
Servicing “mice”-streaming queries as a service

Bo Zong1, Christos Gkantsidis2, Milan Vojnovic3

Technical Report
MSR-TR-2013-124

Microsoft Research
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052
http://www.research.microsoft.com

1Work performed while an intern with Microsoft Research. Bo Zong is with the University of California, Santa Barbara, bzong@cs.ucsb.edu
2Christos Gkantsidis is with Microsoft Research, chrisgk@microsoft.com
3Milan Vojnovic is with Microsoft Research, milanv@microsoft.com

bzong@cs.ucsb.edu
chrisgk@microsoft.com
milanv@microsoft.com

Abstract –
Processing streaming queries at scale has received a lot of at-

tention recently. Systems, such as S4, Storm, Photon, MillWheel,
and Kinesis, can efficiently execute (“elephant”) queries that pro-
cess streams with high rates, and typically scale-out the execution
of each query. We envision a platform in the opposite side of the
spectrum. Our queries process relatively slower streams, but the
challenge is to handle very high density of queries per server. Such
a system democratizes the access to a streaming platform, and en-
ables “mice” queries, on behalf of users, to consume stream data,
e.g.,news, weather, travel related information, and so on. A chal-
lenging problem for the design of such a system is how to place
queries among available servers. On one hand, we expect balanced
workload among servers. On the other hand, we expect queries are
packed into servers such that the network traffic is minimized by
reducing the chance of sending identical data streams to multiple
servers. This trade-off makes it hard to effectively place queries
into servers. When we consider queries subscribing to more than
one source and query/server dynamics, this problem becomes even
harder.

In this paper, we formalize the problem of placing “mice” queries
into the servers of a streaming platform. We propose approxima-
tion algorithms and derive approximation bounds for the following
cases (1) the offline case where queries are stable and known ahead
of time, akin to an “oracle”, and (2) the online case without depar-
tures and known query popularities. For the general online prob-
lem, we propose effective heuristic algorithms. An extensive set
of experiments demonstrates that the proposed algorithms provide
good performance in a wide-range of scenarios.

Categories and Subject Descriptors
H.3.4 [INFORMATION STORAGE AND RETRIEVAL]: Sys-
tems and Software—Distributed Systems; H.2.4 [Database Man-
agement]: Systems—Query Processing

General Terms
Algorithms, Experimentation

Keywords
streaming systems, complex event processing, query placement,
network stream optimizations

1 Introduction
Complex Event Processing (CEP) [20] has been important for pro-
cessing streaming data in financial, monitoring, and recently data
analytics applications. Platforms such as S4 [33, 23], Storm [28],
Photon [4], MillWheel [1] and Amazon’s Kinesis [3]. enablescal-
abledata analytics over data streams, where both the stream types
and the processing requirements are very flexible. However, those
platforms typically target applications that ingest high data rates,
and need toscale-outthe execution of the queries; we call them big
(“elephant”) queries. We envision a similar type of event process-
ing platforms, but where the intended use is to execute, on behalf
of users, queries that ingest relatively slower data streams; we call
those small (“mice”) queries. For example, a user may want to
process streams related to traffic, weather, and news updates, but,
since the user typically cannot manage the required infrastructure
herself, she wishes to offload the execution of the query to a cloud
service (and be notified only when there are updates). A cloud plat-
form that provides such services needs to achieve large density of
queries to servers to be scalable and cost-effective.

The query execution imposes two types of costs on the platform:
(a) network overheads to deliver the streams from their sources to
the servers, and (b) processing overheads on the servers for execut-
ing the logic related to the query.

This paper focuses on the cost of delivering the network stream
inside the platform. The platform may need to download the streams
from remote network servers, but we shall assume an efficient mech-
anism for those downloads. As is common in current cloud ser-
vices, the query execution service may run on top of a generic com-
pute platform, such as Amazon’s EC2 [2], Azure Compute [32], or
Rackspace [26]. Hence, we cannot assume an efficient distribution
of the network streams inside the platform,e.g.,by using multicas-
ting. Therefore, when a server executes one or more queries that
read from a particular source, then the platform creates an internal
network stream to deliver the stream to that server, and consumes
network resources proportional to the rate of the stream. However,
we do assume that a stream is delivered at most once per server.

We also assume flexibility in the processing of the stream data;
users may express their processing requirements using arbitrary
“user defined functions” (UDFs). Hence, the queries impose a non
trivial processing overhead on the servers.

Hence, to provide a scalable and cost-effective query hosting ser-
vice, the platform needs to reduce network and processing over-
heads. Intuitively we anticipate that many queries will use the
same input streams. For example, many users may be interested
in traffic updates from the same city, or weather updates for the
same region. Hence, it is be beneficial to co-locate those queries to
the same server, and transport the relevant network streams once.
However, the servers have limited processing capacity, and hence
the assignment needs to also balance the server load.

