have sufficient slack to re-charge
their capacity preceding the peak that it has to suppress, etc.
Consequently, while we do present statistics of aggregate
power demands at different temporal and spatial scales (in
section II), we focus more detailed characterization results
on peaks and valleys in these demands (in section IV), after
formally defining these terms for a specified level of power
capping in section III.
Contributions: We collected fine-grained power traces from
multiple server clusters, each comprising hundreds of servers
spanning multiple chassis and racks, across several geo-
distributed datacenters of Microsoft corporation over a 6
month duration and make the following contributions:

• We present an aggregate power consumption analysis that
shows how power fluctuations change across different
spatial and temporal scales. The analysis shows the effect
of statistical multiplexing, temporal dependence and self-
similarity, and the nature of correlation among server and
cooling power consumptions.

• We formally define attributes for peaks and valleys of
power demands for a given power cap. These attributes
- width (duration), height or depth, and area (energy) -
capture the stringency of peaks and slack in valleys.

• We extensively characterize these attributes individually
for the peaks and valleys. We also quantify the cross-
correlations between them, which would impact the ef-
fectiveness of different peak suppression knobs.

• Our analysis shows that there are a large number of
peaks of relatively short duration. These short duration



peaks are also typically of small amplitude (height), and
occur in bursts. At the same time, we cannot ignore
the long duration peaks, which albeit occurring at lower
frequencies, impose stringent demands on peak suppres-
sion techniques. Our results suggest the possible need to
look beyond the immediately successive peak or valley,
to perform better aggregate level optimizations, especially
for smaller peaks.

• While there are numerous use-cases of such characteri-
zation, we explore two illustrative case-studies. The first
exploits the properties of peak occurrences and their
stringency to differentially employ two peak suppression
techniques (load deferral and spatial migration). The sec-
ond study uses information about peak attributes, and the
valley opportunities to come up with rough estimates for
ESD technology and capacity provisioning.

II. AGGREGATE CHARACTERISTICS

In this section, we present a spatio-temporal analysis of
power demand, focusing on its aggregate characteristics.

A. Tracing and Data Collection

We collected power measurement data from multiple geo-
distributed datacenters run by Microsoft corporation over a
six month period, between July-December 2011 1.We spe-
cially give results here for data pertaining to 8 representative
server clusters (see Table I) in the interest of clarity. Each
such cluster comprises several hundreds of servers that span
multiple chassis and racks. These clusters run a variety
of workloads including web-search, email, Map-Reduce
jobs, and several other online cloud applications, catering
to millions of users around the world. Each cluster uses
homogeneous hardware, though there could be differences
across clusters. We name the 8 clusters as C1, C2, ..., C8

and present the trace collection resolution and the type (soft-
realtime, batch and interactive) of application that each hosts
in Table I. Apart from the IT power of the clusters, we have
also collected cooling power.

Cluster Names Data Resolution Application Type
C1, C2 20 seconds Soft-realtime, Batch

C3, C4, ..., C8 120 seconds Interactive

Table I
DATA COLLECTION IS DONE FOR A PERIOD OF SIX MONTHS. EACH CLUSTER HAS

SEVERAL HUNDREDS OF SERVERS

B. Statistical Properties

Spatial Characteristics: Figure 1 (a) shows the CDF of
power consumption at multiple (spatial) levels for one of
the clusters, C1, starting from cluster-level to rack-level to
chassis-level to server-level. The x-axis is normalized with
respect to the sum of the maximum demand (over time)

1For business reasons, much of the data is presented as normalized to
the relevant maximum, rather than as absolute values.

of all the servers within that cluster. At the lower levels
(e.g. server), there is higher variance in power demands.
However, statistical multiplexing effects of these demands,
tend to smoothen the fluctuations as we go higher up the
hierarchy. For instance, when considering demands at the
server level, nearly a third of their duration is spent at a
power utilization that is less than 70% of their potential
maximum demand. However, the corresponding cluster C1

rarely drops below its 70% maximum demand. At the other
extreme, while the server level power can get over 95%
of the maximum demand, the corresponding cluster level
power rarely exceeds 80% of the maximum. Thus, there
is fairly good statistical multiplexing, and the likelihood of
simultaneous peaks across all equipment at the same time
reduces as we move higher up in the power hierarchy. These
results corroborate observations made in [6], showing the
rarity of peak needs at the aggregate level, further motivating
the attractiveness for under-provisioning the power hierarchy
(especially as we go higher up the hierarchy). Figure 1 (b)
shows the CDF of power consumption for the 8 clusters
individually. As can be seen, C1 is representative of a ma-
jority of these clusters and hence where intra-cluster details
are discussed, we show only this cluster for brevity. The
careful reader may observe that C1’s CDF differs slightly in
these two graphs, arising because the normalization in (a)
is with respect to the potential maximum demand across all
its servers, while in (b) it is with respect to its own actual
maximum needs over time.
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Figure 1. CDF of normalized power.

