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Abstract 

We introduce a new approach to the ma-

chine-assisted grading of short answer ques-
tions. We follow past work in automated 

grading by first training a similarity metric 

between student responses, but then go on to 
use this metric to group responses into clus-

ters and subclusters. The resulting group-

ings allow teachers to grade multiple re-

sponses with a single action, provide rich 
feedback to groups of similar answers, and 

discover modalities of misunderstanding 

among students; we refer to this amplifica-
tion of grader effort as “powergrading.” We 

develop the means to further reduce teacher 

effort by automatically performing actions 
when an answer key is available. We show 

results in terms of grading progress with a 

small “budget” of human actions, both from 

our method and an LDA-based approach, on 
a test corpus of 10 questions answered by 

698 respondents. 

1 Introduction 

Increasing access to quality education is a global is-

sue, and one of the most exciting developments in 

recent years has been the introduction of MOOCs—

massively online open courses, in which hundreds 
or thousands of students take a course online. While 

this works wonderfully for lectures, assessment in 

the form of quizzes and exams presents some sig-
nificant challenges. One straightforward solution is 

to use multiple choice questions, but it is well 

known that there is far greater educational benefit 

from fill-in-the-blank and essay questions (Ander-

son and Biddle, 1975). For many domains, then, 

there could be great value in using short answer 
questions; the problem is grading those answers 

without making the cost prohibitive. Even in rela-

tively small classrooms of a few dozen to a few hun-

dred, the ability to grade such answers more effi-
ciently would be a great boon to teachers.  

One approach to addressing this is to automati-

cally grade such answers as right or wrong or with 
a numerical score—there have been significant past 

efforts in this space (Leacock and Chodorow, 2003; 

Mohler and Mihalcea, 2009; Jordan and Mitchell, 

2009). However, in practice this path has some sig-
nificant obstacles. The first is that while these ap-

proaches have made impressive progress, they are 

never 100% accurate—some number of misgraded 
answers are left on the table. The second is that as-

signing a score is not really sufficient—in a small 

classroom, a teacher would give feedback as to why 
the answer is wrong; ideally she would be able to do 

this in the MOOC scenario as well. A third problem, 

or at least a lost opportunity, is that there may be 

consistent patterns of misunderstanding amongst 
students that go beyond the fraction getting a ques-

tion right or wrong. For instance many students 

might mistakenly believe that one of the rights af-
forded by the first amendment to the US constitution 

is the right to bear arms; a teacher would want to 

know this so that she could correct their misconcep-
tion in class.  

To address these issues, we propose looking at 

the problem in a different way. Instead of trying to 

grade answers completely automatically, we at-
tempt to leverage the abilities of both the human and 
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the machine. In particular, instead of classifying in-

dividual answers as being right or wrong, we pro-
pose to automatically find groupings and subgroup-

ings of similar answers from a large set of answers 

to the same question, and let teachers apply their ex-

pertise to mark the groups. We found that answers 
for a particular question often cluster into groups 

around different modes of understanding or misun-

derstanding. Once identified, such groups would al-
low a teacher to quickly "divide and conquer" the 

grading task—she could mark entire groups as right 

or wrong, and give rich feedback to a whole group 
at once. This has the additional benefit of increasing 

a grader’s self-consistency, found to be a problem 

in past studies (Jordan and Mitchell, 2009; Pulman 

and Sukkarieh, 2005). The groupings also allow the 
teacher to get an overview of the level of under-

standing of her students and the modes of misunder-

standing. In the absence of an answer key, we pro-
pose to form these groupings automatically without 

any model of the question or its answers; however, 

if a simple text answer key is available, we can use 
it to automatically mark some groups.  

While attractive in principle, the powergrading 

approach of dividing and conquering contains many 

questions and challenges of its own, as various stu-
dents will express the same answer in many differ-

ent ways. Popular approaches to clustering text, 

such as using LDA to group answers by inferred 
topics, do their best to explain these variations in 

terms of distributions over words, but are limited by 

their word-based representations of text. Ideally, we 

would like to learn how to group items together 
based on data, with an array of features that expand 

over time as our technologies grow more mature. 

We propose to model this distance function by train-
ing a classifier that predicts whether two answers 

should be grouped together, in the vein of past work 

which modeled the similarity between student an-
swers and answer key entries (Mohler et al. 2011). 

The notion of this distance function is subtle. We 

want answers that are paraphrases of each other, 

such as "the Congress" and "the houses of Cngress 
[sic]" to be close, but "the Senate and the House of 

Representatives" to be different from these so we 

can mark out this more precise mode. Because we 
are modeling the distance between answers as op-

posed to the answers themselves, we can use “be-

tween-item” features that measure semantic or 
spelling differences. We thus supply our classifier 

with the best available features that can account for 

misspellings, tenses, and other variations, with the 

hopes that we can add more sophisticated features 
in the future.  

