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Abstract
Emerging mobile applications that sense context are poised
to delight and entertain us with timely news and events,
health tracking, and social connections. Unfortunately, sens-
ing algorithms quickly drain the phone’s battery. Develop-
ers can overcome battery drain by carefully optimizing con-
text sensing but that makes programming with context ardu-
ous and ties applications to current sensing hardware. These
types of applications embody a twist on the classic tension
between programmer productivity and performance due to
their combination of requirements.

This paper identifies the latency, accuracy, battery (LAB)
abstraction to resolve this tension. We implement and eval-
uate LAB in a system called Senergy. Developers specify
their LAB requirements independent of inference algorithms
and sensors. Senergy delivers energy efficient context while
meeting the requirements and adapts as hardware changes.
We demonstrate LAB’s expressiveness by using it to imple-
ment 22 context sensing algorithms for four types of con-
text (location, driving, walking, and stationary) and six di-
verse applications. To demonstrate LAB’s energy optimiza-
tions, we show often an order of magnitude improvements
in energy efficiency on applications compared to prior ap-
proaches. This relatively simple, priority based API, may
serve as a blueprint for future API design in an increasingly
complex design space that must tradeoff latency, accuracy,
and efficiency to meet application needs and attain portabil-
ity across evolving, sensor-rich, heterogeneous, and power
constrained hardware.
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1. Introduction
Emerging personalized mobile applications and operating
system services based on user context have the potential to
revolutionize the mobile experience, but only if they do not
render your phone powerless. Mobile context sensing can in-
fer your location [24], movements [14], social situation [20],
mood [28], and stress levels [27]. Applications [16] and op-
erating system services [39] can sense context in the back-
ground and act when the user transitions into a relevant con-
text. For example on iOS and Android, applications can re-
quest a callback when the user reaches a specified location
using OS APIs.

Unfortunately, continuously computing context
drains mobile batteries quickly. We found Android’s
addProximityAlert API on HTC Desire S reduces
battery standby time from 430 to 12 hours. Since mobile
devices do more than sense location and users expect at
least 16 hours of battery life [1], context sensing is not yet
energy efficient enough for continuous use.

Context sensing can however be made energy efficient.
For example, if an application can tolerate sensing every one
minute instead of continuously, the standby battery life on
the Android HTC Desire S doubles to 24 hours. Optimiza-
tions such as using the accelerometer for a few seconds ev-
ery minute to detect user movement and then trigger location
sensing only if the user is mobile further increases battery
life by 300%, to over two days. In fact, prior research pro-
posed a range of energy efficient continuous context sensing
algorithms [4, 7, 14, 18, 19, 24, 38, 40].

The problem is that not all available techniques benefit
every scenario. The application developer must choose the
appropriate algorithm and its parameters. Developers could
potentially implement and characterize these algorithms and



determine which one is most efficient for their application,
but this approach increases the programming burden and
some developers lack the resources, time, or expertise. Even
when a motivated developer implements the right sensing al-
gorithm, it only serves one application and other applications
may continue to drain the battery performing the same task.
To make context sensing both efficient and widely useful to
programmers requires an appropriate abstraction.

This paper identifies, implements, and evaluates the La-
tency, Accuracy, and Battery life (LAB) abstraction, which
seeks to simultaneously obtain programmer productivity and
efficiency for continuous context sensing. Applications con-
vey priorities and requirements on the latency at which a
context change is detected, the accuracy of the inferred con-
text, and battery consumed. The implementation of the ab-
straction selects and tunes its context sensing algorithms to
meet the constraints and optimizes battery life by adjusting
sensing frequency, modality, complexity of signal process-
ing, communication with cloud services, etc. This abstrac-
tion simply expresses the tradeoffs between latency, accu-
racy, and battery life.

We implement and evaluate this abstraction in a proto-
type continuous context sensing OS service, named Senergy.
We implement 22 context algorithms and six example appli-
cations. While a user study of programmer productivity is
beyond the scope of this paper, we do show that the LAB
abstraction captures a wide variety of application require-
ments and simplifies context programming. We further show
that Senergy efficiently satisfies application constraints by
choosing among the multiple algorithms and that Senergy
may optimize for multiple simultaneous applications.

This work makes the following contributions.
1. We identify and propose the LAB context sensing ab-

straction in which applications specify latency, accuracy,
and battery life priorities and requirements, independent
of any particular context algorithm. We implement this
abstraction in Senergy and demonstrate how applications
use the Senergy API in simple and sophisticated ways.

2. We characterize the tradeoff in latency, accuracy, and en-
ergy offered by 22 location and activity (driving, walk-
ing, stationary) context inference algorithms. Based on
the quantified tradeoffs, we describe how Senergy selects
the most appropriate context-inference approach at run-
time to simultaneously satisfy application requirements
whenever possible and optimize resource use within and
across applications.

3. We evaluate Senergy using six applications with varying
latency and accuracy requirements. The results, using
over 4,200 usage hours of real-world data traces collected
from 49 participants, show that Senergy reduces energy
use, often by an order of magnitude, while satisfying
application requirements.

As the complexity of hardware and software continues to
explode, operating system APIs will carry a much higher

burden. In particular, emerging mobile applications are using
sensors, search, history, and inference to give you ever richer
personalized services while at the same time the sensor-rich
mobile hardware offers substantially better and new features
with every generation. We believe that the priorities and
requirements specification in Senergy’s API is a promising
blueprint for managing this complexity.

2. Motivation
Current systems for continuously sensing context achieve
either programmability or energy efficiency, but not both.
To achieve both goals requires a new abstraction. A good
programming abstraction succinctly expresses functionality,
such that developers convey what they need, but not how to
do it. The application programming interface (API) correctly
and efficiently implements the abstraction. For instance, the
MapReduce API expresses a parallel data processing ab-
straction [8]. Developers specify what tasks are parallel and
the runtime determines how to parallelize those tasks.

For continuous location and activity context, we propose
the LAB abstraction which expresses: latency: how long the
system takes to detect a context change; accuracy: correct-
ness of the detected change; and battery: what fraction of
the battery context sensing may consume over a day. These
properties ensure application developers express what they
need from context sensing, but they do not overly constrain
how the implementation meets these requirements.

We show that this abstraction is sufficient to communicate
a wide variety of application requirements for continuous
context. Furthermore, we show that the system has sufficient
flexibility to simultaneously meet these requirements when
possible, optimize for efficiency, and optimize across multi-
ple applications. Section 3 discusses how we implement this
abstraction in the Senergy API.
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Figure 1: Location Tracking. Latency-energy tradeoffs for
six algorithms averaged over four devices. The GPS algo-
rithm only uses GPS data, FC uses network Fingerprints over
a Cellular data connection, and FW uses Fingerprints over a
WiFi connection. The m, ∗ versions sense location only if
they first detect movement using accelerometer data.
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Figure 2: Efficiency and productivity tradeoff for possible
context APIs.

However, attaining efficiency remains a challenging prob-
lem in its own right. Selecting the best algorithms requires
analyzing latency, accuracy, and battery on a myriad of mo-
bile devices and user behaviors. Consider Figure 1, which
shows the energy latency tradeoff for six continuous location
tracking algorithms that we implement. Variability in latency
and energy (x and y axes, respectively) makes the choice of
algorithm complex. The best algorithm for a particular ap-
plication depends on its latency requirements, available sen-
sors, and (not shown) user behavior.