Temporal Characteristics: One way to understand the
temporal time series of power demands is through an Auto-
correlation Function (ACF) plot with different time-lags.
Figure 2 shows the ACFs for clusters C1 and C3. While
there are some absolute value differences between the two

0 200 400 600
0

0.5

1

Time (hour)

A
ut

oc
or

re
la

tio
n

0 200 400 600
0

0.5

1

Time (hour)

A
ut

oc
or

re
la

tio
n

0 12 24 36 48
0.2

0.4

0.6

0.8

1

Time (hour)

A
u

to
co

rr
el

at
io

n

(a) Cluster C1 (b) Cluster C3 (c) Cluster C1 Zoomed-in

Figure 2. Auto correlation function for different time lags for clusters C1

and C3



clusters, the trends are similar, and we specifically focus on
C1, and show a zoomed-in version of its ACF for time-
lags stretching up to 48 hours (Figure 2 (c)). While there
are significant near-term correlations in the time-series, we
note that there is a fairly good time-of-day behavior that
is exhibited by the power demands - lags of 24 hours
(and multiples) have high correlations, and lags of 12 hours
(and its odd number of multiples) are the least correlated.
Furthermore, the slower than exponential decay of the ACF
indicates that the demands do not follow a Poisson process,
with possibility of self-similarity over time. Self-similarity
implies structural similarities across a wide range of time
scales. To investigate the presence of self-similarity, we
calculate the Hurst parameter, using several techniques [9],
[20], [34], including variance, R/S method, and periodogram
plots. The results are consistent across these techniques.
Hurst parameter is a measure of the level of self-similarity
with value close to 1 indicating more self-similar. We find a
high value for the Hurst parameter, over 0.8, for all clusters
(Figure 3), with the log-log variance plot (Figure 5 (a)) and
R/S method (Figure 5 (b)) specifically shown for cluster C1.
These quantitatively show the existence of self-similarity in
the power demands.

Cluster Hurst
Name Parameter
C1 0.93
C2 0.91
C3 0.89
C4 0.90
C5 0.90
C6 0.82
C7 0.87
C8 0.86

Figure 3. Hurst parameter
values of 8 clusters.
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Figure 4. Pictorial view of C1’s power
at three different time scales.
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Figure 5. Hurst parameter estimation methods for C1.

A visual examination of the time series, shown in Figure 4
at different time scales (20s to 2000s) of the average
(normalized) power for C1, also gives some evidence of
this behavior. We observe that burstiness persists even at
macro time scales, as evidenced by both these results.
Consequently, from a datacenter designer’s perspective, it
is imperative that any methodology employed for peak
suppression and power smoothing, recognizes the fact that
such power peaks or spikes may occur in close proximity

temporally. This impacts the effectiveness of such tech-
niques, e.g., time shifting of load or DVFS may not have
enough slack before the next peak, or ESDs would need
sufficient time to recharge.
IT and Cooling Power: Figure 6 (a) compares the CDF of
IT equipment (servers and networking devices) and cooling
power consumptions both normalized with respect to their
individual maximum demands for C1. There are several
interesting observations from these results: (i) Cooling power
and IT power are correlated as can be seen from Figure 6 (b)
and (c). The Pearson correlation coefficient between the two
is 0.841. However, the cooling power, as is to be expected
due to thermal time constants, lags 2 minutes behind the
IT power to reach the maximum correlation coefficient of
0.844. As expected based on the high correlation with IT
power, the cooling power also exhibits time-of-day behavior
and self-similarity. The Hurst parameter value is 0.90. (ii)
The variation in cooling power is much more pronounced
than that in IT power (also seen visually in Figures 6 (b)
and (c)). Beyond its dependence on the IT power draw,
cooling power also depends on other parameters including
external temperatures, air-flow, etc. High user demand and
consequently a high IT power consumption often occurs at
times of the day when external temperatures are also among
the highest for the day, leading to this wider fluctuation. (iii)
The CDF shows that the cooling system is operating closer
to its maximum actual draw, much more often than the IT
systems. For more than 50% of the time, it is drawing over
90% of its maximum actual draw. This is expected because
cooling systems have fewer power states, resulting in more
discrete modes of operation.
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Figure 6. Normalized IT and cooling power of C1.

III. ABSTRACTING PEAKS AND VALLEYS

A primary goal of this work is to characterize and
analyze power demand time-series into a convenient set of
abstractions that facilitate systems design and optimizations
for power provisioning, capping, and smoothing (demand
shaping). There is a spectrum of abstractions possible,
ranging from the very detailed, such as a spatio-temporal
reproduction of the entire power demand data at fine resolu-
tions, to a very succinct and possibly simplistic statistic, such
as a CDF depicted earlier in Figure 1 (and also used in [6]).
As discussed earlier, characterization has wider ramifications
than the raw data in many cases, and the raw data may itself



not always be available at the necessary resolutions. But a
simple CDF, though attractive, may fall short of the intended
purposes when the goal is to design and evaluate power
capping and shaping knobs. We illustrate this by taking
the power demands of C1 and C4, whose power demand
CDFs are fairly close as depicted in Figure 7 (a). However,
applying a temporal deferring knob such as DVFS to enforce
a stipulated power cap (shown as the vertical line in Figure 7
(a)), results in a delay distribution of the deferred load (above
the cap) that is very different between these two clusters as
in Figure 7 (b). This is because, even if the aggregate area of
the power demand above the cap is similar, the distribution
of such area across the peaks is very different for these
clusters as shown in Figure 7 (c) (peak area will be defined
and the consequent performance impact explained shortly).
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Figure 7. Same power cap imposed on similar CDFs by load deferral,
results in different delay distributions.