Finally, we would like to evaluate the benefit of 

our cluster-based approach. In general, evaluating 

how helpful a given clustering is for a particular task 
can be difficult, but this scenario offers a very spe-

cific criteria—we examine how far a grader can get 

with a given amount of effort. One take on this 
measure is “grading on a budget,” where we want to 

maximize the progress from a fixed number of ac-

tions; another is “effort left for perfection,” which is 
the number of additional user actions required to 

grade all items correctly. Under these criteria, we 

find that using clusters formed via the learned simi-

larity metric leads to substantially better results than 
using those formed via LDA or individually classi-

fying items. 

2 Related Work 

Decades of educational research have demonstrated 

the critical importance of assessment in learning. 

Testing contributes in multiple ways to the learning 
process: testing is characterized as formative when 

used to guide the learning, and summative when 

used to evaluate the student. Notably, testing has 
been shown to play a key role in the learning process 

as it assists retention (Anderson & Biddle, 1975), 

and answer construction for open response is shown 
to play a critical role in consolidating learning (Kar-

picke and Roediger, 2008). 

Though multiple choice questions (MCQs) are 

the dominant method of assessment at present, there 
are drawbacks to the approach; see Conole and War-

burton (2005) and Bull and McKenna (2004) for 

comprehensive surveys of Computer Assisted As-
sessment in general. MCQ is widely used primarily 

for the ease of grading, but while the summative 

value of MCQs may be obvious, the formative value 

of MCQs is dubious (Davies, 2002; Warburton and 
Conole, 2003). Additionally, answering an MCQ re-

quires the recognition of the correct answer(s), 

which is known to be an easier task than the con-
struction of the answer (Laufer and Goldstein, 

2004). Essays are another form of assessment and 

have been shown to be amenable to automatic grad-
ing (Burstein et al., 2004), though the grading is not 

formative as it cannot provide feedback on essay 

quality.  



Open response questions are challenging to 

grade, but testing with open response is both sum-
mative and formative. This challenge has attracted 

both the academic community as well as sponsored 

challenges such as the Automated Student Assess-

ment Prize (Hewlett Foundation, 2013). The most 
widely used method for grading open response an-

swers relies on careful authoring of the answer 

(Mitchell et al., 2002; Leacock and Chodorow, 
2003; Jordan and Mitchell, 2009; Nielsen et al., 

2009). C-rater (Leacock and Chodorow, 2003) is a 

paraphrase recognizer that identifies rephrasings of 
the answer key as correct answers. To recognize the 

paraphrases, c-rater uses sophisticated linguistic 

processing, in addition to automatic spelling correc-

tion. The authors describe an interface which guides 
the expert (i.e., teacher) in creating the model an-

swers to the questions, which must represent a con-

siderable time investment since only “if the teacher 
uses the same question for several classes or over 

several semesters, then the advantages of the initial 

effort are worthwhile.” They report that c-rater 
agreed with human raters about 84% and a related 

work (Attali et al., 2008) reports agreement of 84% 

for the biology test and 93% for the Psychology test. 

Similarly, Jordan and Mitchell (2009) describe an 
authoring tool “which enables a question author 

with no knowledge of natural language processing 

(NLP) to use the software.” These methods require 
that all of the various linguistically similar forms of 

the correct answer are encoded prior to grading, but 

cannot account for unanticipated student answers. 

Finally, Pulman and Sukkarieh (2005) compare 
hand-authored patterns with machine learned pat-

terns based on simple word-based features, and find 

that the hand-crafted patterns perform better. 
Short answer grading can also be formulated as a 

similarity task in which the score is assigned based 

on the similarity of the teacher and student answers 
(Mohler and Mihalcea, 2009; Mohler et al., 2011; 

Gomaa and Fahmy, 2012, i.a.). In Mohler and 

Mihalcea (2009), given a data set of 21 questions 

with 30 student answers each, the authors compare 
various measures of lexical similarity, including the 

use of knowledge-based resources (WordNet) and 

corpus-based metrics (Latent Semantic Analysis, or 
LSA); the best results (92% accuracy when the con-

tinuous grade scores are binarized and the threshold 

is set using binary labels on other held-out ques-
tions) are obtained using LSA trained on a corpus of 

Wikipedia articles topically related to the questions 

being graded (Mohler and Mihalcea, 2009). Mohler 

et al. (2011) explores how features can be included 
that encode the similarity of nodes based on a syn-

tactic alignment of student answer and teacher an-

swer; a system using these features does not on its 

own outperform the bag-of-words based metrics but 
in combination the improvements are measurable. 