Three practical requirements further complicate the query as-
signment problem. First, the queries should be able to subscribe
to more than one stream. This is required, for example, to support
joins, and it is a common feature in many CEP systems. Second,
the assignment of queries to servers should be semi-permanent.
That means that the platform should avoid moving queries between
servers, for example to reduce overheads, as this requires moving
(query) state while guaranteeing that the query does not miss any
stream updates. Obviously, queries will be re-assigned when their
server fails, but such events should be the exception. Hence, the
platform much make a good decision about the assignment of a
query to a server, when the query arrives. Third, we expect churn
both in the queries (queries have limited lifetime) and in servers
(due to server failures and re-cycles). The queries arrive and de-
part dynamically, and the assignment of queries to servers should
be robust to query and server dynamics.

In this paper, we propose and study the problem of assigning
streaming queries to servers, under the requirements and assump-
tions described above. We use both analysis and simulations to
understand the complexity of the problem and to design efficient
algorithms for assigning queries to servers. In summary, the con-
tributions of this work are as follows:
• Formulate the problem of assigning streaming queries to servers

(Section 2), in the context of an online platform that hosts queries
on behalf of the users as a service.
• Show that the problem of reducing network load while balanc-

ing server load is NP complete (Section 3), and provide approxi-
mation bounds (Section 4).
•We propose and study offline (Section 4) and online (Section 5)

heuristics for the problem. Offline heuristics assume an oracle than
knows ahead of time all queries. We use the offline heuristics to
reason about the performance of the assignment process, and to
draw inspiration for the online heuristics.

1

• Using analysis and simulation (Section 6), we identify the
LeastCost online heuristic that gives the best performance, even
under query and server churn, and is often up to four times better
than (naïve) random assignment.

2 Problem Definition
A query streaming platform contains three key components:sources,
queries, andservers.

Source. Sources provide input data streams to queries. Each source
publishes new data at some rate. LetS= {s1,s2, . . . ,sm} be the set
of sources, and letw(s) be the traffic rate of sources∈ S. The total
traffic rate of a set of sourcesS′ ⊆ S is w(S′) = ∑s∈S′ w(s).

Query. Queries process data streams that originate from sources.
Each query processes a set of input streams from one or more
sources. DefineQ = {q1,q2, . . . ,qn} to be the set of queries, and
let Sq ⊆ Sbe the set of sources required by queryq∈Q.

We also use the conceptquery typethat we define as follows.
DefineT ⊆ 2S to be a set of source combinations such thatSq ∈ T
for anyq∈Q. Fort ∈ T, letnt be the number of queries that require
a set of sourcest, and any query that requires a set of sourcest is
also called a typet query. Note that the total number of queriesn
satisfiesn= ∑t∈T nt .

Moreover, letN(s) be the set of queries that require sources∈ S
as one of the input streams,i.e., N(s) = {q∈Q | s∈ Sq}.

Server. Servers are containers that evaluate queries. We assume
there arek identical servers in a query streaming platform.

The query assignment problem for a query streaming platform
considers two criteria: (1)minimizing network trafficand (2)bal-
ancing server load.

Network traffic . We are interested in minimizing network traf-
fic between sources and servers. When two queries require data
streams from the same source, if the queries are hosted by two
different servers, this source has to send duplicated streams to the
servers, which results in extra network traffic. Since higher traffic
implies higher operational cost, a streaming query system prefers a
query assignment that minimizes the network traffic. If a server is
assigned a set of queriesQ′ ⊆ Q and this set contains at least one
query that requires streams∈ S, then this contributes a traffic cost
of w(s). Hence, the total network traffic cost for a server hosting
Q′ is given by

f (Q′) = ∑
s∈S

w(s)min{|N(s)∩Q′|,1}.

Balanced server load. We define feasible solutions as query as-
signments resulting in balanced server load. A query assignment is
feasible meaning that the processing workload of a server is within
its capacity. In practice, it is difficult to define servers’ capability;
therefore, we use balanced workload across servers to remove the
need to know the server capacity limits. The implicit assumption
is that in a practical system the operational point is such the sys-
tem runs at a query load that allows for a feasible assignment, and
in this case balancing the load across different servers is a natural
objective.

Moreover, we assume that each query adds a fixed amount of
workload to a server. A query streaming platform usually hosts
simple queries that consist of a few primitive operations on data
streams and take similar processing time. Therefore, we assume
that queries involve identical amount of processing cost, say of unit
size. To this end, the workload of a server corresponds to the num-

ber of queries assigned to this server.
Given a real numberν ≥ 0 as the allowed slackness for balancing

the load across servers, a query assignment is specified byk disjoint
subset of queriesQ1,Q2, . . . ,Qk. A query assignment is said to
satisfy theν-load balancing constraint, if the following holds

|Q j | ≤ (1+ν)
n
k
, for all j = 1,2, . . . ,k,

whereν is also referred to as therelative relaxation ratio.

Let P(Q) be the universe of all possiblek-partitions(Q1,Q2,
. . . ,Qk) with respect toQ such thatQ1∪Q2∪ · · · ∪Qk = Q and
Qi ∩Q j = /0 for anyi 6= j. We formally define the problem Query
Partition (QP) as follows.