For example, consider two location applications. BuyGro-
ceries notifies my spouse with a text message if I stop at a
grocery store for over 5 minutes, asking for any additions
to our list. WalkHome texts parents the location of middle
school students when school ends and then updates it every
minute until they arrive home. Due to their different latency
requirements (300 and 60 seconds), Figure 1 shows that dif-
ferent algorithms are optimal. Sections 4-7 discusses how
Senergy uses existing context sensing algorithms to meet ap-
plication specifications and deliver efficiency.

3. Senergy API Design
The Senergy API seeks to give mobile-application develop-
ers an intuitive and stable API for context that maximizes
programming productivity and to give API developers the
opportunity to optimize energy. We describe the limitations
of existing and other potential API design alternatives and
then describe how Senergy addresses these limitations.

3.1 Context Sensing API Design Space
Figure 2 depicts the programmability and efficiency of the
range of choices in the context sensing API design space.

3.1.1 Raw
The OS makes raw sensor data available to the developer.
Android, iOS, and Windows Phone provide this API. Devel-
opers must implement their own context algorithms using
the raw data. As Figure 2 highlights, in theory this approach
can be very energy efficient since applications can perform
the minimum sensing required for their needs. In practice, it

is quite difficult for developer to optimize energy efficiency
because they have limited access to energy measurements
across multiple devices and user behaviors. Multiple appli-
cations that need the same context and run on the same de-
vice will duplicate functionality and waste energy. On the
programmability axis, this approach is the most burdensome
for developers.

3.1.2 One Default
The OS implements one default sensing algorithm for each
context, tuned to some expected application use. The An-
droid and iOS platforms provide such a default for location
proximity. A single default has the potential to improve pro-
grammer productivity. It can also be energy efficient if the
context sensing algorithm matches the needs of applications.
Unfortunately, as shown in Figure 1, location tracking algo-
rithms have a wide range of latency and energy character-
istics. For instance, the Android API addProximityAlert
is tuned for low latency and for applications that do not need
low latency, this default wastes energy. If Android changes
the default settings to reduce energy usage, it may break ap-
plications tested with the current low latency setting.

3.1.3 Fixed Predefined Modes
Providing multiple fixed modes could overcome the limita-
tions of one default. For instance, the OS may offer three
modes: “energy efficient”, “low latency”, and “high accu-
racy.” Fixed Modes fall between Raw and Default in terms
of productivity because developers do not have to implement
their own algorithms, but they do need to understand and
choose among the modes. Fixed Modes improve energy effi-
ciency over Default because one of the modes is likely closer
to the application requirements than the single default.

The disadvantage of Fixed Modes is that they still close
off too much of the design space. For example, suppose an
application needs high accuracy and can tolerate high la-
tency, but no mode exposes that choice. Fixed modes also
shoehorn the OS into rigid contracts and limit extensibil-
ity. If a new algorithm emerges that dramatically improves
energy efficiency but slightly violates the latency contract
in the existing energy efficient mode, the OS cannot use it
without introducing a new mode or violating the contract.

3.1.4 Catalog
The OS could expose all its algorithms to applications. A
developer then chooses an algorithm and sets its parameters.
This type of API can achieve high efficiency since develop-
ers may select the most appropriate algorithm and settings
for their purpose. Catalog improves programmer productiv-
ity over Raw because a developer need not implement algo-
rithms from scratch. However, developers must still deter-
mine the best choice and parameter settings for their appli-
cations. Choosing is challenging because it may depend on
the user’s environment, behavior, and device characteristics.
If a better context algorithm is added to the Catalog, devel-



opers must change their application. If two applications run
simultaneously and need the same context, but choose dif-
ferent algorithms, they perform redundant work and waste
energy.

3.2 Senergy API Specification
Our goal is an API design that increases both programmer
productivity and energy efficiency. We organize our design
based on two insights. (1) Specifying a priority order among
accuracy, latency, and energy use (battery) gives developers
a simple way to express many application constraints and
gives the implementation flexibility to optimize. (2) A par-
tial quantitative specification of latency and/or battery con-
sumption gives developers a more powerful and expressive
API, since priorities do not promise specific values. Because
accuracy requires ground truth from the user or other source,
guaranteeing or quantifying context accuracy at runtime is
beyond our scope, and therefore, developers cannot specify
a quantitative accuracy value. We show that this LAB (la-
tency, accuracy, battery) abstraction is sufficient for a wide
range of context applications.

We implement the LAB abstraction in the Senergy API,
which exposes location and activity context through an asyn-
chronous method, ChangeAlert. The application registers
a callback method, and Senergy invokes it each time Senergy
detects the specified change in location or activity. Applica-
tions may unsubscribe with UnsubscribeAlert .

Table 1 lists the API and arguments. The first method ar-
gument specifies the context, which consists of locations and
activities in Senergy. We leave other types of context (e.g.,
mood, attentiveness) to future work. Location and activity
by themselves are extremely powerful for many applications
including movement tracking, health monitoring, and safe
phone interactions while driving. Furthermore, their detec-
tion algorithms expose a range of tradeoffs that we use to
explore the latency, accuracy, and energy optimization space.

Location elements are geographic coordinates. Activities
are values in an enumerated type and currently include all,
driving, walking, and stationary. Since each activity is a pa-
rameter, adding new activities is transparent to existing ap-
plications. The not operator signifies exiting a location or
activity. For instance, Activity.DRIVING detects the be-
ginning of driving and ∼Activity.WALK detects when the
user stops walking. The parameter values Activity.ALL

and Location.ALL result in a callback on all activity and
location changes respectively. For instance, ChangeAlert
(Location.ALL ) continuously tracks user location.

The second and subsequent arguments are optional. The
second argument specifies the highest priority choice of ac-
curacy, latency, or energy. The optional third argument either
specifies the next highest priority dimension or quantifies the
prioritized dimension for either latency (seconds) or energy
(% battery over 24 hr). Subsequent arguments are used sim-
ilarly. For example, the application may quantify latency at
120 s or battery at 5% of total capacity. Applications cannot

Arguments Argument description

ChangeAlert
Context[] collection of locations or activities to detect

ChangeAlert
Context[] collection of locations or activities to detect
FirstPriority one of accuracy, latency, or battery

ChangeAlert
Context[] collection of locations or activities to detect
FirstPriority one of accuracy, latency, or battery
Value quantitative constraint for first dimension∗

ChangeAlert
Context[] collection of locations or activities to detect
FirstPriority one of accuracy, latency, or battery
SecondPriority one of accuracy, latency, or battery

ChangeAlert
. . . variable number of optional arguments

ChangeAlert
Context[] collection of locations or activities to detect
FirstPriority one of accuracy, latency, or battery
Value quantitative constraint for first dimension∗

SecondPriority one of accuracy, latency, or battery
Value quantitative constraint for second dimension∗

ThirdPriority one of accuracy, latency, or battery
Value quantitative constraint for third dimension∗

Table 1: Senergy API. All arguments use custom data
types, except for constraint values which uses a double.
∗Quantitative constraint is not used for accuracy priority.

quantify accuracy, as discussed above, but including an accu-
racy priority influences context algorithm selection. For in-
stance, if the highest priority dimension is latency, followed
by accuracy, then the available context sensing algorithms
are first ranked by latency and then accuracy. If accuracy
priority is omitted, Senergy ranks algorithms by battery effi-
ciency instead of accuracy.