This reiterates the need for defining, and characterizing,
those attributes which would really impact the design and
analysis of power capping knobs. Towards this goal, we
propose to abstract the power data using power peaks
and valleys that are based on a specified power cap, and
identify different attributes for these peaks and valleys.
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Figure 8. Notation for peaks,
valleys, and their attributes.

Consider an IT equipment
power demand time series pt,
over discretized time t =
0...T , in time steps of ∆t. This
demand could be either from a
single server, or a rack, a clus-
ter, or even a datacenter. Let
pmin and pmax be the mini-
mum and maximum power de-
mand over all t in this time
series. The dynamic range of power consumption, denoted d,
is given by d = pmax−pmin. For any technique employed to
optimize the peak power consumption, the scope of options
to set the power cap is only within this dynamic range d.
Consequently, we define a power cap cf , in terms of the
fraction, f , (percentage) of this dynamic range. The absolute
power cap is then given by cf = (1− f)× d+ pmin. Our
experiments in subsequent sections will explore values of f
= 20%, 30% and 40%.

Setting a cap of cf to the time series pt gives rise to
peaks and valleys in the power draw as illustrated in Figure
8. For instance, the power draws in the time intervals [t0, ta]
and [tb, tc] are example peaks, while the power draws in

time intervals [ta, tb] and [tc, td] are example valleys in this
figure. Formally, we can define a series {i1...ik} of points
in time where the power demand intersects the horizontal
line at a given cf , i.e. ∀t ∈ ik, pt = cf . Note that the
power demand in any interval [ik, ik+1] can be categorized
as either a peak or a valley. It is a peak if the power demand
within this interval exceeds cf , and is a valley otherwise.
In addition, we also need to consider the extreme cases of
intervals [t0, i1] and [ik, tT ] where the beginning and end
of time series do not intersect with the horizontal line cf .
These intervals can also be categorized as a peak or a valley
depending on whether the power demand in those intervals
fall above or below cf respectively.

The power demand time series pt, can now be expressed
as a sequence of peaks and valleys of different intervals
defined by their respective [ik, ik+1], with k used to denote
the index in the sequence. An interval k, whether a peak
or a valley, can be characterized by the following attributes,
each of which can have an implication on power capping:

• Peak Height (PHk) or Valley Depth (V Dk): When k is
a peak, its height (Power) can be specified as PHk =
maxik≤t≤ik+1

{pt}−cf

d . This is the maximum power draw
exceeding the defined cap that needs to be provided over
the duration of this peak, normalized as a fraction or per-
centage of the dynamic power range d. From a practical
viewpoint, the magnitude of PHk would determine the
magnitude of the power capping knob that is employed
to cap this peak, e.g. number of servers that need to be
shutdown, the power states in DVFS to be employed, the
capacity of an energy storage device to sustain this peak
power need, etc.
Similarly, when k is a valley, its depth can be specified
as V Dk =

cf−minik≤t≤ik+1
{pt}

d . This is the lowest power
draw during this valley, capturing its ability to re-charge
an energy storage device, take on the load deferred from
prior peaks, etc.

• Peak Width (PWk) or Valley Width (VWk): This is simply
the duration (time) of the corresponding peak or valley
and is calculated as ik+1 − ik. Valley width corresponds
to the inter-peak time and vice-versa. These attributes
show the frequency of their occurrences, thereby giving
an indication of recovery periods between peaks.

• Peak Area (PAk) or Valley Area (V Ak): The area of a
peak area PAk (Energy) is given by

∑t=ik+1

t=ik
(pt− cf )×

∆t. Correspondingly, the valley area V Ak is given by∑t=ik+1

t=ik
(cf −pt)×∆t. The peak area corresponds to the

total energy exceeding the power cap, thereby indicating
the amount of work that needs to be accommodated
by any peak suppression technique without the help of
the additional power. The valley area is indicative of
how much extra work can be accommodated within the
specified cap, e.g. work deferred from a peak, amount of
energy for re-charging a storage device, etc.



IV. CHARACTERIZING PEAKS & VALLEYS

Having defined the relevant attributes for peaks and val-
leys, we now characterize their occurrence in our traces. We
specially present results for C1, which is fairly representa-
tive. We will mainly focus on f set at 20%, 30% and 40%
power caps over the dynamic range, which consequently
define the peaks and valleys, in these results.

A. Peak Characterization
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Figure 9. Peak Occurrences

Figure 9 (a) and (b) show the distribution of peaks for the
chosen power caps, for the hours of a day, and days of the
week. When we look at the results in the hourly figure, we
see a slightly higher distribution of peak occurrences in the
working hours, compared to late nights and early mornings
as is to be expected. However, with more stringent power
caps, there is a re-classification of many of the valleys into
peaks, i.e. regions which may have been a valley in the
20% cap, may have portions of it re-classified as peaks in
the higher caps. This re-classification effect on the relative
number of peaks (normalized with respect to the 40% cap)
is illustrated in Figure 9 (c). Such re-classification leads to
a more uniform distribution of the number of peaks in the
30% and 40% caps, for the day-of-the-week behavior, with
the 20% cap being most influenced by day of the week.
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Height: Figure 10 shows the
CDF of peak heights (PH), across
6 month duration, for the three
power caps. Note that a power cap
bounds the maximum height of a
peak, i.e. the right-most point of
the CDF. However, as the figure
indicates, a majority of the peaks
have small amplitudes. For exam-
ple, with the 20% cap, nearly 90% of the peaks have
amplitudes of 10% or less, which is less than half the cap
magnitude. With more stringent caps, while the maximum
amplitude can increase, we find that the 30% and 40% caps
are still heavily skewed towards the small amplitudes with
over 95% of their peaks having amplitudes lower than 10%.
This suggests that as amplitudes of peaks already selected
by the 20% cap get taller in the 30% and 40% cases, an
even larger number of peaks (of smaller amplitudes) are
being brought in by the re-classification in these stringent
caps, thereby slightly shifting their CDF curves to the left.