DEFINITION 1 (QP). Given as input a set of sources S with
traffic rates w, a set of queries Q, k servers, and a real number
ν ≥ 0, the goal is to find a query partition(Q1,Q2, . . . ,Qk)∈P(Q)
such that (1) the overall traffic cost∑k

j=1 f (Q j) is minimized, and
(2) |Q j | ≤ (1+ν) n

k ,∀ j ∈ K.

3 Hardness and Benchmark
In this section, we discuss query partition (QP) problem and the
infeasibility of a naïve solution toQP.

First, we show thatQP is NP-complete, so we have to resort
to approximation algorithms. Moreover, we demonstrate a naïve
approximation ratio that any feasible algorithm holds.

Second, we discuss the infeasibility of a standard random as-
signment algorithm. In particular, we characterize the expected
network traffic cost resulting from the random algorithm, and show
that it can greatly increase network traffic.

3.1 NP Hardness
It is computationally hard to solve theQP problem and the follow-
ing theorem characterizes its hardness.

THEOREM 1. The query partition (QP) problem is NP-complete.

PROOF. Consider the decision problem ofQP: given sourcesS
along with their traffic ratew, queriesQ, k servers, a real number
ν ≥ 0, and another real numberγ ≥ 0, does there exist a query
partition(Q1,Q2, . . . ,Qk) ∈P(Q) such that

1. ∑k
j=1 f (Q j)≤ γ, and

2. |Q j | ≤ (1+ν) n
k for each serverj = 1,2, . . . ,k.

The proof consists of two steps, showing that (1)QP’s decision
problem is NP-hard, and (2)QP’s decision problem is NP.

First, we prove the NP-hardness. Consider a special case where
(1) each query type depends on exactly one source, (2)w(s) = 1
for any s∈ S, and (3)γ = |S|. In other words, we need to find a
feasible solution such that queries of the same type are assigned to
the same server. We can reduce an arbitrary instance of bin packing
problem [14] to an instance of the special case: (1) we reduce an
item to a query type, where the item’s size is reduced to the number
of queries for the corresponding type; (2) the number of bins is re-
duced to the number servers; and (3) the size of each bin is reduced
to the upper limit for each server’s load. Since bin packing problem
is NP-hard, we conclude thatQP’s decision problem is NP-hard.

Second, given a solution toQP’s decision problem, we can check
whether it is feasible in polynomial time, so theQP problem is NP.

In all, QP is NP-complete.

2

Moreover, the following holds for any feasible algorithms.

PROPOSITION 1. Given an instance ofQP, any feasible solu-
tion cannot be more than k times larger than the optimal solution,
where k is the number of servers.

3.2 Random Query Assignment Benchmark
A naive query assignment is to assign each query to a server picked
uniformly at random and independently of other query assignments.
This is a standard load balancing strategy that can be efficiently ap-
proximated by hash partitioning of query identifiers. This strategy
is efficient with respect to balancing the number of queries across
servers. Specifically, it guarantees maximum load of

n
k
+O(

√

nlogk
k

)

with probabilityo(1), for n≫ k(logk)3 ([24]). However, this pol-
icy can be grossly inefficient with respect to network traffic cost,
which we show here analytically and in Section 6 experimentally.

PROPOSITION 2. Consider a streaming query system with a set
S of m sources and k servers such that ds queries use the stream
from source s as input. Under random query assignment to servers,
the expected network traffic cost is

(

1− 1
m ∑

s∈S

(

1− 1
k

)ds
)

km. (1)

PROOF. Consider an arbitrary sources and an arbitrary server
j. ds queries use as input the stream from sources. Under random
query assignment, there will be at least one such query in serverj
with probability 1− (1−1/k)ds. Summing over all serversj gives
the expected number of servers to which the stream of sourcesneed
to be transferred, and further summing over all sourcess gives the
the expected number of streams that need to be transferred from
sources to servers, which corresponds to total network traffic.

Note that, assuming that the stream of each source is used by at
least one query, the network traffic cost is at least the number of dis-
tinct sourcesm. On the other hand, the maximum possible network
traffic cost is at mostkm, which is achieved when each server re-
quires each input stream. From Equation 1, note that the expected
network traffic cost of random query assignment is nearly equal

to the worst-case network cost whenever1
m ∑s∈S

(

1− 1
k

)ds≪ 1. In
fact, the worst-case network traffic cost is achievable under the ran-
dom query assignment policy: consider as input a set of sources
and a set of queries that are partitioned intok balanced pieces so
that there arem/k sources andn/k queries in respective pieces
S1,S2, . . . ,Sk andQ1,Q2, . . . ,Qk, and assume that each query inQ j
requires input from each source inSj and none fromS\Sj . The
subscription of queries to sources corresponds to a collection ofk
disconnected complete bipartite graphs, each withm/k sources and
n/k queries. In this case, from Equation 1, the expected network
traffic cost is

(1− (1−1/k)n/k)km

which for largen tends to the worst-case network traffic cost ofkm.
In comparison, the best strategy is to assign each piece of queries to
a distinct server; this achieves minimal network traffic and perfect
load balancing. The inefficiency of the random query assignment
can thus be made arbitrarily large by takingk large enough.