Similarly, Meurers et al. (2011) and Hahn and 

Meurers (2012) show that using semantic analysis 
to align student and target answers, including func-

tional roles such as subject/object, has an overall ac-

curacy of 86.3%, improving on results that use 
alignment only at the surface level. 

3 Data 

While some datasets of student answers are publicly 
available, most have only a small number of stu-

dents (e.g., 30 in Mohler and Mihalcea, 2009) or are 

multiple choice. To study the problem as we have 
posed it, we needed a large number of responses to 

open-ended questions. We thus selected twenty 

questions from the United States Citizenship Exam 

(USCIS, 2012) and offered them to two groups as a 
task on Amazon Mechanical Turk; we received 100 

complete responses from the first group (for train-

ing) and 698 from the second (for test). A subset of 
these questions (1–8,13,20) were selected as they 

represented a range of answer lengths, from a few 

words to a sentence or two. The particular questions 
that were manually graded are listed in Table 1, as 

well as the average answer length and the number 

of case-independent unique answers. In addition to 

the train/test split, to further prevent any biasing 
from the target set, all training of classifiers and pa-

rameter settings was done on the complement of 

these questions (9–12 and 14–19) on the smaller set, 
so they were exclusive both in terms of answer con-

tent and responders. 

For our proposed approach, we need two differ-

ent types of labeling for our data. The first identifies 
groups of answers that are semantically equivalent; 

this is used to train the distance metric between 

items. This labeling was done by a single labeler (an 
author) on the complement set of questions de-

scribed above, to ensure that we are learning general 

measures and not ones specific to particular ques-
tions or students. There is of course some subjectiv-

ity to this labeling, but rather than argue that we 

have the best possible labeling, we show that a 

learned model leads to improved performance.  



 

Q# 

Un- 

ique 

Avg 

Len. 

 

Question 

1 57 3.3 What are the first ten amendments 
to the U.S. Constitution called? 

2 132 3.2 What is one right or freedom from 
the First Amendment? 

3 586 7.8 What did the Declaration of Inde-
pendence do? 

4 205 2.0 What is the economic system in 
the United States? 

5 138 1.5 Name one of the three branches of 
the United States government. 

6 219 2.8 Who or what makes federal (na-
tional) laws in the US? 

7 395 5.2 Why do some states have more 
Representatives than other states? 

8 157 4.0 If both the President and the Vice-
President can no longer serve, who 

becomes President? 

13 367 4.2 What is one reason the original 
colonists came to America? 

20 276 4.8 Why does the flag have 13 stripes? 

Table 1. Subset of questions used for evaluating our 
method and data characteristics for the 698 responses. 

 # Marked Correct by 

Each Grader out of 698 

 

 Q# 1 2 3 Kappa 

1 651 652 651 0.992 

2 609 617 613 0.946 

3 587 587 492 0.574 

4 567 574 541 0.864 

5 655 668 658 0.831 

6 568 582 548 0.838 

7 645 649 652 0.854 

8 416 425 409 0.966 

13 613 535 557 0.659 

20 643 674 678 0.449 

Table 2. Differences in graders’ judgments and inter-an-

notator agreement (Fleiss’ Kappa). 

The second type of labeling is the ground truth grad-
ing, i.e., the “correct” vs. “incorrect” for each stu-

dent response for each question. Even though an an-

swer key was available for our data, the open-ended 
nature of the questions means that some answers 

will be subject to interpretation. For instance, for the 

question “why does the flag have 13 stripes?” the 

answer key says “because there were 13 original 
colonies” and “because the stripes represent the 

original colonies,” but when a student writes “13 

states” as their answer, should that be considered 
correct, or does their fundamental confusion regard-

ing states vs. colonies warrant a correction? As 

such, different teachers will have different grading 
patterns, and rather than attempting to optimize for 

the average labels, an effective system should help 

a teacher quickly converge to the grades they intend. 
We thus show separate results in terms of agreement 

with each of three graders. 

Finally, in order to allow other researchers to ben-

efit from this data, we have made the set of twenty 
questions, the answer key, and all responses, as well 

as the annotators’ grades and groupings, available at 

http://research.microsoft.com/~sumitb/grading. 

4 Learning a Similarity Metric Between 

Student Answers 

Given the labeled groups of similar answers (and the 

remaining answers not assigned to any group), we 

wish to learn a distance metric between them. We 
frame this as the problem of learning a classifier of 

whether they are similar or not, where each data 

item will be based on two answers and a positive or 

negative label. The resulting classifier can return a 

score ������, ��	 between 0 and 1; we can express 

the distance between items as 
���, ��	 = 1 −
������, ��	. For each answer in a labeled group, 
then, we generate one positive and two negative ex-

amples: the positive example contains the current 

answer and one other answer from the group; the 

first negative example contains the current answer 
and an item from another group; the second pairs it 

with an item not placed in any group, for a total of 

596 training examples.  