Senergy defaults unspecified constraints to the most bat-
tery efficient algorithm, subject to OS determined thresholds
on useful accuracy and latency. The thresholds are used be-
cause a very low energy algorithm that simply hardcodes the
location to ‘planet earth’ is not useful context.

Context sensing algorithms meet constraints probabilisti-
cally on average across large populations. Sensor, network,
user, and device variation may prevent the system from
meeting constraints systematically or on occasion. Senergy
satisfies as many constraints as possible in priority order.

Applications or the OS may wrap ChangeAlert in or-
der to track a particular context state over time or distance
(e.g., time spent at work or distance moved while in driving);
obtain current context without initiating continuous sensing;
or to expose certain special cases for backward compatibil-
ity (e.g., addProximityAlert which is simply a call to
ChangeAlert with a single location as the first parameter).



3.3 Example API Usage
Senergy supports developers with a range of expertise levels,
from those who simply use defaults to advanced developers
who tune context to match their application needs. We ex-
plore this range of programmability with three examples.

Example 1. To detect when the user starts walking with-
out any constraints, an application invokes
Activity[] activities = {Activity.WALKING};

ChangeAlert(activities);

Senergy uses its default activity algorithm for walking,
which provides low battery drain subject to minimum thresh-
olds on accuracy and latency. This usage minimizes pro-
grammer effort, and is equivalent to specifying battery as
the only priority.

Example 2. To detect each time a user starts driving and
count car trips, assuming the application can tolerate a 5
minute latency for the start driving notification, since most
driving trips will last at least 5 minutes, it invokes
Activity[] acts = {Activity.DRIVING};

ChangeAlert(acts,Priority.Latency,300);

Senergy selects an algorithm that detects driving at 300 s la-
tency with high probability. Among all such feasible options
it chooses the most energy efficient algorithm that respects a
minimum accuracy threshold. This algorithm meets the pro-
grammer specification, but it may not provide the most ac-
curate context feasible. We believe that specifying only the
critical constraints improves programmer productivity.

Example 3. With the same objective as above, the
developer now also wants to restrict the battery impact of
the application to 1% over 24 hours, to help ensure users
choose to keep it installed. The developer still prefers a
5 minute latency, and would additionally like the highest
possible accuracy. The application invokes
ChangeAlert(acts,Priority.BATTERY,1,

Priority.Latency,300,Priority.Accuracy);

Senergy chooses an algorithm that satisfies as many con-
straints as possible. If multiple choices meet the 1% battery
and 300 s latency constraints, Senergy chooses the one with
the highest expected accuracy. If no algorithm achieves 5
minute latency within 1% battery budget, it uses a longer
latency, since battery is the highest priority. Specifying all
constraints requires extra programmer effort but much less
than implementing an algorithm from scratch, or manually
selecting an algorithm from a catalog.

4. Senergy Resource Optimization
The API design described above gives the OS significant
flexibility for optimizing and evolving context sensing algo-
rithms, without exposing implementation details and forc-
ing unnecessary constraints. We implement Senergy on top
of existing sensing capabilities in mobile devices. Figure 3
shows the overall architecture. The hardware abstraction
layer (HAL) consists of components that already exist in mo-
bile OSs: raw sensor drivers and a location stack that can ob-

tain location using GPS or network fingerprints (WiFi access
points, cellular base station IDs, and their signal strengths),
using an Internet service to convert fingerprints to location.

HAL

Activity Context
(Walk, Drive, 
Stationary)

Location Context
(Proximity, 

Tracks)

Runtime Algorithm Selection and Tuning

Senergy Context-API

Apps

Location Service Network Interface

Sensor DriversGPS Driver Radio Driver

Figure 3: Senergy architecture.

Senergy needs multiple algorithms for each context type
since they offer different accuracy, latency, and energy effi-
ciency. At runtime, Senergy selects the most suitable algo-
rithms and parameter values based on application needs. For
these purposes, we add three components: two context mon-
itoring components, denoted Activity Context and Location
Context, that include multiple algorithms to continuously
sense and infer user context in the background, and the run-
time algorithm selection and tuning component that imple-
ments the runtime logic to select appropriate algorithms and
tune their parameters, based on application requirements.
These three components comprise the bulk of the Senergy
implementation and are described in the next three sections.
Application developers need not understand any of these im-
plementation details to use the API.

Algorithms: A variety of context inference algorithms
for movement activity and location monitoring are avail-
able [3, 7, 14, 18, 23, 24, 30, 32, 37, 40]. We select rep-
resentative ones and study the tradeoffs in their energy, ac-
curacy, and latency. We choose general algorithms that are
as independent as possible of particular user behaviors and
their environments. For instance, we do not include methods
that require the sensor to be mounted on a particular position
on the body [37] or constant WiFi availability, and do not as-
sume that users will park a minimum distance from their des-
tination, work and live in two different locations, etc. Some
algorithms exploit non-universal infrastructure where avail-
able to improve efficiency, but have fall backs for other en-
vironments.

5. Activity Context
We implement (1) three binary classifiers that detect the
presence or absence of driving, walking, and stationary, and
(2) a multi-state activity classifier that infers if the user is



Algorithm Sensor Features

D-ACC Accelerometer magnitude (0.5-3 Hz),
magnitude (20-25 Hz),
variance

D-GPS Assisted GPS speed
D-AG ACC and GPS D-ACC and D-GPS
D-CELL Cellular fingerprint new towers in window

compared to past windows
D-CA CELL and ACC D-CELL and D-ACC
D-GC GPS and CELL D-GPS and D-CELL
D-AGC ACC, GPS, CELL combines all algorithms

Table 2: Driving detection algorithms.

driving, walking, or stationary. For applications that require
a single movement state, the binary detectors deliver higher
accuracy, while the multi-state classifier is better when all
states are to be distinguished.

Activity inference algorithms employ a typical machine
learning approach: sense over a time window, compute fea-
tures from the sensor data (e.g., features listed in Table 2
for driving), and classify the data using a model previously
trained on ground truth. In Senergy we use a Naı̈ve Bayes
classifier with supervised discretization. We chose this tech-
nique for simplicity of implementation and because it gener-
ates posterior probabilities that may be used as a confidence
measure by applications. We expect other classifiers to also
work well (e.g., decision tree, support vector machine).

5.1 Driving Activity
Table 2 lists seven algorithms that we implemented for driv-
ing detection, using the accelerometer, cellular, and GPS
data [23, 30, 32, 37]. Algorithm D-ACC is based on the
accelerometer, using features from [30]. D-GPS uses speed
sensed using GPS. D-CELL is largely inspired by [32] but
differs in that we only consider changes in detected towers
(we do not consider features based on signal strength as we
did not find them effective in our environment). The remain-
ing algorithms combine multiple sensors to achieve better
accuracy or enhance generality. We tuned the feature sets of
all the activity algorithms to improve their accuracy based
on our multiple user deployments in indoor, outdoor, urban,
and suburban environments.

5.2 Driving Activity Tradeoffs
These algorithms provide a design space that Senergy uses
to tradeoff accuracy, latency, and energy. We quantify these
tradeoffs below to select the best operating point.