It is worth noting from Equation 1 that the expected network cost
of random query assignment is less or equal to(1− (1−1/k)d̄)km

whered̄ is the mean number of queries per source, which follows
by Jensen’s inequality. From the latter upper bound, it follows that
the expected network cost is less or equal to min{d̄,k}m. Hence,
random query assignment guarantees a small expected network cost
in case of small mean number of queries per source. In other cases,
it can be grossly suboptimal, which we demonstrate in Section 6.

The performance inefficiency of simple random query assign-
ment asks for designing more sophisticated query assignment algo-
rithms that perform better with respect to the two criteria of min-
imizing the network traffic cost and balancing the processing load
across servers. In the following sections, we propose better approx-
imation algorithms to offlineQP problem in Section 4, and discuss
online algorithms that irrevocably assign queries to servers at their
arrival instances in Section 5.

4 Offline Query Partition
In this section, we discuss how to approximately solve offlineQP

and derive theoretical approximation guarantees.
First, we study the approximation bound for a more general case,

where each query might subscribe to more than one source, referred
to asmulti-sourceQP. When sources have identical traffic rate,
we show that there exists an algorithm that is able to approximate
multi-sourceQP within 2dmax(1+ logk), wheredmax is the maxi-
mum number of sources to which a query subscribes, andk is the
number of servers. Sincedmax is usually small in practice [4], this
is a much tighter bound compared with the naïve boundk. More-
over, we propose several approximation algorithms that might have
looser approximation bounds in theory, but have competitive per-
formance in practice.

Second, we focus on a special case ofQP, where each query
subscribes to only one source, referred to assingle-sourceQP.
We show that there exists an algorithm that is able to approximate
single-sourceQP within a constant 2.

4.1 Multi-source Query Partition
Section 4.1.1 presents theMQP algorithm that achieves a non-
trivial approximation bound, and Section 4.1.2 introduces two ap-
proximation algorithms of competitive performance.

4.1.1 MQP algorithm
A challenging question to multi-sourceQP is whether there exists
a polynomial-time algorithm that can guarantee an approximation
ratio that is independent of the number of sources and the number
of queries, or simply tighter than the naïve approximation boundk
(the number of servers). In this paper, we provide an affirmative
answer to this question! Specifically, letk, S, andQ be the number
of servers, the set of sources, and the set of queries considered ina
multi-sourceQP, respectively.

THEOREM 2. For any given S with identical traffic rates, there
exists a polynomial-time algorithm for multi-sourceQP with ap-
proximation ratio

2dmax(logk+1).

where dmax= maxq∈Q|Sq|. Furthermore, this bound holds for gen-
eral traffic rates with an extra factor ofω =maxs∈Sw(s)/mins∈Sw(s).

This result has an important practical implication: in systems
where the number of data sources required by a query is arbitrary
but bounded by a small positive integerdmax, there exists a polynomial-
time algorithm that guarantees network traffic cost that is at most

3

2dmax of the optimum network traffic cost, up to a factor that is
logarithmic in the number of serversk.

In the following, we prove Theorem 2 in three steps. (1) We
demonstrate that given a multi-sourceQP with k servers, if we can
optimally solvek minimum query type packingproblems, referred
to asMQP and defined shortly, we can approximate multi-source
QP within 2(1+ logk). (2) We show thatMQP is NP-complete.
(3) We further show that we can approximateMQP within dmax.
When the context is clear, we also call the algorithm achieving the
bound in Theorem 2MQP algorithm.

We start with the definition forMQP problem.

DEFINITION 2 (MQP). Given a set of queries Q along with
their query types T⊆ 2S, a corresponding set of sources S with
their traffic rate w, and a positive real numberθ > 0, MQP is to
find a subset of query types T′ ⊆ T such that (1)∑t∈T ′ nt ≥ θ and
(2) w(∪t∈T ′St) is minimized.

Next, we decomposeQP problem intok MQP problems as fol-
lows.

1. Givenk servers andn queries, select an arbitrary server as
the target server for assignment.

2. Suppose we find a subset of query typesT ′ ⊆ T for theMQP

problem with

θ = n− (1+ν)
(k−1)n

k
. (2)

Let Q̂ be the subset of queries corresponding toT ′, and let
its traffic cost bef (Q̂).

3. Note that there is a capacity constraint of(1+ν) n
k for each

server. If ∑t∈T ′ nt > (1+ ν) n
k , to construct a feasiblêQ,

we arbitrarily select a query type, keep a feasible number
of them, and put the rest queries of the query type back into
the query pool.

4. We repeat the above steps until all queries are assigned.

Note that the constraints of theQP problem imply that|Q j | ≥ θ ,
for serverj = 1,2, . . . ,k. In this view, theMQP problem withθ as
given in (2) is a relaxation of theQP problem.