However, the peaks of amplitudes of 20% or higher are non-
zero (though visually not apparent), thereby indicating the
need for good peak suppression across a wider range of
amplitudes.
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Figure 11. Peak Width
Distribution

Width: Figure 11 shows the
CDF of the peak width (PW )
distribution with the three spec-
ified power caps. In the interest
of clarity, the x-axis is shown for
a zoom-ed in portion of the re-
sults. As the caps become more
stringent, two factors influence the
CDF: (i) more peaks (of smaller
widths) get added to the classification, and (ii) existing peaks
get wider. When moving from 20% to 30% cap, the former
effect is more pronounced, while when moving from 30%
to 40%, the rate of addition of new narrow peaks is not
sufficient to outweigh the latter widening factor. Regardless
of the power caps, these results show that a vast majority of
the peaks are quite narrow, i.e. nearly 95% of the peaks last
only 4 minutes or less. However, there are a few long peaks
as well. For instance, the 20%, 30% and 40% caps have
a maximum peak width of 50 minutes, 70 minutes, and 4
hours 30 minutes respectively, identifying the need to handle
a wide span of peak durations for any peak suppression
technique.

Area: The area in a peak (PA) can be a more effective
measure of the work that needs to be efficiently handled
by any peak suppressing strategy, rather than its height or
width alone. Figure 12 (a) shows the distribution of this
area for the 40% cap (results are similar for the other two).
One solid line shows the number of peaks of a certain area
(left y-axis), where the peak area (PA) is normalized with
respect to the cumulative area of all peaks. As can be seen,
this graph accentuates the earlier observations that there are
many short and narrow peaks, resulting in a area distribution
that is even more skewed towards the left in the CDF. While
the longer lasting and taller peaks are very infrequent, as
our previous results show, their amplitude and widths can
in fact be substantial. This effect is illustrated in the other
dashed line of Figure 12 (a) where the right y-axis shows
their contribution as a percentage of the total cumulative area
under the peaks as a CDF. We notice that the few longer and
taller peaks do contribute to over 50% of the total area of
peaks - implying that it is extremely important to efficiently
handle these rare but demanding peaks.

In addition to the area itself, it may be important to con-
sider the shape of the peaks, i.e. whether it is symmetric or
weighed more towards one side (the first half of its duration
or the second half). Such information can help understand
the impact on performance if workload from these peaks is
deferred using temporal knobs such as scheduling or DVFS.
For example, if the peak shape is weighted to the left, i.e.,
it has more work in the earlier phase, then more work will
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(a) Peak Area Distribution (b) Peak Symmetry

Figure 12. Peak Area Characteristics

PHk PAk (%)
(%) 0-0.01 0.01-0.1 0.1-1 ≥ 1
0-5 80.30 2.24 0 0

5-10 5.98 8.20 0.25 0
10-20 0.19 1.69 0.76 0.07
≥ 20 0 0.08 0.12 0.12

Table II
DISTRIBUTION OF PEAKS IN TERMS OF THEIR HEIGHT AND AREA (AS % OF

PEAKS). AREA IS NORMALIZED WITH RESPECT TO THE TOTAL AREA UNDER

PEAKS. f = 40%.

be deferred for a longer duration, than in a symmetric peak.
The average deferral delay or loss of performance can hence
be greater or lower for an asymmetric peak compared to an
equivalent symmetric peak with the same area or amount of
work deferred. Figure 12 (b) captures the symmetry of the
peaks by plotting the CDF of percentage difference in area
between the first and second halves of its duration. Since
this difference is more important for longer peaks than short
duration ones, we plot this for all peaks lasting longer than 5
minutes. If all such peaks were fully symmetric, there would
be a single vertical line at 0%. However, the variances show
that there is some amount of asymmetry. However, there
are approximately as many peaks with a first half skew as a
second half skew, suggesting that on the average, the control
effectiveness of peak suppression may even out.

Height vs. Area: Another important characteristic to
understand is the height vs. area correlations of peaks, since
this has a direct bearing on the choice of technology used
in energy storage devices (ESDs) for peak suppression.
Certain ESDs such as ultra-capacitors are more efficient
for handling a large height (power amplitude), while oth-
ers such as compressed air energy storage are better for
large area (energy). Ragone plots in [31] show significant
differences in these efficacies using a 2-dimensional (power
vs. energy) plot for different ESD technologies, including
ultracapacitors, batteries, and compressed air, etc. Table II
shows the percentage of peaks with different height and area
ranges for the 40% power cap. While the bulk of peaks
are in the small and narrow bin as already observed, we
notice the results in this table are weighted more along
the diagonal. This suggests that while there could be some
vagaries, a large number of peaks are probably suited to
a single technology that provides a reasonable trade-off
between power vs. energy costs in the Ragone plot (i.e.
neither energy biased nor power biased). We will revisit this
issue in greater detail in the next section.