4.1 Features for the Similarity Metric 

For each labeled pair we generate an array of fea-

tures expressing the relation between the items; we 

can then use these features and the labels to train the 
classifier we desire. These are “between-item” fea-

tures: they concern the relationships between �� 

and ��, as it is such features that we hope will be 

predictive of whether the items are similar. Note 
that all features below are computed after stopwords 

have been removed from both items. We also treat 

words that appear in the question as stopwords in a 
process termed as “question demoting” by Mohler 

et al. (2011), who found this resulted in noticeable 

improvements in measuring similarities between 

student answers and answer key entries. 
Mohler and Mihalcea (2009) showed that a fea-

ture based on an LSA decomposition (Dumais, 

2004) of Wikipedia was particularly powerful for 
grading. In a similar vein, we computed the LSA for 

all English Wikipedia articles (from 2012) using the 



most frequent 100k words as a vocabulary; we then 

computed the similarity between answers using the 
top 100 singular vectors. In the descriptions below, 

we use “tf-idf vector similarity” to refer to the co-

sine similarity between standard tf-idf term-fre-

quency vectors. These tf and idf scores are com-
puted using the entire corpus of relevant answers, as 

this process does not make use of labeled data. 

The full set of features is as follows:  
a. Difference in length: the absolute difference 

between answer lengths in characters. 

b. Fraction of words with matching base forms: 
we find the derivational base forms for all 

words (Quirk et al., 2012), count the words 

with matching bases in both answers, and nor-

malize by the average answer length in words. 
c. Max idf of matching base form: max idf of a 

word corresponding to a matching base. 

d. tf-idf vector similarity of �� and �� 
e. tf-idf vector similarity of letters: the letter-

based analogue to tf-idf with stopletters 

(punctuation, space, etc.) removed. 

f. Lowercase string match: whether the lower-
cased versions of the strings match. 

g. Wikipedia-based LSA similarity  

While we have used these particular features for the 

experiments in this paper, we expect that over time, 

as more sophisticated features become available, the 
performance of this classifier and thus the technique 

as a whole will improve further. 

4.2 Performance of the Similarity Metric 

 
Figure 1. ROC for different similarity measures on the 

grouping task: trained metrics using logistic regression 

and a mixture of decision trees (MDT) as well as LSA. 

With these features and labels, we can now train any 

of a number of classifiers to model the similarity 
function; in Figure 1 we show the performance char-

acteristics as a receiver operating characteristic 

(ROC) curve for both logistic regression (maxent) 

and boosted decision trees, as well as the LSA met-
ric for comparison. These were formed via ten-fold 

cross-validation in which we trained on grouping la-

bels for 9 of the 10 training questions and tested on 
the 10th; we then swept over all threshold values. 

We choose logistic regression due to its slightly 

stronger performance as well as the fact that its out-
put is calibrated, i.e., the output value represents the 

probability that ��  and ��  are in the same group. 

This is important as we later use this value in our 

distance measure for clustering. While the threshold 
could be tuned for a particular task, the value of 0.5 

is meaningful in terms of the probabilistic model, 

and is what we will use for judgments of similarity. 
To understand the relative contributions of vari-

ous features in the classifier, we trained a set of clas-

sifiers using each feature individually; the results 

are shown in Figure 2. As Mohler et al. (2011) found 
in their work, the tf-idf similarity feature is a pow-

erful one, as is the letter-based similarity. Overall, 

though, the classifier trained on all features gives us 
the most robust performance. 

 
Figure 2. ROC on the grouping task for LR trained on 

individual features as well as all features.  

5 Forming Clusters and Subclusters of 

Student Answers 

To allow the teacher to “divide and conquer,” we 

need to choose a strategy for the division. Initially 
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we only grouped the answers into a single layer of a 

small number of clusters (10), but found that this 
could lead to a great deal of variability within the 

clusters and made it difficult to get a sense of the 

range of answers. At the same time, with too many 

top-level clusters (e.g., 50), it would be necessary 
for a teacher to take at least 50 actions to grade the 

whole set, and she could not benefit from large clus-

ters that were consistently correct or incorrect. 
We found that forming subclusters within each 

cluster provided a good compromise and led to the 

most easily readable results. By having this two 
level hierarchy, we could maintain high-level 

groupings and still structure the content within 

them. Furthermore, teachers would be able to mark 

a cluster with a label if most items were correct or 
incorrect, then easily reach in and flip the label of 

an outlier subcluster. There remains the question of 

how many clusters and subclusters to use; based on 
the complement set of questions we found 10 clus-

ters and 5 subclusters to be a good setting. In Sec-

tion 6.3, we explore a range of values for these pa-
rameters to see how much this affects the results. 