We consider continuous background sensing while the
device is not in active use, since active time is only a small
fraction of the total time for which the device is carried by
the user. For background sensing, energy drain includes not
just the sensors but also the processing or storage compo-
nents used to drive the sensors and infer context. Figure 4
shows a sample accelerometer power trace on a Samsung Fo-

Figure 4: Background accelerometer power

OS Platform Devices
Android OS 2.3.2 HTC Desire Nexus S
Windows Phone 7.1 Samsung Focus Asus E600

Table 3: Experimental mobile devices.

cus smartphone. We measure power by connecting a power
meter to the phone’s battery terminals. Power includes the
accelerometer sensor, processor, and all active motherboard
components when the accelerometer collects data.

We measure energy on the four devices listed in Table 3.
Table 4 lists the sensing energy for each sensor used in
activity detection algorithms. Our measurements are similar
to previous ones on Nokia N95 [24], Android G1 and ATT
Tilt [18, 40], and iPhone [35]. All our experimental phones
use assisted GPS (a-GPS). With a-GPS, cold and warm start
burn about the same amount of energy, and we report a single
number.

The total energy of a context inference algorithm depends
on which sensors it uses and how often. For instance, D-
CELL collects the cellular fingerprint multiple times to infer
if the user is driving, and actual inference energy is higher
than the single sample energy listed in Table 4.

Since accuracy, latency and energy characteristics of con-
text algorithms vary significantly with user behavior and en-
vironment, we collected several experimental data sets (de-
scribed in Section 8) across multiple participants in different
environments. While none of our participants may exactly
match a particular user’s behavior or environment, our data
provides a statistical estimate of the tradeoffs between algo-
rithms. It would be ideal to learn the tradeoffs individually
on every user but computing accuracy requires ground truth
labels that are difficult to obtain for every user.

Figures 5a and 5b report the accuracy and latency trade-
offs with energy for the seven algorithms. For three of the al-
gorithms, latencies lower than 600 s are not feasible, truncat-
ing those curves. All algorithms have reasonable accuracy,
precision, and recall, although the higher energy algorithms
do better. Here we also measured precision and recall, since
accuracy alone can be misleading. For instance, when users
drive only a small fraction of the time, an algorithm that al-
ways outputs not-driving will be accurate. However, this al-
gorithm has poor recall. Accuracy refers to how closely the
values returned by the sensing algorithms match the ground
truth. Precision is tp/(tp + fp) where tp are true positives



Sensor Avg. Energy (mJ) Std. Dev. (mJ)

Accelerometer (ACC) 506 70
Assisted GPS (GPS) 2049 159
Cellular fingerprint (CELL) 20 NA

Table 4: Energy use averaged across multiple devices. Net-
work fingerprint energy is measured only on the E600.

and fp are false positives, and recall is tp/(tp+ fn), where
fn are false negatives. Precision indicates how many of the
detected instances were indeed correct, while recall mea-
sures how many of all true instances were detected.

Different algorithms may be suitable for different appli-
cation requirements. For instance, D-CELL minimizes en-
ergy if the application can tolerate a few minutes of latency.
Prior work detecting driving using cell tower data [21, 32]
also reported latencies in minutes. If the application requires
low latency, D-ACC is a good candidate. D-CA yields a
small advantage in accuracy at a modest increase in energy
but has a much higher latency.

5.3 Walking, Stationary, and All Activities
We use the same methodology to implement, measure, and
choose the algorithms for walking, stationary, and all activ-
ities as described above for driving detection. The classi-
fiers use accelerometer data, GPS data, and their combina-
tion. We omit the use of cellular fingerprints for walking and

70 75 80 85 90 95
0

1000

2000

3000

D−ACC

D−GPS

D−AG

D−CELL

D−CA

D−GC

D−AGC

Correctness (%)

E
n

e
rg

y
 (

m
J
)

 

 

Accuracy

Precision

Recall

(a) Accuracy

0 500 1000 1500
10

−2

10
0

10
2

Latency (s)

D
a

ily
 b

a
tt

e
ry

 d
ra

in
 (

%
)

 

 

D−AGC

D−AG

D−GC

D−GPS

D−CA

D−ACC

D−CELL

(b) Latency

Figure 5: Driving Detection accuracy, latency and energy
tradeoffs. Accuracy, precision, and recall points at one en-
ergy level correspond to the same algorithm label. Standard
deviations (not shown for readability) on all users are be-
low 5% except for D-CELL, where they are as high as 15%.
Section 7 describes the solid gray lines.

stationary detection, because although feasible in some en-
vironments [32], we found that it did not work well in our
environment. We implement three binary classification al-
gorithms each for walking (W-ACC, W-GPS, and W-AG),
stationary (S-ACC, S-GPS, and S-AG), and multi-state ac-
tivity (M-ACC, M-GPS, and M-AG).

5.4 Walking, Stationary, and All Tradeoffs
Figures 6a and 6b show the latency and accuracy tradeoffs
with energy for walking detection. The algorithms that rely
on GPS (W-GPS and W-AG) use significantly more energy
than W-ACC, but do not always improve accuracy. W-GPS
in fact has lower accuracy than W-ACC because sometimes
GPS is not available for long periods such as when the user is
indoors. We thus exclude W-GPS from Senergy. W-AG has
the potential to improve accuracy but the accuracy difference
is smaller than the error bars in our data, suggesting that GPS
is not better than the accelerometer for this purpose.

Figures 7 and 8 show the accuracy of stationary con-
text and the multi-class detector. They consume the same
amount of energy as walking detection (Figure 6a) because
the sensor data collection, featurization, and inference steps
are similar. The use of GPS only slightly improves accuracy
for these activities. The accuracy for the multi-class detec-
tor is lower with larger error bars than the binary detectors,
justifying the use of separate binary detectors when possible.
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6. Location Context
Applications may invoke the Senergy API with Location.

ALL to track all location changes or with a set of specific lo-
cations to monitor proximity to just that set. We first describe
continuous tracking and then introduce additional optimiza-
tions when detecting only a specific set of locations.
Continuous Tracking. The literature proposes several tech-
niques to optimize energy for location tracking [3, 7, 14, 15,
18, 24, 40]. We implement one broadly applicable mech-
anism of using low power sensors to detect user move-
ment and sensing location only when movement occurs.
[3, 15, 24]. Other mechanisms blacklist regions where GPS
is not available or WiFi fingerprints are not useful [40], but
we do not implement these because they require extensive
learning for the specific environment.

Senergy detects if the user is moving, using the stationary
activity detection algorithm, S-ACC. The movement check
interval is the smaller of the requested location update la-
tency or two minutes (since the user will typically move for
at least that long if their location is to change significantly).
If the user is not stationary, location is updated. Two choices
are available to update the location, using the GPS or net-
work fingerprints. The key points worth noting are that (1)
accuracy varies with the user environment [18] and either
network fingerprint or GPS based location can be more accu-
rate depending on whether the user is indoors, within dense
WiFi deployments, or not, and (2) the energy use of network
fingerprint based location can be higher or lower than GPS
(see Tables 4 and 5), depending on whether WiFi (FW) or
cellular data connection (FC) is used for Internet access.

We find that once the user starts moving, the previously
observed availability or unavailability of GPS satellites or
WiFi connectivity for Internet access may change quickly.
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Figure 7: Accuracy for stationary activity.
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Figure 8: Accuracy for multi-class activity detection.