Let Q̂∗j ⊆Q be the optimal solution for theMQP problem on the

j-th server,f (Q̂∗j) be the corresponding traffic cost, and OPT be the
optimal solution for the original multi-sourceQP problem.

LEMMA 1. Given a multi-sourceQP problem with k servers,
successive solving of kMQP problems yields a feasible solution
for theQP problem; moreover, if we can solve eachMQP problem
optimally withQ̂∗1, . . . ,Q̂

∗
k, we can guarantee

k

∑
j=1

f (Q̂∗j)≤ 2(logk+1)OPT.

PROOF. The proof follows by upper bounding the cost incurred
in each round where queries are assigned to a server by solving a
MQP problem. We first show the upper bound for the traffic cost
of assigning queries to the first server, and then demonstrate how
we bound the traffic cost for the remaining servers.

Let OPTj (n′) be the optimal solution for a multi-sourceQP prob-
lem withn′ queries,j servers, and the capacity constraint(1+ν) n

k .
Note that OPTk(n) = OPT. For the firstMQP problem, an optimal
subset of querieŝQ∗1 assigned to server 1 with traffic costf (Q̂∗1).

SinceMQP is a relaxation of theQP problem, it holdsf (Q̂∗1) ≤
f (Q∗j), whereQ∗j is the subset of queries assigned to serverj in
OPT for all 1≤ j ≤ k. Since OPTk(n) = OPT, we obtain

f (Q̂∗1)≤
1
k

OPTk(n) =
1
k

OPT. (3)

Consider thej-th server. Let OPTk− j+1(n
′) be the optimal so-

lution givenn′ remaining queries,k− j +1 servers, and the capac-
ity constraint(1+ ν) n

k (note that this constraint remains the same
throughout the algorithm). We claim that

f (Q̂∗j)≤
2

k− j +1
OPT, for 1< j ≤ k. (4)

Suppose Inequation (4) is true, the proof for Lemma 1 follows
by summing up the upper bounds in (3) and (4) and using the fact
that harmonic seriesHk holdsHk ≤ logk+1. We prove Inequation
(4) as follows.

First, note that givenn queries and the same capacity constraint
per server, if there exist feasible solutions for a system ofj andk
servers, such thatj ≤ k, then we prove that OPTj (n)≤ 2OPTk(n).
For OPTk(n), let costi be the traffic cost for serveri. Without loss
of generality, suppose that the servers are enumerated such that
cost1 > cost2 > .. . > costk. Then, we have

OPTk(n) =
j

∑
i=1

costi +
k

∑
i= j+1

costi .

Using OPTk(n), we can construct a feasible solution that requires
only j servers by (1) arbitrarily selecting a servera≤ j with avail-
able space, and (2) sequentially assigning queries on serverb > j
to servera. If servera is full before all queries from serverb are
assigned, then arbitrarily select another servera′ ≤ j with available
space for the remaining queries from serverb, and we repeat the
procedure until all queries from serverb are assigned. If all queries
from serverb are assigned but servera still has available space,
we find another serverb′ > j, and assign queries from serverb′ to
servera. By the above procedure, we can construct a feasible solu-
tion using only j servers. The resulting extra cost is no more than
j ∗ costj+1, since in the above procedure we break the sequential
assignment at mostj times, and each time add in no more than the
cost ofcostj+1. Therefore,

OPTj (n) ≤
j

∑
i=1

costi +
k

∑
i= j+1

costi + j ∗costj+1

≤ 2
j

∑
i=1

costi +
k

∑
i= j+1

costi

and, thus, it follows that

OPTj (n)

OPTk(n)
≤

2∑ j
i=1costi +∑k

i= j+1costi

∑ j
i=1costi +∑k

i= j+1costi
≤ 2.

Hence,

OPTj (n)≤ 2OPTk(n), for all 1≤ j ≤ k. (5)

Second, givenk servers and the same capacity constraint, if there
exist feasible solutions for assigningni andn j with ni ≤ n j , then

OPTk(ni)≤OPTk(n j). (6)

Finally, since f (Q̂∗j) ≤ 1
k− j+1OPTk− j+1(n

′), (5) and (6), it fol-

4

lows

f (Q̂∗j)≤
2

k− j +1
OPT, for 1< j ≤ k.

In Lemma 1, we derived an approximation ratio for theQP prob-
lem under assumption of an oracle providing an optimal solution to
MQP problem. We next show thatMQP is NP-complete; there-
fore, it is difficult to find a polynomial-time algorithm that solves
MQP optimally.

LEMMA 2. MQP problem is NP-complete.

PROOF. We sketch the proof as follows. (1) To prove NP-hardness,
we can reduce the NP-hard minimumk-union problem [31] toMQP

problem. (2) It is easy to verify a solution in polynomial time.

We propose the following algorithm to approximateMQP.

1. Order query types in decreasing order with respect to the
number of queries.

2. Repeatedly pick the query type of the largest number of queries
until the number of assigned queries is no less thanθ .