As for finding the clusters, given our learned sim-

ilarity measure, we can use metric clustering to 

group the items into clusters and subclusters. We 
use the k-medoids algorithm with some small mod-

ifications. Alternatively, we could form these clus-

ters and subclusters using the topic assignments 
from LDA, and explore this as a baseline. Further-

more, if an answer key is available, we can mark 

some clusters and subclusters automatically based 

on those answers, both for our metric clustering and 
for LDA, and develop approaches for each case. 

With or without these automatic labels, we then 

measure how much would be gained from each user 
action in terms of progress on the grading task. 

5.1 Similarity-Based Clustering 

As we only have distances between items as op-

posed to coordinates, we must turn to the domain of 
metric clustering; specifically, we make use of the 

k-medoids algorithm (Kaufman and Rousseeuw, 

1987). We first use the distance metric learned 
above to form a matrix of all pairwise distances be-

tween items �: 

��� = 1 − ������ , ��	 
The canonical procedure for k-medoids, the Parti-

tioning Around Medoids (PAM) algorithm (Kauf-

man and Rousseuw, 1990), is then straightfor-

ward—we pick a random set of indices to initialize 
as medoids, then for each iteration we assign all 

items to the cluster whose medoid it is closest to, 

and then recompute the medoid for each group by 

finding which item in each cluster has the smallest 
total distance to the other items. This process is it-

erated until the clusters converge. 

However, there are a number of subtleties to this 
procedure. First, as items are generally closer to 

themselves than any other item, often clusters will 

“collapse” and end up with the centroid as a single 
item while other clusters become egregiously large. 

We address this issue with a redistribution step: if 

there are any empty or single item clusters, we ex-

amine the distribution of item distances to the me-
doids in the other clusters, and redistribute items 

from larger clusters if they have become unwieldy. 

We use the ratio of the mean to median distance to 
the medoid as a measure of cluster distortion; when 

it is greater than 1 it is likely that most items have a 

small distance (resulting in a small median) but 
there are outliers with large distances (causing the 

large mean) that could be moved. Second, as our 

classifier is trained to determine the probability of 

items being in the same group, we don’t expect 
items with a value of less than 0.5 to be a good fit 

for the cluster—we thus reserve the final cluster for 

these “misfit” items. We implement this via an arti-
ficial item whose distance to all items is 0.5 and is 

the medoid of this last cluster; any item with no bet-

ter match will fall there. These changes result in the 

modified PAM algorithm in Figure 3.  

 
Figure 3. Modified algorithm for k-medoids clustering. 

Modified PAM for k Medoids, N Items 

1. Select � − 1 points as medoids ��..��� 

2. Create “artificial item” � + 1 for last medoid 

�� such that ����� = 0.5 

3. Until convergence: 

a. Assign each item to closest medoid 

b. For each cluster ��: |��| ≤ 1 

i. For each cluster � with medoid c find 

"# = �$�%���&	/�$
��%���&	  ∀) ∈ � 

ii. If there is a cluster �+: "#+ ≥ "#¬+ > 1, 

move items /: �0& > 2 ∗ �$�%3��&4 from 

�+ to �� 
c. Recompute medoids for each cluster in 

1. . � − 1 as  

�5 = arg min
�

∑ ����  ∀�, ) ∈ �5  



5.2  LDA Clustering 

We make use of the LDA algorithm as our baseline 
(Blei 2003); clusters are formed by assigning an-

swers to their most probable “topic.” As we men-

tioned, despite its power, the LDA approach suffers 
from its sensitivity to individual words; the model 

depends on precisely the same words being used in 

multiple “documents” (in our case, answers). To re-

duce the effect of this sensitivity, we applied simple 
stemming (Porter, 1980) to the words; we found this 

greatly improved the performance. 

5.3 Getting “User Labels” for Clusters 

While a user-facing system based on this technol-
ogy will involve an interactive experience leverag-

ing the strengths of both the human and the algo-

rithm, we wanted to measure how user actions 
might translate into grading progress. In our model 

of interaction, there are two “macro” actions the hu-

man can take in addition to labeling individual 
items—label all of the items in a cluster as cor-

rect/incorrect, or label all of the items in a subcluster 

as correct/incorrect. To choose between these ac-

tions, we model the human as always picking the 
next action which will maximally increase the num-

ber of correctly graded items. In intuitive terms, this 

amounts to the user taking an action when the ma-
jority of the items in the cluster or subcluster have 

the same label and are either unlabeled or labeled 

incorrectly. In order to prevent the undoing of ear-

lier work, clusters must be labeled before subclus-
ters contained within them can have their labels 

“flipped.” When no actions will result in an increase 

in correct labels, the process is done; the remaining 
items must be labeled individually.  