Sensor Avg. Energy (mJ) Std. Dev. (mJ)

Fingerprint scan, WiFi+Cell 565 NA
3G Internet 10592 1393
WiFi Internet 738 15
Fingerprint location Cell (FC) 11157 1393
Fingerprint location WiFi (FW) 1303 15

Table 5: Energy used by location primitives averaged across
multiple devices. Fingerprint energy is measured only on
Asus E600.

Since accuracy is not correlated with energy, Senergy cannot
tradeoff accuracy for energy. Hence, Senergy first attempts
to update location using GPS and if that fails, it uses network
fingerprint based location.
Location Proximity. If an application does not require all
location changes but only proximity to specific locations,
then Senergy performs an additional optimization. We re-
duce the number of location updates based on the current
distance from the nearest interesting location. The intuition
is that if the nearest interesting location is a distance x away,
and the maximum speed of movement is vmax, then it will
take the user at least tmin = x/vmax time to reach the new
location. The value of vmax could use the maximum speed
limit in the country, except when the previous location is
near an air strip where maximum aircraft speed may be used.
Hence, the next location update may happen after a wait of
slightly less than tmin. If tmin is smaller than the delay toler-
ated by the application, Senergy will use the tolerable delay.
If tmin is so large that a location update at that interval is
cheaper in energy than periodically sensing movement, the
movement sensing is dropped until tmin reduces. Whenever
Senergy updates location, the algorithm checks if the loca-
tion is within a specific radius of one or more of interest-
ing locations and notifies the application accordingly. When
the number of interesting locations is very large and there is
always some interesting location nearby, tmin becomes the
application specified latency and the algorithm reduces to
continuous location tracking.

6.1 Location Tradeoffs
Table 5 shows energy measurements for the additional sen-
sor primitives required for location. The actual energy con-
sumption depends on which of these primitives are used and
how often. We found in our test data that most users move
less than 16% of the time during a day. Assuming that mo-
tion is detected every two minutes, Figure 1 shows the la-
tency and energy tradeoff for tracking location for six dif-
ferent options. Senergy uses this analysis to select the most
appropriate algorithm at runtime. The actual energy use for
a user over a day will vary since Senergy will dynamically
switch between GPS and fingerprint based location as ap-
propriate. Location accuracy is not considered here since the



choice of fingerprint and GPS depends on availability and
user permissions.

7. Runtime Algorithm Selection
The quantitative trade-off graphs show that certain algo-
rithms do not yield a measurable advantage in any dimen-
sion. For instance, D-CA is very similar to D-ACC in ac-
curacy (Figure 5) but D-ACC provides much lower latency.
Hence, we eliminate D-CA, and similarly, W-GPS.

However, many algorithms are better than others on some
dimension and no single obvious choice serves all scenarios.
For instance, Figure 5a shows that algorithms that are worse
on battery use are in fact better in accuracy. For the same
energy drain, a lower accuracy algorithm can provide better
latency, and vice versa. Senergy selects the appropriate al-
gorithm at runtime when an application makes an API call
specifying its requirements.

Once the requirements are available, the selection of
the best approach is simply a matter of limiting the
search space to those requirements, in the order of prior-
ity listed in the API call. As an example, suppose the API
call is ChangeAlert (Activity.DRIVING,Battery,5,
Priority.LATENCY,300,Priority.ACCURACY). Fig-
ure 5b shows that with these battery and latency constraints
(shown as gray lines) algorithm D-ACC, D-GPS, and D-AG
are the available choices. Considering the last argument re-
questing an accuracy priority, Senergy selects D-AG, that
has the highest accuracy among feasible options. Selecting
the algorithm at runtime has the advantages that (1) as con-
text algorithms evolve and tradeoffs improve, such as by us-
ing low power processors [17, 26], better algorithms will get
selected, transparently benefiting applications, and (2) run-
time conditions can be exploited, such as ignoring the battery
constraint if the phone is plugged in.

Senergy defaults to maximizing energy efficiency when
the API call is under-constrained. For instance, if the third
priority request for accuracy was absent from the above API
call, Senergy would choose D-ACC, the most battery ef-
ficient option satisfying the first two constraints. If over-
constrained, Senergy ignores the lowest priority constraints.
The API call returns a list of the constraints expected to be
ignored based on the algorithm tradeoffs at runtime. In fu-
ture work, we plan to return confidence intervals with ev-
ery context change callback, to the extent such error can
be estimated. In future work, we plan to return confidence
intervals with every context change callback, to the extent
such error can be estimated. For example, error estimates
could be based on posterior probabilities returned by the in-
ference algorithms or error data from sensor drivers (e.g.,
Horizontal dilution of precision (HDoP) from GPS) or the
sensing service (e.g., fingerprint based location services re-
turn a server computed error). Error conditions could also
be estimated from sensor operating conditions such as GPS
satellite count, user permissions for microphone and camera,

etc. that affect the validity of sensor data. Compile time fea-
sibility checks are undesirable because future improvements
to the context stack may expand the feasible search space.

7.1 Multiple Simultaneous Applications
If multiple applications are simultaneously active, Senergy
considers the constraints jointly and enforces the tightest
constraints. Of course, constraint spaces from different ap-
plications may not overlap. We do not assume that any one
application has a higher priority. Instead, we use a default
priority order on the constraints. We first drop any battery
related constraints and attempt to satisfy the accuracy and
latency requirements alone. If even these are conflicting, we
prioritize latency and drop the accuracy requirement. Prefer-
ring accuracy and latency over energy is based on the intu-
ition that application functionality may be more important
than the recharge interval. Among accuracy and latency, we
prioritize latency for timeliness. Other priority orders among
the three dimensions may be implemented, such as when ap-
plications belong to different priority classes.

8. Evaluation
This section shows how Senergy improves efficiency com-
pared to other API design choices while meeting application
requirements. In particular, the proposed API yields multiple
orders of magnitude savings compared to the existing con-
text API (addProximityAlert ).

8.1 Datasets used in Evaluation
We collected over 4,200 usage hours of mobile sensor data
from 49 participants, as follows.

Driving Data. Ten people labeled when they were
Driving for up to 5 days each. Driving trips were primarily
commutes with a few side trips. Users tapped a button in our
logging application when they entered and exited their car.
Intermittent stops due to traffic control and congestion are
considered driving. A background service continuously col-
lected accelerometer, GPS, and network fingerprint scans.

Multi-Activity Data. We collected ground truth data for
10 participants for driving, walking, and sitting in one hour
guided sessions by accompanying participants and manually
recording ground truth on a separate time synchronized de-
vice. Each participant carried three phones: in their pocket,
backpack, and hand/cup-holder. We use this data to evaluate
all of our activity sensing algorithms and application scenar-
ios involving multiple activities.

Routine Location Data. We collected location and ac-
celerometer data from 18 participants running our logging
application on their own mobile device for 1 to 12 days. This
data set contains a total of 124 days of user traces. To ensure
the mobile device batteries last at least a day, we collect data
for 5 seconds in every minute. We test location algorithms
and applications with this data.

Workday Data. We logged continuous accelerometer
data from 11 participants for 6-8 hours on one workday each;



a total of 69 hours of participant data. We use this data to
evaluate activity applications at extremely low latency set-
tings, which is not possible on the other, larger but duty cy-
cled, datasets.