LEMMA 3. Suppose sources have identical source traffic rates,
the above algorithm approximatesMQP problem within factor dmax,
where dmax= maxq∈Q|Sq|. In the general case of arbitrary source
traffic rates, where the ratio of the maximum source traffic rate to
the minimum source traffic is at most a parameterω, the above
algorithm approximatesMQP problem within factor dmaxω.

PROOF. In the above algorithm, we pick the query types of the
largest number of queries to saturate a server. Suppose we even-
tually selecth query types, we conclude that the number of query
types considered in an optimal solution is no less thanh. Let h+∆
be the number of query types obtained from the optimal solution.
For each query type, the above algorithm at most takesdmax times
more traffic rate compared with the optimal solution, when traffic
rate is identical over all sources; meanwhile, it at most takesdmaxω
times more traffic rate, when traffic rate is arbitrary. This completes
the proof of the lemma.

4.1.2 Competitive algorithms
In this section, we present several approximation algorithms, in-
cluding incremental cost based approach(referred to asIC) and
min-max traffic cost per server(referred to asMMS). Although
these two algorithms only hold the naïve approximation boundk,
they demonstrate competitive performance in practice (see Sec-
tion 6). These two algorithms are described as follows.

Incremental cost based approach. IC assigns queries in multiple
rounds. At each round, it assigns queries to a server in three steps.
(1) Given a query typet ∈ T of non-zero number of queries and
a serverj of space to host more queries, we can measure thein-
cremental traffic costresulting from assigning at least one query of
type t to serverj. (2) We select the pair(t∗, j∗) that results in the
least incremental cost. (3) We assign queries of typet∗ to serverj∗

as many as possible until serverj∗ is full or there is no queries of
typet∗ any more.

Min-max traffic cost per server. MMS aims to minimize the max-
imum traffic cost among servers in multiple rounds. At each round,
it assigns queries to a sever in three steps. (1) Given a query type
t ∈ T of non-zero number of queries and a serverj of space to host

more queries, we can measure thetraffic costafter assigning at least
one query of typet to serverj. (2) We select the pair(t∗, j∗) that
results in the least traffic cost. (3) We assign queries of typet∗ to
server j∗ as many as possible until serverj∗ is full or there is no
queries of typet∗ any more.

4.2 Single-source Query Partition
In this section, we study single-sourceQP, where each query sub-
scribes to only one data source. Note that in single-sourceQP, the
number of query types equals to the number of sources; therefore,
we use the term source and the term query type interchangeably.

We propose an approximation for single-sourceQP that assigns
queries to servers successively over a number of rounds as shownin
Figure 1. For serverj, we defined j to be the free capacity of server
j, and at the beginning of round 0, we initialized j =

⌊

(1+ν) · n
k

⌋

,
whereν ≥ 0 is the relative relaxation ratio. Moreover, we definens
to be the number of unassigned queries requiring sources (i.e., all
queries that use the same sources).

Input : a single-sourceQP instance;
Output : the resulting query assignment.

1. while True
2. Select serverj with the largest free capacity
3. Select query type (source)s of the largest traffic ratew(s)
4. b←min(d j ,ns)
5. Assignb type-s queries to serverj
6. d j ← d j −b
7. ns← ns−b
8. if there is no more queries
9. return

Figure 1: The 2-approximation for single-sourceQP.

THEOREM 3. The approximation algorithm shown in Figure 1
has the following guarantees: (1) approximation ratio of1+ k

m≤ 2,
where m is the number of sources and k is the number of servers,
for sources of identical source traffic rates; and (2) approximation
ratio of 2, for sources of arbitrary source traffic rates.

PROOF. Note that in the proof, we focus on the cases where
0< ns< d j for all s∈Sand j = 1,2, . . . ,k, since the other cases can
be reduced to the above cases. We assume thatk < m; otherwise,
we can find the optimal solution in polynomial time.

Identical source traffic rates. Without loss of generality, we as-
sumew(s) = 1, for all s∈ S. In the following, we show the lower
bound for the optimal solution and the upper bound for the approx-
imate solution.

The lower bound for the optimal solution ism, since each source
will be used by at least one server in the system.

The upper bound for the above algorithm isk+m, and it is de-
rived as follows. (1) At each round, we either make a query type
take all the remaining space of a server, or make a server include
all the remaining queries of a query type. In other words, either the
number of available servers or the number of available query types
decreases by 1. (2) To this end, we safely claim that the number
of required rounds cannot go beyondk+m. (3) Since each round
increases traffic rate by at most 1, the total traffic rate cannot be
more thank+m.

Using the lower and upper bounds, we obtain the approximation
ratio of 1+k/m.

Arbitrary source traffic rates . Similarly, we demonstrate the
lower bound for the optimal solution and the upper bound for the
approximate solution.

5

The lower bound for the optimal solution isw(S), since we have
to transfer each source at least once.

The upper bound for the approximate solution is 2w(S), and it is
derived as follows. Denote withrs the number of rounds to assign
queries of query types, which in total introducesrs ·w(s) of traf-
fic cost into the system. By the same argument as for the case of
identical source traffic rates, the total number of rounds is at most
m+k, i.e.,∑s∈Srs≤ k+m. From this it follows that

∑
s∈S

(rs−1)≤ k.