B. Valley Characterization
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Figure 13. Valley Width
Distribution. f = 30%.

Width: Valley width (VW )
measures the inter-peak distance,
reflecting the allowable “quiesce”
time from the effects of suppress-
ing the previous peak (say us-
ing scheduling or DVFS), and is
also indicative of the duration for
preparing for the next peak (re-
charging an ESD, migrating work-
loads, etc.). Figure 13 shows the CDF of the valley width
for the 30% power cap (similar for the other caps), and
compares it with the corresponding peak width distribution.
In the interest of clarity, the x-axis is shown for a zoom-
ed in portion. Valley width is more skewed towards longer
durations compared to the peaks. For instance, 60% of peaks
last only up to 30 seconds, while 70% of the valleys are
of longer duration than 30 seconds. Since the valleys are
recovery time or preparation periods between peaks, these
results are suggestive of reasonable slack being available
for such recovery or prepared-ness. However, the magnitude
(area) of the valley needs to be closely examined for more
concrete pronouncements as is investigated next. In the
interest of space, we merely note that valley depth shows
similar distribution as peak height and omit the details for
valley depth alone.

Area: The area in a valley (V A) indicates the slack
in terms of work (energy) for recovery or prepared-ness
between peaks. Similar to peak results, we show the valley
area distribution (for a 30% cap) in terms of the number
of valleys of a certain area (this is normalized to the total
area under peaks so that we can compare peaks and valleys
in the same Figure 14 (a)), and the skewness or symmetry
of the valley area around its midpoint (in Figure 14 (b)).
We also repeat the peak results in these graphs to make
direct comparisons. As before, we find that valleys are much
more skewed towards larger area compared to peaks. For
instance, if we consider the 50-th percentile of peaks, the
valley to peak area ratio is roughly 4. When we consider
a higher percentile, say 75-th percentile, this same ratio
grows to as much as 8. This suggests that on average,
a peak is surrounded by a relatively larger (in terms of
area) valley suggesting good scope for recovery or prepared-
ness. However, one cannot always go by this average case
behavior since there are at least a few valleys (0.5% in this
case) whose area are smaller than peaks. This motivates the
need for a more detailed analysis of peaks and preceding or
following valleys, as is discussed in sections IV-C and IV-D.

The valley symmetry figure (Figure 14 (b)) shows a slight
positive bias, i.e. more of the valley area occurs earlier in the
duration rather than later. This is more preferable, especially
for load deferring techniques, which would try to fill up the
valley area as early as possible to avoid long delays.
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Figure 14. Valley Area Characteristics

VDk VAk (%)
(%) 0-0.01 0.01-0.1 0.1-1) ≥ 1
0-5 68.71 3.50 0 0
5-10 4.69 14.04 1.47 0
10-20 0.16 1.20 2.68 0.45
≥ 20 0 0.08 0.12 2.91

Table III
DISTRIBUTION OF VALLEYS IN TERMS OF THEIR DEPTH AND AREA (AS % OF

VALLEYS). AREA IS NORMALIZED WITH RESPECT TO THE TOTAL OF AREA UNDER

PEAKS. f = 40%.

Depth vs. Area: In addition to the valley area and its
symmetry, the shape of the valley impacts the ability of an
ESD to accumulate enough charge for shaving subsequent
peak(s), since technologies limit how fast they can re-charge
for a given capacity. To capture such properties, we correlate
valley depth with its area (normalized to the total peak area)
in Table III, by showing the percentage of total valleys for
different depths and area ranges. As peak observations, we
find (i) valleys are typically shallow and small (though still
larger than peaks as depicted in previous results), and (ii) the
table weighted more along the diagonal (again suggesting the
possibility of an equal relative importance between power
and energy efficiencies of the ESD technologies in the
Ragone plot [31] for re-charging).

C. Peak and Following Valley
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Figure 15. Peak and Fol-
lowing Valley

Having characterized peaks and
valleys separately, it is equally im-
portant to understand the impact
of the characteristics of peak or
valley k and the immediately fol-
lowing valley or peak k + 1. We
begin by considering peak k and
its next valley k + 1, where the
latter would typically be used by
a peak suppression technique such as load deferring and/or
DVFS, to utilize the valley area that spills over from the
preceding peak. For clarity, we confine our results to the
immediately following valley, with cascading carry-overs for
several future valleys by these mechanisms possibly having
severe performance repercussions. We will, however, discuss
such possible occurrences and their implications at the end.

There are two main metrics for this consideration - (i)
the valley width (VWk+1) following the peak width (PWk)
as depicted in Table IV, and (ii) the valley area (V Ak+1)
following the peak area (PAk) as captured in Figure 15.

PWk VWk+1 (min)
(min) 0-0.5 0.5-1 1-5 5-30 30-60 ≥ 60
0-0.5 13.42 13.23 15.45 5.65 1.00 2.28
0.5-1 11.30 8.83 6.64 1.20 0.20 0.48
1-5 9.63 5.65 1.66 0.13 0.01 0.20

5-30 1.88 0.36 0.12 0.01 0.04 0.21
30-60 0.16 0.03 0 0.03 0.01 0
≥ 60 0.16 0 0.01 0 0 0

Table IV
PEAK WIDTH VS. FOLLOWING VALLEY WIDTH (% OF PEAK-VALLEY PAIRS).

f = 40%.