8.2 API Configurations
We compare Senergy with the other API choices (from Sec-
tion 3) implemented as follows.

Raw: We implement simple algorithms over raw sensor
data, such as checking location periodically to infer if the
user is near a desired location. We optimize the frequency
of checks based on expected context requirements (speci-
fied below for each activity). In theory, developers could im-
plement the best algorithms in Senergy, in which case the
energy consumption is the same, unless the user executes
multiple background applications where Senergy has the ad-
ditional advantage of sharing context.

Default: We emulate existing implementations in the An-
droid OS. For instance, for detecting proximity to a set of lo-
cations, we use the Android approach of periodically check-
ing location. For activity contexts (e.g., driving, walking)
that have no current Android API, we created a default algo-
rithm that senses continuously with the lowest latency anal-
ogous to the implementation of addProximityAlert .

Fixed Modes: In fixed mode, the system offers multiple
defaults. We implement three representative modes that each
prioritize one of energy, accuracy and latency.

Fixed-E: The Fixed-E mode prioritizes energy efficiency.
It assumes a two minute latency is acceptable for all appli-
cations. It uses the lowest energy inference algorithm that is
sufficiently accurate to be included in the OS. For instance,
location tracking uses the low power sensors every two min-
utes to detect movement. If the user is moving, it updates the
location at two minute intervals.

Fixed-A: The Fixed-A mode prioritizes accuracy by us-
ing the most accurate inference algorithm available. It as-
sumes that a one minute latency is acceptable for all appli-
cations. For instance when tracking location, Fixed-A does
not use the low power sensors to first detect user movement,
since the errors in movement detection may miss periods of
movement and increase the overall error in location.

Fixed-L: The Fixed-L mode prioritizes latency by sup-
plying the lowest possible latency, which on our platforms
is 5 s and is the lowest latency at which a-GPS may obtain
a location fix. Fixed-L tracks location using the low power
sensors to detect movement at the 5 s interval before sensing
location.

Senergy configurations: For the purposes of this evalua-
tion, we choose two Senergy configurations for each appli-
cation out of the wide range of priorities and constraints that
developers may specify:

Senergy-S: The application developer expresses one pri-
mary priority, either energy, accuracy, or latency, and option-
ally a quantitative constraint.

Senergy-M: The application developer expresses multi-
ple priorities and constraint values.

We now consider six different applications. Three appli-
cations use location context and three use activity context.

8.3 Location Context Case Studies
ClubPoint. After purchasing a mattress, Alice realized she
could have saved 15% if she had remembered to use her
AAA Club card. Alice writes the ClubPoint application to
remind her to show her card at participating stores. She
sets latency to 5 minutes (300 s) since she only wants
notifications when she stays in a store long enough to
buy something. The Senergy-S (single priority) call is:

Location[] locations = GetAAALocations();

ChangeAlert(locations,Priority.LATENCY,300)

Using the algorithm from Section 6, Senergy-S checks
for movement using the accelerometer and if the user is
moving, it updates the location at the specified latency.

Alice explores the API further and decides to add
a battery budget of 5% daily consumption and request
high accuracy as a third priority. This multiple con-
straint Senergy API call (Senergy-M) for ClubPoint is:

ChangeAlert (locations,Priority.BATTERY,5,

Priority.LATENCY,300,Priority.ACCURACY)

Because there is a 5% battery budget, Senergy can sense
movement more frequently than the default 2 minutes. Since
our Routine Location Data indicates that most people move
up to 16% of the time over a 24 hour window, Senergy
reserves sufficient battery out of the 5% to update location
every 300 s for 16% of 24 hours, and uses the remaining
budget to check user movement via the accelerometer.
Using the energy measurements for location sensing, with a
mix of indoor and outdoor locations, as well as low power
movement sensing (Tables 4 and 5), we obtain a movement
sensing frequency of 54 s. The third requirement of high
Accuracy priority is ignored since increasing accuracy by
avoiding the error from movement sensing is not feasible
within the 5% battery budget.

Figure 9 compares ClubPoint configurations for Raw, De-
fault, Fixed, Senergy-S, and Senergy-M. It plots average en-
ergy for 18 participants with their routine movement patterns
(Routine Location Data). Log scale is used for clarity. The
error bars show the standard deviation in energy usage across
multiple participants. Fixed-A, Raw, and Default do not de-
pend on user behavior and have zero standard deviation.

Default, the existing implementation, requires 177% of
the battery in a 24 hour day, exhausting the battery in less
than 24 hours. All other choices reduce battery drain. Fixed-
L (latency mode) reduces energy draw to 73.4%. This sav-
ings come from checking for movement every 5 s (the
smallest latency) and activating the GPS only when the
user is mobile, rather than continuously. Fixed-A (accuracy



mode) saves energy because it only checks for location every
minute rather than continuously. Fixed-E (energy mode) op-
erates within 4% of the battery, but it is still wasteful since it
updates location every two minutes and does not exploit the
application’s latency tolerance of 5 minutes. Raw checks for
location every 5 minutes, but does not use movement sens-
ing first, and thus burns slightly more battery than Fixed-
E. Senergy-S provides the lowest energy draw, using only
2.7% of the battery capacity over a 24 hr period. Senergy-
M uses more battery, 4.5% because the developer specified
up to 5%. Senergy-M exploits the allowed battery budget to
offer higher accuracy by checking for movement more often.

SimplySave. Jason installs SimplySave, a coupon ap-
plication that alerts him whenever he passes by a business
that offers a discount. Unlike ClubPoint, SimplySave
wishes to detect proximity to participating locations with
a lower latency of 60 s, since the user may not spend
much time at each location. The Senergy-S API call is

ChangeAlert (locations,Priority.LATENCY,60)

Senergy-S updates location every 60 s and optimizes
energy over accuracy by first checking for movement every
minute and only checking location if the user is mobile.
The Senergy-M API call constrains battery budget to 5%:

ChangeAlert (locations,Priority.LATENCY,60,

Priority.BATTERY,5)

Senergy-M uses 60 s as the latency limit and the optimizes
energy. Given latency is the higher priority, the expected
energy usage is not below 5% and therefore the battery
constraint and any subsequent ones are ignored.

The SimplySave bars in Figure 9 show Fixed-E is not ap-
plicable because its two minute latency does not satisfy the
application’s latency requirements. Default, Fixed-A, and
Fixed-L for SimplySave do not use any of the application
specific information and thus are the same as ClubPoint. The
Raw implementation checks location every minute, resulting
in 28% battery drain. Senergy-S SimplySave however uses
more energy, 8.04%, compared to ClubPoint, since it deliv-
ers the lower 60 s latency. Senergy-M and Senergy-S behave
the same for SimplySave because the additional constraints
from the developer are not achievable.