Since 0< ns < d j , we can guarantee that the top-k query types (in
terms of traffic rate) will be assigned at most once. Therefore,

∑
s∈S

(rs−1)w(s)≤ kwk+1≤ w(S)

wherewk+1 is thek+1-largest traffic rate among all query types.
The total traffic rate satisfies

∑
s∈S

rsw(s)≤ w(S)+ ∑
s∈S

(rs−1)w(s)≤ 2w(S),

hence the algorithm approximates the problem within factor 2.

Remark. For single-sourceQP, there exists a constant factor ap-
proximation algorithm, and this guarantee holds for any number of
sourcesm, number of queriesn, and number of serversk. More-
over, if in addition the source traffic rates are identical, then an
approximation ratio of 1+ k/m can be guaranteed. Thus, this ap-
proximation ratio guarantee can be arbitrarily near to the best one
by ensuring a sufficiently large number of sources relative to the
number of servers. In a practical system, this suggests that in the
case of single-source queries and many sources with approximately
identical traffic rates, it would be computationally feasible to guar-
antee nearly optimal performance.

5 Online Query Partition
In this section, we consider onlineQP, which assign queries to
servers at their arrival time. We focus on the class of online algo-
rithms that decide which server to host an incoming query based on
(1) the set of source streams required by the given incoming query
and (2) the queries that were previously assigned to servers and are
still in the system. The key to design such an online algorithm is
to choose a metric that indicates which server to host the incoming
query, and a reasonable metric should combine the two optimiza-
tion criteria: load balancing and network traffic cost minimization.
In the following, we present several greedy metrics for online algo-
rithms and the intuition behind those metrics in Section 5.1. More-
over, we provide a discussion in Section 5.2 on how to make use
of extra information (Section 5.2.1) or resources (Section 5.2.2) to
improve the performance of online algorithms.

5.1 Greedy online algorithms
In this section, we present three greedy online algorithms, and de-
scribe the intuition behind those algorithms.

Although the three algorithms follow different metrics to de-
cide which server to host an incoming query, they share a common
pipeline as shown in Figure 2. Given an incoming queryq, k servers
along with the corresponding set of queries a server is hosting, the
relative relaxation ratioν , and a predefined metricM, the server to
hostq is decided as follows. (1) From allk servers, we find the
candidate serversC each of which will not violate the balance con-
straint if we addq into the server. (2) FromC, we find the servers
C∗ each of which will have the highest score in terms ofM if we

Input : (1) an incoming queryq requiring a set of sourcesSq;
(2) k servers and the queries they are hostingQ1, . . . ,Qk;
(3) relative relaxation ratioν;
(4) a predefined metricM;

Output : the server that will hostq.

1. Find candidate serversC=
{

i | |Qi |+1< (1+ν)∑k
j=1 |Q j |

k

}

2. FindC∗ ⊆C such that∀i ∈C∗,
3. M(Qi ∪{q})≥M(Q j ∪{q}),∀ j ∈C
4. if |C∗|== 1
5. return the only server inC∗

6. else
7. return the serverp= argmini∈C∗{|Qi |}

Figure 2: The sketch for online algorithms.

addq into the server. (3) If there is only one server inC∗, we assign
q to the server; otherwise, we select the least loaded server fromC∗

and then assignq to the server.
In this work, we propose three metrics to support online as-

signment decision: (1)least incremental cost first(referred to as
LeastCost), (2) least source cost per server first(referred to as
LeastSource), and (3)least number of query types first(referred
to asLeastQT). Given a queryq and a set of queriesQ j hosted by
serverj, the three metrics behave as follows.

LeastCost. If f (Q j ∪{q})− f (Q j) results in a smaller incremental
traffic cost, we will give serverj a higher score as below.

MLeastCost(Q j ∪{q}) =
1

f (Q j ∪{q})− f (Q j)
.

LeastCost is a natural metric forQP: since the ultimate goal ofQP

is to minimize traffic cost in a system,LeastCost approaches this
goal by locally minimizing traffic cost at each query arrival.

LeastSource. If f (Q j ∪ {q}) results in a smaller traffic cost, we
will give server j a higher score as below.

MLeastSource(Q j ∪{q}) =
1

f (Q j ∪{q})
.

LeastCost has a potential issue: one server might subscribe too
many sources because of local optimal decisions such that many in-
coming queries will be assigned to the server, the server will be full
quickly, and eventually the server becomes unavailable for host-
ing incoming queries. If this effect propagates among servers, the
overall traffic cost in the system will be very high. To mitigate this
effect, we come up withLeastSource that aims to balance the traf-
fic cost among servers such that no server will subscribe too many
sources and result in too high traffic.

LeastQT. Let Tj be a set of query types such that∀t ∈ Tj , there
exists at least one query of typet hosted by serverj, andtq be the
query type ofq. If |Tj ∪{tq}| is smaller, we will give serverj a
higher score as below.