Table IV shows the percentage of preceding peak and
following valley widths that fall in different duration ranges.
It is interesting to view this table or matrix in upper and
lower triangular form. The values in the upper triangular
part indicate the percentage (roughly 46%) of peak-valley
pairs, where the subsequent valley is of longer duration than
the peak. The values in the lower triangular part indicate the
possibly “worrisome” percentage where the peak is of longer
duration than the following valley, i.e. peaks are coming
in closer proximation without ample recovery time for load
throttling/deferring mechanisms. Around 29% of peak-valley
pairs fall in this category.

However, even if the following valley is of shorter
duration than the preceding peak, the deferral or DVFS
techniques may still perform well if the valley has sufficient
area (depth) to accommodate the spilled over load. This is
captured in Figure 15 which shows the CDF of the percent-
age difference between the peak and subsequent valley area.
Negative values suggest that the valley area dominate over
the peaks, while positive values suggest vice-versa. At 20%
and 30% caps, over 70% of the valleys have sufficient room
to take on any load deferred from the preceding peak. With
a more stringent cap of 40%, as many peaks are larger than
their corresponding valleys as vice-versa.

The above two sets of results suggest that any load
deferral or DVFS techniques should not presume that the
immediately following valley will always have sufficient
room to accommodate load spillage from the prior peak.
This is particularly true for the short duration peaks as is
evident from Table IV. Consequently, such peak suppression
mechanisms should recognize the burstiness behavior of
these peaks, and employ solutions to address them in a
grouped or aggregate manner.

D. Peak and the Preceding Valleys
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Figure 16. Peak and Preceding Valley(s)

The correlations between a peak and its preceding valleys
is important for ESD-based peak suppression, which relies



on previous valleys to re-charge its capacity for sourcing
power during the current peak. We mainly look at the area
(energy) capacity of the valleys for charging opportunities
(in the interest of space, we merely note that power capac-
ities are typically adequate).

Figure 16 (a) captures the area difference of a peak and
its preceding valley. With 20% caps, nearly 80% of the
preceding valleys have sufficient energy charging capacities
for the following peak. This percentage decreases to 60%
for the 40% cap. However, note that unlike load deferral
and DVFS techniques, ESD based peak suppression does
not incur performance penalties, and the re-charging does
not have to be restricted only to the immediately preceding
valley. Figure 16 (b) captures the opportunities for re-
charging in all previous valleys, while still discharging for
all previous peaks, by showing the CDF of cumulative (from
1 to k + 1) area difference between each peak and its
preceding valley of the entire trace. We note that there
are absolutely no negative values in the CDF, indicating
that a sufficiently-sized ESD which uses every valley to
re-charge, and discharges for every peak, will never run
out of capacity to shave any peak in the entire execution.
Consequently, these characteristics show a lot of promise for
ESD-based peak suppression from a theoretical perspective.
However, practically there are several conditions limiting
ESD charge and discharge opportunities (some of which
will be covered later in section V-B). Hence, we also look
at a limited window of opportunity for re-charging, by
considering the area differences of 10 consecutive valley-
peak pairs in Figure 16 (c). While the 20% power cap
imposition can be completely met by the ESDs with this
limited window, the results for the 30% and 40% caps are
still showing significant negative values. This is again a
consequence of our prior observations about the burstiness
of relatively small duration peaks which may be separated
by even smaller area valleys, leading to fewer opportunities
for re-charging to meet the demands. The promise of a much
larger window (as in Figure 16 (b)) suggests that an ESD
based solution should also look to aggregately suppress these
bursty peaks, rather than just-in-time charge and discharge
based solutions.

We have also conducted a time-series analysis of the
peaks and valleys alone, as a ON-OFF process, and not just
the aggregate power demand whose results were presented
in section II. In the interest of space, detailed results for
the peaks and valleys alone are not being presented. We
analyzed the tail of the peak and valley distributions, and
obtained the corresponding Alpha values (using Hill’s es-
timate) for the ON (peak) process to be 1.2, and the OFF
(valley) process to be 1.4 as described in [34]. These values
suggest self-similarity in the peak and valley occurrences as
well, re-affirming the burstiness and long-tail behavior, and
the mandated system design considerations for handling such
peaks appropriately as discussed throughout this section.

E. Peaks & Valleys Across Clusters

All of the above analysis focused on a single cluster.
Power capping can also benefit from cross-correlation in-
formation of peaks and valleys across clusters, to better
multiplex the aggregate demand and even migrate the load
accordingly. As noted in previous studies [6], [31], power
under-provisioning is important at multiple layers of the
datacenter power hierarchy, and cluster level capping may
become necessary in such cases as opposed to just exploiting
multiplexing characteristics at the higher (datacenter) level.
We have conducted cross-cluster correlation analysis, and
simply summarize the results using two metrics, in the
interest of space, for clusters C1 and C2, with f = 40%
in both and the numbers are similar across other clusters
as well. The first is the probability of a simultaneous peak
occurrence in both clusters which we find to be extremely
low, i.e. only 0.1% of the time is there a simultaneous peak
on both clusters. The second measures whether shifting the
peak from one cluster to the other leads to a consequent peak
on the latter. We find that this probability is also quite low,
with less than 2% of the time that a peak movement to the
other cluster results in an exceeding of the cap in the latter.
These results suggest the potential of multiplexing which
was alluded to some extent in the aggregate characteristics
of section II. More importantly, re-distribution of load has
tremendous potential in peak suppression, as long as we do
not perform such re-distribution too frequently for this to
become an overhead by itself. We will illustrate how such
spatial differences across clusters, and the temporal analysis
of this section, can be used to fine-tune the peak capping
knobs in the following section.