GeoReminder. Jim uses GeoReminder to add a loca-
tion based reminder to pick up a book when he passes the
bookstore on his way to the bus stop. GeoReminder requires
low latency because Jim will only be near the store briefly.
The key difference from the previous scenario is that Sen-
ergy only needs to detect one location. Even though Geo-
Reminder needs low latency, Senergy only needs to update
location at that latency when the user is close to the desired
location. For instance, if Jim lives 10 miles away from the
store, then for a large part of the day, Senergy only updates
location every 10 minutes, assuming it takes at least 10 min-
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Figure 9: Location context application energy on a log scale
with Routine Location Data, averaged over four platforms.
Values greater more than 100% indicate the battery is ex-
hausted in less than a day. Error bars show standard devia-
tion in behavior across 18 participants.

utes to move 10 miles. The API calls are the same as for
SimplySave. Figure 9 shows Senergy uses lower energy on
average for GeoReminder than for SimplySave.

8.4 Activity Context Case Studies
This section presents three activity context applications. For
the Raw API, the developer must implement an activity
inference algorithm, which could be the same as the one in
Senergy. Hence we omit comparing to the Raw option.

DriverMode. DriverMode activates a driver-mode
user experience on the phone when it detects the user
is in a moving vehicle. For example, it suppress non-
critical notifications, turns on voice only, and allows
family members and close friends to observe that
the user is driving. A simple Senergy-S API call is

ChangeAlert (Activity.DRIVING,

Priority.ACCURACY)
that only asks

for high accuracy. Senergy-S uses its default latency
(2 minutes) and uses the highest accuracy algorithm,
D-AG within that latency. Another developer may de-
cide that the application should act quickly once the
user starts driving, and use a more sophisticated call
(Senergy-M) specifying three constraints, prioritized:
latency 60 s, 5% of the battery per day, and high accuracy as

ChangeAlert(Activity.DRIVING,Priority.LATENCY,

60,Priority.BATTERY,5,Priority.ACCURACY)

Senergy-M checks for driving activity every minute but
will use the lower energy algorithm D-ACC, since D-AG
is not feasible within the requested battery budget. The
third priority requirement, accuracy, is ignored. The Default
approach continually senses and infers activity, similar to
what existing OSs do for location context. Fixed-A checks
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Figure 10: DriverMode and RadioGuide energy with Driving
Data.

for activity once every 60 s, Fixed-E checks every 120 s,
and Fixed-L every 5 s.

Figure 10 compares the energy use for all API choices
for DriverMode. While Default and Fixed-L use more than
100% battery and are impractical for real deployment,
Fixed-A and Senergy-S both provide high accuracy at sig-
nificantly lower energy, due to increased latency. Specifying
a battery constraint of 5% with Senergy-M reduces battery
consumption to 3.6% by switching the algorithm to D-ACC
from D-AG, which degrades accuracy (see Figure 5). Fixed-
E goes even lower due to increased latency.

RadioGuide. RadioGuide publishes free local ra-
dio station schedules. In return, users allow the ap-
plication to anonymously track when they drive and
listen to the radio, to aid radio stations in optimizing
their schedules. Because radio stations are most in-
terested in drives longer than 5 minutes, RadioGuide
sets its latency to 5 minutes. The Senergy-S API call is:

ChangeAlert (Activity.DRIVING,Priority.LATENCY,

300)

Senergy-S checks for driving every 5 minutes. Since energy
and accuracy are unspecified, Senergy-S defaults to saving
energy and uses the lowest energy algorithm, D-ACC.
The Senergy-M configuration uses the same latency,
restricts battery use to 5%, and requests high accuracy:

ChangeAlert(Activity.DRIVING,Priority.LATENCY,

300,Priority.BATTERY,5,Priority.ACCURACY)

Senergy determines that both D-ACC and D-AG are feasible
within the allowed battery budget at this latency, and
chooses D-AG since RadioGuide specifies high accuracy.

Figure 10 compares the energy use for the various API
choices. Senergy-M does use less energy than the other
APIs, but more than Senergy-S, since it improves accuracy
within the developer specified budget.

FitnessTracker. FitnessTracker counts a user’s daily
steps to estimate calorie use. It is representative of mobile
applications that track fitness related activities to help
motivate a more active lifestyle [6]. FitnessTracker wants
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Figure 11: FitnessTracker energy and accuracy trade-offs
using Workday Location Data.

a callback whenever the OS detects walking and will then
access the accelerometer data to start counting steps until
the user stops walking. To not miss short walks, the devel-
oper requests a 10 s latency with the Senergy-S API call:

ChangeAlert(Activity.WALKING,Priority.LATENCY,

10)

Senergy senses every 10 s using the W-ACC algo-
rithm which has the lowest energy. To control battery
use, the FitnessTracker Senergy-M call includes a 5%
battery limit as the first priority constraint, keeps la-
tency as its second priority, and requests high accuracy:

ChangeAlert(Activity.WALKING,

Priority.BATTERY,5,Priority.LATENCY,10,

Priority.ACCURACY)

Senergy computes that for this battery constraint, the fastest
it can sense is every 44 s using the lowest energy walking
detection algorithm, and thus ignores the lower priority
constraints of latency and accuracy. The other modes use
their fixed settings.

Figure 11a compares the energy use. While in Radio-
Guide, the latency goal was to simply satisfy the applica-
tions latency requirement, in FitnessTracker, the actual la-
tency affects the accuracy of walk time and step counting.
Figure 11b plots accuracy of walk detection. Lower latency
does improve the accuracy significantly, especially for two
users in our Workday Location Data who take many short
walks (not shown), though at the expense of extra energy.
Default and Fixed-L do not miss any short walks (no error).
The error inherent to the walk detection is not included since
it is same across all API choices.



8.5 Multiple Simultaneous Applications
Finally we illustrate the savings when multiple context track-
ing applications are running simultaneously. As a baseline,
we assume that each application was written by an expert
and was individually optimized using the same techniques
as Senergy. However, using Senergy is still advantageous.
With Senergy, energy is spent on the sensors once and the
sensor data is used to compute all context outputs needed by
the various applications as opposed to each application ac-
cessing the sensors at the time that it wakes up. Secondly,
if the algorithm used for one application suffices for others,
even though it uses a different sensor, then Senergy does not
use the other sensors or algorithms (e.g., if one application
is repeatedly using GPS while another one was using the ac-
celerometer to detect movement before activating GPS, then
Senergy turns off the accelerometer since GPS is anyway
being used). Finally, if one algorithm senses with more ac-
curacy or lower latency for any one of the applications, all
other applications benefit from it.

Figure 12 shows the savings for four illustrative combina-
tions of applications. Loc. apps consists of all three location
applications (ClubPoint, SimplySave, and GeoReminder de-
scribed in Section 8.3) executing at the same time. Act.
apps consists of the three activity context based applications
(DriverMode, RadioGuide, and FitnessTracker) executing at
the same time. All apps denotes all six of these applications.
Senergy-M satisfies all these requirements in all instances.
For example with the location applications, Senergy-M sat-
isfies all of the latency and accuracy constraints in all three
groups by using the accelerometer to first detect movement,
and therefore delivers substantial energy gains of about 70%
compared to each of the three applications waking up at its
specified latency and reading the accelerometer.

The fourth set of applications, Acc. loc. consists of the
same three location applications where ClubPoint and Geo-
Reminder use the same settings, but a modified version of
SimplySave that instead requests the highest accuracy set-
ting. This setting requires using GPS rather than sensing
with the accelerometer first. This fourth set demonstrates the
savings when Senergy-M turns off the accelerometer sensor,
which although best to use for ClubPoint and GeoReminder,
is redundant with the GPS which high accuracy SimplySave
now is using. Comparing All Apps with Acc. Loc. shows
that even with a relatively higher demand energy application,
Senergy optimizes by reusing the GPS reading, and eliminat-
ing the accelerometer reading in the other applications with
lower demands.