5.4 Automatic Labels from the Answer Key 

When an answer key is available, we have devised 

mechanisms for both algorithms to automatically 
perform a subset of the available actions. In the case 

of our metric clustering method, we can determine 

the distance ��� between any user answer and any 

answer key item. We compute the “correctness” of 

an answer as the maximum similarity to any answer 

key item. If the average correctness for a cluster or 
subcluster is greater than the classifier’s threshold 

of 0.5, the set is marked as “correct” and otherwise 

“incorrect.”  
In the case of LDA, the model does not allow for 

computing distances to each item. Instead we add 

all the answer key items as additional items into the 

clustering and see what clusters they land in; we 
then label those clusters as correct. It would be pos-

sible to label the subclusters instead, but labeling the 

entire cluster gives the automatic actions the great-

est chance for impact in the LDA setting. 

 
Figure 4. Number of items left to grade or correct out of 

698 after each macro user action for G1, question 4. 

 
Figure 5. Number of items left to grade or correct out of 

698 after each macro user action for G2, question 13. 

5.5 Sample Results for Clustering Methods 

In Figures 4–5, the benefits of the powergrading ap-

proach can be seen for two sample questions in 
terms of the reduction in work with each user action. 

Furthermore, when automatic actions are added 

(metric-auto and LDA-auto), the eventual reduction 



of work (the final y-axis value) is the same as the 

manual version, but far less human effort is required 

to get there. Another way to look at this is to con-
sider a particular point on the x-axis, e.g. 3 user ac-

tions, and look at how far this amount of grader ef-

fort gets us. In our results for the entire corpus in the 
next section, we choose such an operating point to 

provide an overview of performance over all ques-

tions, graders, and methods. 

6 Results and Discussion 

We now turn to computing aggregate results over all 

of the test data, i.e., the 698 responses to each of the 
10 questions from Table 1.  

6.1 Grading with the Similarity Measure 

 
Figure 6. ROCs for the grading of individual items, 

learned similarity metric vs. the LSA metric. 

We begin by considering the performance of our 

similarity metric for correctly grading individual re-

sponses via their similarity to answer key items; we 

show the ROC along with the performance of the 

LSA measure in Figure 6. The values were com-

puted over all student responses and grades from all 
graders. As Mohler et al. (2011) found, the learned 

metric does improve over the powerful baseline of 

LSA. It is interesting to note, though, that in our 
case the classifier was not optimized to mark items 

as correct or incorrect, but to correctly predict 

whether a pair of items belongs to the same group.  

We computed the overall accuracy on grading in-
dividual items with our learned similarity measure 

(92.9%), the LSA measure at its equal-error rate 

threshold of 0.7 (82.5%), and marking all answers 
as correct (84.6%). We also computed significance 

between these results with paired-t tests, and found 

all pairs significant at p < 1e–8. 

6.2 Performance on a Budget in Terms of “Ac-
tions Left”  

To now examine the overall potential of our method 

for the grading task, we need to think both about the 

appropriate metric to use as well as appropriate 
baselines. As we have designed our approach to 

work in concert with a human grader, maximizing 

the result of a small amount of human effort, we re-
port results for our method and baselines in terms of 

the “number of actions left after N manual actions.” 

One can think of this as how far we get if we are 
“grading on a budget”—after the algorithm has 

done what it can automatically, and the teacher 

takes the N best next actions (those resulting in 

maximal gain of correctly graded items), we com-
pute how many actions (either cluster/subcluster 

flips or individual rescorings) would be required to 

complete the task to perfection, where perfection is 
defined as perfect agreement with a given grader. 
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 Metric Clustering LDA Clustering Metric Individual LSA Individual “Yes” Individual 

Q# G1 G2 G3 G1 G2 G3 G1 G2 G3 G1 G2 G3 G1 G2 G3 

1 2 1 2 11 12 11 1 0 1 11 10 11 44 43 44 

2 14 12 13 42 34 38 15 11 13 38 38 38 86 78 82 

3 80 87 145 110 110 184 103 107 134 247 249 242 108 108 203 

4 32 26 43 92 80 106 56 59 48 67 62 53 128 121 154 

5 20 18 26 21 19 23 32 23 35 24 19 19 40 27 37 

6 24 30 50 65 58 71 108 120 138 130 136 146 127 113 147 

7 16 12 11 54 50 47 61 57 58 515 517 518 50 46 43 

8 9 8 8 207 212 204 14 11 21 9 12 16 279 270 286 

13 75 54 50 82 133 121 99 67 49 126 64 76 82 160 138 

20 11 14 10 47 26 22 37 18 10 35 84 70 52 21 17 

Table 3. Number of actions left (smaller is better) for each question after automatic actions and three manual 
actions when an answer key exists, comparing various grading methods for each individual grader (G1–G3).  