V. EXPLOITING CHARACTERISTICS

There are several use-cases for exploiting the characteris-
tics quantified in the previous section. We illustrate the utility
of such characterization with two case studies. The first ex-
ploits the characteristics to fine-tune temporal load deferring
and spatial migration knobs, leveraging information about
peak-valley behaviors. The second uses the characteristics
to come up with a simple capacity provisioning technique
for energy storage in the datacenter, to suppress peaks.

A. Tuning Knobs based on Characteristics

As seen in the previous section, both small peaks (which
are numerous) and large peaks (though infrequent but ex-
tremely demanding) are equally important for peak shaving.
One could use a one-size-fits-all policy to shave all the
peaks, say using temporal load deferring (LD) to immediate
next set of valleys, or spatially moving (SM) them to other
clusters. In Table V, we show the impact of LD and SM,
if they are uniformly applied to shave all peaks using their
individual policies in the columns labeled as LD-only and
SM-only for clusters C1 and C2 for f = 40%. We capture



their effectiveness in terms of 2 metrics: (i) the 95-th per-
centile delay of the load above the cap that is being deferred
in time, and (ii) percentage of peaks migrated between the
two clusters. Note that in an LD-alone scheme, the latter
metric will be zero. However, SM-only may still adopt some
load deferral if the migrated peak does not find sufficient
valley space immediately in the other cluster. While LD-
only does not incur any migrations, using it to shave all
peaks results in a significant performance penalty. At the
other end, blindly migrating all the peaks in SM-only, hardly
defers the load, though this would come at a high migration
cost (time, bandwidth, locality loss, etc.). The overheads of
migration may not be worthwhile for the smaller peaks, as
opposed to the larger ones. Hence, one can consider a hybrid
scheme LD+SM (see Table V), where LD is used only for
small peaks (say up to 5 minute durations). For the peaks,
lasting longer than 5 minutes, after applying LD for the first
five minutes (since we may not be able to anticipate their
durations), the peak is migrated if it still persists. While
this does bring down the migrations substantially, the load
deferral delays are still quite significant (albeit smaller than
LD-only). Finally, we can leverage our observations from
the previous section to explain and further optimize this
hybrid approach. Recall that despite the majority of peaks
being short, a majority of them also had a subsequent valley
which could not accommodate all of the deferred load.
Such burstiness led us to believe that an aggregate level
optimization may be more productive. Consequently, we
fine-tune the hybrid approach to take several of these small
peaks and migrate them in an aggregated manner (AGG-
SM) while migrating the larger peaks if they persist beyond
5 minutes. Results for this approach are shown in the column
labeled LD+AGG-SM of Table V. By such fine-tuning of the
hybrid approach, the migrations have dropped substantially,
and the load deferral delays are quite comparable to the
SM-only approach, thus performing better than LD-only and
SM-only approaches individually.

PW (min) LD-only SM-only LD+SM LD+AGG-SM
PW=0-1 LD SM LD LD/AGG-SM

Peak PW=1-5 LD SM LD LD/AGG-SM
Type PW=5-30 LD SM LD/SM LD/SM

PW≥30 LD SM LD/SM LD/SM

Result

95th percent. 12 0.4 2 0.4delay (hour)
% of peaks 0 100 3 20migrated

Table V
TUNING KNOBS BASED ON CHARACTERISTICS

B. ESD Provisioning

ESDs have come under recent scrutiny as a peak suppres-
sion mechanism, to provide just-in-time power when caps
are being exceeded. However, there is a diversity in ESD
technologies that is captured by a Ragone plot, with different
technologies suited or cost-effective for different kinds of

Figure 17. Most cost-effective ESDs for Energy-Power Needs. Energy is
expressed as percentage of the area under the peaks, and power is expressed
as PH . On this graph, we overlaid information from Table II to illustrate
the suitability of each ESD for the different kinds of peaks.

peaks. For instance, a prior study [31] has shown ultra-
capacitors to be attractive for power-intensive tall and narrow
peaks, and compressed air for energy-intensive broad peaks.
Batteries fall in the middle of this spectrum. However, as the
prior study has shown [31], there are numerous considera-
tions when provisioning these ESDs for peak suppression:
power needs, energy needs, ability to charge and discharge
in a given time, lifetime degradation due to repeated charge
and discharge cycles, ramp rate, energy losses, etc. Taking
all these factors, and provisioning the ideal capacity for a
given datacenter’s power profile over an extensive period
of time (such as the 6 month, 20 second resolution), is a
cumbersome exercise. Further, considering a single time-
series for such provisioning may not necessarily capture all
the statistical properties of the datacenter’s behavior, which
is in fact more important for future demands (rather than
just looking at the past history). Our characterization results,
presented in the previous section, can provide one possibly
simple methodology for ESD provisioning, even if it is not
the optimal, as discussed below.