In summary, using these realistic applications and mixes
of applications, we show that with an expressive, flexible
API the OS approach implemented by Senergy can trade-
off energy, accuracy, and latency for both individual appli-
cations and for multiple applications executing concurrently.
Senergy offers programmers a simple and intuitive API that
does not require understanding the underlying runtime op-
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Figure 12: Energy savings when individually optimizing
each application and using Senergy. Each case meets the
same latency and accuracy requirements. The geometric
mean saving is 50.61% compared to individual optimization.

timizations. We show that given single and multiple appli-
cation requirements, the system meets the requirements and
delivers reduced energy consumption by orders of magni-
tude compared to the state-of-the-art APIs in current mobile
operating systems.

9. Discussion
Based on our experiences designing and implementing this
API, we discuss a number of issues that future systems
should consider.

9.1 Hardware Architectures
New mobile-processors offer an additional smaller, lower-
power core, that can run certain context-sensing tasks much
more efficiently [17, 26]. New hardware broadens the range
of choices available to Senergy and it may consequently sat-
isfy more application constraints. The tradeoff space should
be characterized to include these options. The API does not
change, but applications transparently benefit from hardware
advances. If hardware advances make new types of context
and activities feasible, such as identifying human voices, the
API again does not change but starts delivering these addi-
tional context types to applications that request them.

9.2 Predictive and Historic Context
Senergy does not maintain historical state. Any long term
modeling must be performed by the application. However, if
Senergy records context, it could learn user behavior models
and use them to optimize context sensing. If Senergy records
context over time and users give applications access to their
historical data, it may empower applications to be more use-
ful immediately after install. For example, if the user installs
a fitness application, and Senergy has already been tracking
activity context for another reason, it can give this historical
information to the fitness application, which could immedi-
ately compute fitness levels and adjust the user experience
based on this history. Furthermore, if users provide ground
truth labels the system can use auto-tuning approaches to
adapt itself to a specific user’s environment and behavior.



9.3 Reporting Latency
We defined latency as the delay in detecting and reporting
a context change to the application. Additional optimization
opportunities arise by decoupling the detection and reporting
latency. For instance, to track location changes at 5 minute
latency, an efficient algorithm may obtain network finger-
prints every 5 minutes but not contact the Internet based lo-
cation server to convert the fingerprints to location coordi-
nates until the device is plugged in, resulting in a reporting
latency of several hours. This configuration may suffice for
some applications, for example, if the application displays
a map of the locations the user visited over the past week.
Since capturing the fingerprint is low energy, this optimiza-
tion will yield significant energy savings. The API would
evolve to add a reporting latency.

9.4 Privacy
While we have not included any privacy related parameters
in the API design, a real system may also wish enforce
privacy guarantees based on user settings. When Senergy
operates in a battery efficient mode that satisfies multiple
simultaneous applications, the accuracy achieved may not
be appropriate for all applications. For instance, a fitness
application may need high accuracy location context data
while the user may only want to expose lower accuracy data
to a nearby friend finder application. If the fitness application
is already running, it does not consume any extra battery to
sense higher accuracy location for the friend finder app in
this case. However, the system may specifically add noise to
the context data exposed to the friend finder application to
protect user privacy.

10. Related Work
Prior research has recognized the energy efficiency chal-
lenge for continuously sensing context. Several groups have
created low-power strategies such as combining location re-
quests, adaptive sampling, and chaining low-power sensors
with higher power ones [3, 7, 14, 18, 24, 40], as well as ap-
plication specific energy optimization techniques [35]. Prior
work has explored energy-efficient approaches to detect-
ing human activities, such as walking, resting, and meet-
ing [38]. In Jigsaw [19], energy spent on inference is min-
imized by suppressing the higher energy stages in the infer-
ence pipeline using lower energy stage results. Our goal is to
encapsulate such techniques for energy optimization under-
neath a developer friendly API, so developers may benefit
from this work without being tied to the underlying methods
that may evolve over time.

A few researchers have suggested language support for
optimizing energy [5, 33]. In the Eon programming lan-
guage and runtime [33], programmers express quality of ser-
vice (latency) and energy constraints and the runtime system
adjusts based on available energy. With energy types [5],
programmers encode the expected energy requirements by

adding energy hints (e.g., low vs high power) to a function.
The runtime can use these hints to, for example, throttle a
CPU to a low power mode when a function with that desig-
nation runs. While it may be possible to implement our API
in extended versions these languages, our current implement
considers a more complicated trade-off space (e.g., energy,
accuracy and latency) than these systems address.

Other systems have also proposed techniques to facili-
tate context based programming. Kobe [4] considered the
latency, energy, and accuracy tradeoff for mobile sensing
but for designing inference algorithms. Kobe accepts train-
ing data from the developer and generates an optimized in-
ference pipeline, using multiple classifier configurations and
cloud offload. SymPhoney [11] accepts a data flow graph
from a developer that specifies low level operations such
as sensing, feature extraction, and classifiers, and then de-
termines an optimal resource allocation. Senergy could use
such methods internally for designing its context sensing al-
gorithms. While Kobe and SymPhoney are targeted at de-
velopers building or specifying their own machine learn-
ing algorithms, Senergy exposes ready to use context, com-
pletely decoupling the inference algorithm details from ap-
plications. Code in the Air [29] and the Context Toolkit [31]
enhance programmer productivity through re-usable and en-
ergy efficient context sensing code but are based on the cat-
alog approach without exposing battery and performance
trade-offs. SeeMon [12] and Orchestrator [13] optimize re-
source use by converting context queries from multiple ap-
plications into lower layer sensing and processing primi-
tives, and then selecting the most efficient set of such primi-
tives to satisfy all queries. While this work optimizes energy
use, it does not expose battery and context quality trade-off
to the developer through a flexible API.

Other related APIs include location APIs specified by
W3C [25] and existing mobile OSs, and cloud based loca-
tion tracking APIs for backend processing [10]. These APIs
do not consider the energy efficiency challenges that we ad-
dress.

In summary, our approach allows developers to specify
latency, accuracy, and battery requirements for their context
needs. The novel aspect of our approach is that it provides
the OS and runtime with the information necessary to opti-
mize resource use without requiring application developers
to understand energy intricacies or inference algorithms.

11. Conclusions
We identified the LAB abstraction and showed how to use
it to implement energy-efficient continuous context sensing
and how it improves programmer productivity. We described
a prototype implementation using 22 activity and location
tracking algorithms. We illustrated how the Senergy runtime
uses the energy, latency, and accuracy requirements speci-
fied by applications and the algorithm tradeoffs to deliver
energy efficient context sensing under a wide variety of ac-



curacy and latency requirements. We showed for six realis-
tic applications, how Senergy uses a small amount of appli-
cation flexibility to reduce the battery drain to much more
practical levels, compared to using existing APIs. The re-
sulting system gives application developers efficient context
without becoming experts in energy optimization or context
inference. Whereas in most current mobile systems context
is too costly in energy to use regularly, we believe that with
Senergy’s significant reductions in battery use for continu-
ous context tracking that developers will be able to deliver
new context-aware applications that delight.
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