The benefit of this measure is that given a set of stu-

dent responses and corresponding grades (labels), it 
allows us to quantitatively compare any clustering 

(or non-clustering) method on this task. 

In Table 3, we show these values for each grader 

(G1–G3) after three manual actions (N=3) for both 
clustering methods as well as using the individual 

classifiers—metric, the LSA value alone, and “al-

ways-yes,” i.e., marking all answers as correct. For 
most of the questions, our metric-clustering based 

method requires fewer actions by a large margin—

an average of 61% fewer actions than the LDA-
based method and 36% fewer actions than the met-

ric classifier operating on individual items. Note 

that there are some instances in which an individual 

classifier performs better, but typically only by a 
small number of additional actions. 

 

 
Metric Clustering LDA Clustering 

Q# G1 G2 G3 G1 G2 G3 

1 10 9 10 12 13 12 

2 22 20 20 44 36 40 

3 87 96 154 114 114 188 

4 36 32 46 94 82 108 

5 29 26 33 24 24 26 

6 29 30 50 68 61 74 

7 27 23 22 58 54 51 

8 16 18 15 208 213 205 

13 79 62 58 86 135 124 

20 18 23 21 49 28 24 

Table 4. Number of actions left for metric and LDA 
clustering after three user actions when no answer key is 

available. 

In Table 4, we examine the case in which an answer 

key is not available, again seeing how much work is 

left after the budget of three manual actions. While 
the numbers are necessarily greater than in Table 3, 

they are still small compared to the full work of 

grading 698 answers. Note that the individual clas-
sifier or other automatic methods are not applicable 

here, as there are no known answers to compare 

against. We expect this is often the case the first 

time the teacher is giving and grading a test. 

6.3 Choosing the Number of Clusters 

As we did not wish to optimize on our test set, we 

based our choice of 10 clusters and 5 subclusters on 

data from the other questions not used for our eval-
uation. However, we wished to post facto examine 

what the effect of sweeping these parameters over a 

range of values would have been for our results. In 

Table 5 below we show the average number of ac-
tions left over all 10 questions and all three graders 

after auto and manual actions (N=3). 

While there is a clear benefit to moving beyond 

one or two clusters/subclusters, the benefits of add-
ing more clusters seem to plateau in the regime of 

our chosen settings. Note that we wish to minimize 

the value for each parameter, since more clus-
ters/subclusters means a larger set of actions for the 

teacher to choose from. Furthermore, we prefer a 

smaller number of clusters, as that reduces the min-

imum number of actions, since at best the user could 

just mark the clusters to complete the task.  
 

Num. 

Clus. 

Number of Subclusters 

1 2 5 7 10 12 

1 107.5 67.3 41.7 39.5 35.4 34.2 

5 41.8 40.8 31.6 31.7 30.6 29.8 

10 35.5 34.2 30.1 30.4 29.6 30.0 

15 33.7 32.8 29.8 29.7 29.9 29.7 

20 32.7 32.3 30.5 30.6 31.5 31.1 

25 33.8 32.2 31.5 32.1 31.8 31.6 

50 33.3 33.4 33.1 33.6 34.4 34.4 

Table 5. Average number of actions left across settings 

of the number of clusters/subclusters after 3 actions. 
The setting used for our other results is shaded in grey. 

6.4 Finding Modes of Misunderstanding  

One of the advantages of grouping items into clus-

ters and subclusters is the ability for a teacher to de-

tect modes of misunderstanding in their students, 
provide them with rich feedback, and potentially re-

vise their teaching materials. We show an example 

from question 3 in Figure 7 below in which students 

have confused the Constitution with the Declaration 
of Independence. With a single short message, the 

teacher can explain the nature of the students’ con-

fusions instead of merely marking their answers as 
incorrect. 

 

Figure 7. A subcluster of student answers for question 3 

exhibiting a consistent mode of misunderstanding. 

“What did the Declaration of Independence do?” 

• Set rules/rights so that the people have 

rights to stand up too 

• gaves everyone rights 

• Gave everyone rights. 

• Put our rights on paper. 

• Give rights to americans. 