Choosing Technology: Given a peak of height PH and
area PA, the capacity of an ESD and hence its cost
(C) to shave this peak can be determined by its technol-
ogy’s power (CP ) and energy (CE) density cost as C =
max

(
PH × CP , PA× CE

)
. Using this simple model, we

compute the (PH , PA) regions over which 3 ESD tech-
nologies (Ultra-capacitor, Lead acid battery, and Compressed
air energy storage) under consideration are the most cost-
effective as in Figure 17. We can overlay the PH and PA
distributions from Table II on this figure, to examine the
suitability of each technology to shave a certain number of
peaks. We see that a majority (99.8%) of peaks from Table II
falls in the region where lead-acid battery is the most cost
effective technology. Very few (0.2%) of the peaks fall in the
ultra-capacitor region, and this constitutes only about 0.1%
of the area of the peaks. Consequently, we can simply go
with the lead-acid battery option, amongst the 3 technology
choices based on our characteristics results.

Quantifying Capacity: The shape - height which indicates
peak power, and area which indicates energy needs - of
the peaks determines the required ESD capacity for any
given technology. We, thus, examine the characteristics in



Figure 10 and Figure 12 (a). Rather than go for the 100-
th percentile, we pick the knees of these curves - 90th
percentile of the peaks in terms of height, peaks contributing
to the 90% of total area under peaks - with the former
indicating the power capacity and the latter representing the
required energy capacity. The maximum between these two
is what needs to be provisioned. However, we also need
to ensure that there is sufficient slack in the valleys to
re-charge for this capacity. For this purpose, we examine
Figure 16 to examine the re-charging opportunities. While
the immediately preceding valley(s) may not have enough
slack for such re-charge (Figures 16 (a) and (c)), the results
in Figure 16 (b) suggests that greedily re-charging at every
opportunity may provide the slack to re-charge for this
capacity to suppress all peaks.

Using these rules-of-thumb as a heuristic for ESD pro-
visioning, in Table VI we show the capacity selected by
this heuristic for 2 specific ESD technologies - lead-acid
batteries, and ultra-capacitors, showing its effectiveness in
shaving the peaks (both number and area). We compare these
results with an Optimal capacity provisioning algorithm,
that is guaranteed to provide the minimal capacity to shave
all peaks in the given data. While the latter does need to
extensively run through the time series of power demands, to
ensure these guarantees (minimal capacity, charge/discharge
rate guarantees, account for energy losses, etc.), we find
that our simple heuristic approach shaves over 99% of the
peaks, and nearly 90% of the peak area, with a capacity (and
corresponding cost), that is less than half of the capacity
(for lead-acid batteries) than what the Optimal algorithm
specifies. As is evident in Figure 17, lead-acid is an over-
whelming favorite as far as technology is concerned.

Tech. Approach Capacity Cost Peaks shaved Area shaved
(% peak (% of (% of total (% of total

area) Opt LA) peaks) peak area)
LA Heuristic 6.0 47 99.97 89.42
LA Opt. 12.1 100 100 100
UC Heuristic 6.0 789 99.97 89.43
UC Opt. 10.8 1494 100 100

Table VI
ESD CAPACITY PROVISIONING FOR LEAD ACID (LA) BATTERY AND

ULTRA-CAPACITOR (UC).

VI. CONCLUDING REMARKS & FUTURE WORK

We have undertaken a detailed characterization of power
measurements of geo-distributed datacenters of Microsoft
corporation at fine temporal and spatial resolutions over a 6
month duration. Aggregate analysis of such raw data shows
(i) statistical multiplexing of power demands that can enable
more aggressive under-provisioning at higher layers of the
power hierarchy; (ii) significant evidence of self-similarity in
the power demands, together with time-of-day behavior; and
(iii) correlations between the IT and cooling power, with the
latter showing higher variance, and a 2-minute lag behind the
former. While these aggregate characteristics can be useful

by themselves, there is a need for better abstractions to
design, evaluate, and fine-tune peak suppression mechanisms
to achieve a desired level of power capping. Towards this
goal, this paper has made the following contributions:
Abstractions: We have formally defined peaks and valleys,
their important attributes (height, width, area), and the cor-
relations between peaks and valleys that need to be studied
towards designing and understanding the potential of any
peak suppression mechanism.
Characterizing Peaks and Valleys: We have extensively
characterized peak and valley attributes individually, and
their cross-correlations. Results show that while there are an
overwhelming number of small duration and small amplitude
peaks, we cannot afford to ignore the few large ones that
have very stringent demands. While on average, valleys do
offer enough slack for load deferment or peak preparation,
there are bursts of peaks which do not have sufficient valleys
immediately following or preceding them. Further, there is
significant potential of migrating load to exploit peaks and
valleys across clusters, as long as we can restrict the number
of such migrations to avoid the consequent performance
penalties. These suggest aggregated optimizations of peaks
and valleys.
Exploiting Characteristics: There are numerous use-cases
for our characteristics, and we illustrated two specific case-
studies in the limited space of this paper. The first used
the characteristics to fine-tune load deferring and migration
based on the kinds of peaks, in an aggregated manner. The
second showed a simple approach to energy storage provi-
sioning that only uses aggregate characteristics, rather than
an extensive approach considering every possible eventuality
in the entire power demand time series.

There are several more opportunities for future work to
leverage the proposed characterizations, including further
use of predictability of peak and valley characteristics for
fine-tuning peak suppression knobs, synthesizing workloads
with the broad statistical properties that we have identified,
analytical models to work with the characteristics for quick
performance and capacity provisioning estimates, energy
supply side sourcing and management issues (including re-
newables and cost) as opposed to just demand-side capping.
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