• Entailed the Bill of Rights 



6.5 Examining the Classification Errors 

To better understand the patterns of errors made by 
the grading metric, we consider cases where all of 

the human graders agree and the learned similarity 

metric disagrees—this corresponds to 313 of the 
6980 responses (4.5%). 89 of the 313 are false pos-

itives, where the metric labels the answer correct 

while all human graders agree that the answer is in-

correct. Analysis of this set shows us examples 
where additional structure might be useful to the 

metric. For question 8, e.g., the correct answer is 

“speaker of the house”, comprised of a head noun 
with a modifier. Looking at the errors suggests that 

a feature encoding the match between modifiers 

could provide enough information to label the an-
swers “speaker”, “speaker of the senate” and “sen-

ate speaker” as wrong because the modifiers, where 

there are any, do not match. For question 6, one of 

the correct answers is “Senate and House”. Many of 
the answers labeled incorrectly mention either “sen-

ate” or “house” but not both. Taking the coordina-

tion of the answer key into account would provide 
more information to reject these answers as incor-

rect. While we see the need for modification struc-

ture and awareness of coordination, we did not ob-
serve any items where a predicate-argument analy-

sis would improve results. 

The other 224 out of 313 are false negatives, 

where the metric labels the answer as wrong while 
all human graders agree that the answer is correct. 

In question 3, e.g., the answer key mentions “inde-

pendence” and “be free from” Great Britain. Student 
answers include paraphrases such as “separate 

from”, “become our own country”, “no longer one 

of their subjects”. It’s evident that human graders 

can recognize these phrases as being closely related 
in meaning, but it is more difficult to imagine which 

semantic features will be able to capture these. In-

corporating a similarity metric which accesses dic-
tionary definitions (see Lesk, 1986) was found to be 

informative in Mohler and Mihalcea (2011), and 

could connect “independent” and “not subject,” but 
would not be sufficient to recognize many of the 

other paraphrases we observed. 

7  Conclusions and Future Work 

We have shown how the powergrading approach of 

dividing and conquering the short-answer grading 

task can greatly reduce the number of actions re-

quired; from another perspective it can greatly ex-

tend the impact of a small number of user actions 
when grading resources are limited. It offers teach-

ers the opportunity to identify modes of misunder-

standing among their students and provide rich 

feedback to groups of students whose incorrect an-
swers have clustered together. Furthermore, this ap-

proach is effective when an answer key is not avail-

able, but is even more so when a simple list of text 
answers is provided. It is worth noting that the real 

power in powergrading is not in the specifics of the 

features we used, the choice of classifier, or the 
clustering algorithm. While all of these individual 

choices could be improved upon, it is the approach 

of dividing and conquering that leads to a substan-

tial magnification of the progress a teacher can 
make with a given amount of manual effort. 

This magnification is important because of the 

greater educational value of recall-oriented ques-
tions (Anderson and Biddle, 1975); thus far large-

scale online courses have shied away from them be-

cause of the potential grading expense. We hope this 
technology may begin to change that view to the 

benefit of students everywhere. 

Of course, in order to apply these results to 

MOOCs we need to move from 1k answers to 10k 
or more responses. In order to get a taste for how 

our methods might scale to such numbers, we exam-

ined how the answers and the clusters might evolve 
with increasing data size. When we considered the 

number of unique strings among the answer set, the 

fraction decreased modestly with increasing data, 

but plateaued at an average of around 40% (Figure 
8 below). When we instead used our learned simi-

larity metric and looked at the fraction of items that 

are classified as having no similar items, it dropped 
rapidly and flattened out to an average of 2–3% 

(Figure 9 below). In other words, we can expect 

97% of responses to cluster nicely with others, and 

the rest to end up in our miscellaneous cluster �. As 

such, we expect even substantially larger datasets 

can be feasibly processed via our approach. 

Finally, there is a clear direction forward from 
this point, and that is towards the teacher himself. 

While we have presented evidence for the workings 

of our algorithmic approach, there are many ques-
tions as to how to best surface these capabilities to 

a human operator, ranging from how clusters and 

subclusters are displayed to how users provide feed-

back. Furthermore, users could provide other kinds 
of feedback such as moving items between clusters, 



allowing for the opportunity for relevance feedback; 

classifier uncertainty could be surfaced to the user, 
and active learning approaches could be used to ask 

the teacher for specific labels. We look forward to 

exploring this next set of human-computer interac-

tion and interactive machine-learning challenges in 
our future work. 

 
Figure 8. Fraction of answers with no exact match from 

another student; each curve represents one question, and 

the x-axis represents the size of the answer set (i.e., 
class size). Each curve is averaged over 30 reshufflings 

of the answer set. 

 
Figure 9. Fraction of answers with no match from an-

other student using the learned similarity metric; each 

curve represents one question, and the x-axis represents 
the size of the answer set (i.e., class size). Each curve is 

averaged over 30 reshufflings of the answer set. 
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