MLeastSource(Q j ∪{q}) =
1

|Tj ∪{tq}|
.

LeastCost andLeastSource have a common issue: a few servers
might subscribe too many popular sources. If one server subscribes
too many popular sources, it is able to host queries of various query
types, and will be crowded quickly. If this effect propagates in
the system, we have to make many servers subscribe those popular
sources. One way to mitigate this effect is to limit the number of
query types in a server such that no server can host too many query
types and get crowded soon.

6

5.2 Discussion
In this section, we discuss how we develop online algorithms when
we have more knowledge or more resources. The above metrics
provide heuristic algorithms to solve onlineQP. Indeed, given the
limited knowledge of only information about the incoming query
and assigned queries in a system, we might not have much space to
develop sophisticated algorithms. However, in practice, we might
know some statistical information about queries, and might relax
the load balancing constraint at specific conditions.

5.2.1 With known query type distribution
When we deal with onlineQP, we might know the information
about query type statistics. In particular, such statistics consist of
the rate at which specific query types will arrive in the system, and
may well be available in production systems that have been in oper-
ation for some time, which allows us to collect and maintain statis-
tics about the query workload.

Concretely, with such statistical knowledge, we can develop an
online algorithm as follows. Assume that popularity of query types
is known: the probability that an incoming query is of typet fol-
lows a multinomial distribution with parameters(λt , t ∈ T), where
T ⊆ 2S is the universe of considered query types . Knowing this
distribution allows us to develop an online algorithm that makes
reservations for query types in advance, and then assigns queries
at their arrival times based on their query types. This allows one
to emulate what an offline algorithm does. Given(λt , t ∈ T), we
reduce an onlineQP to an offlineQP as follows.

1. λt (the probability that a type-t query arrives) is reduced to
nt (number of type-t queries);

2. δ j , the probability that serverj receives a query, is reduced to
the balance constraint, the number of queries a server could
host at most, and in particular, we setδ j =

1
k in the algorithm;

3. πt, j , the probability that a type-t query is assigned to server
j, is reduced to the number of type-t queries in serverj.

Therefore, with the statistical information on query type distribu-
tion, we can reuse the offline algorithms discussed in Section 4 to
solve onlineQP.

5.2.2 Relaxed Load Balancing Constraints
QP problem is defined as a bi-criteria optimization problem where
one of the criteria is balancing the load across different servers.
Specifically, the problem corresponds to finding a query partition
such that the maximum load is at most(1+ ν) of the mean load
across different servers, for given input parameterν ≥ 0. For an on-
line QP, requiring to obey this condition at each query assignment
instance may well be too restrictive and amount in sub-optimal
query assignments with respect to the long-run network traffic cost.

EXAMPLE 1. Consider a system of10servers, and a fixed rela-
tive relaxation ratio of0.05. The first10queries will be distributed
to 10 different servers, and that may result in10different copies of
the same stream, if those queries read from the same source. This
is because the average load times the relaxation is strictly less than
1 until the 10-th query. In general, during the initialization, the
allocation of queries to servers will be grossly sub-optimal.

To resolve the above issue, we consider a relaxation of the load
balancing constraints that is defined as follows. (1) We define an-
other balance constraint for a system in its initial phase, and use
absolute relaxation ratioto control the balance constraint. (2) In

the initial phase, a system uses a balance constraint decided by ab-
solute relaxation ratio. When the system hosts more thann queries,
we switch back to the balance constraint decided by relative re-
laxation ratio. Letn be the number of queries in the system. The
system is said to beα-absolutely balanced, if the number of queries
in any server is no more thannk +α , whereα ≥ 0 is the absolute re-
laxation ratio. The system is said to be(1+ν)-relatively balanced,
if the number of queries in any server is no more than(1+ν) · n

k ,
whereν ≥ 0 is the relative relaxation ratio.

In an online system, when the number of input queries is small,
we apply absolute load balancing constraint to balance the work-
load of servers; when the number of queries becomes sufficiently
large, we switch to relative balancing constraint to balance the work-
load. In other words, given the values of parametersα andν and
the number of input queriesn, the load balancing constraint for
each serverj is defined to bed j (n)≤ d(n), whered j (n) is the num-
ber of queries already assigned to serverj and

d(n) = max(
n
k
+α ,(1+ν) · n

k
). (7)

Note that a system switches to the relative load balancing as soon
as the number of input queriesn satisfiesn≥ (α/ν)k.

One question is how to setα providedν . In the following, we
present one principled way to do so. Assume that the probability of
assigning a query to a server is according to a uniform random dis-
tribution across servers. Under this assumption,(d1(n),d2(n), . . . ,dk(n))
is a random variable according to multinomial distribution with pa-
rametersn and(1/k,1/k, . . . ,1/k) where∑k

j=1 d j (n) = n. By the
union bound, we have

Pr
(

∪k
j=1{d j (n)> d(n)}

)

≤
k

∑
j=1

Pr(d j (n)> d(n)). (8)

Using Hoeffding’s inequality, we obtain

Pr(d j (n)> d(n))≤ exp

(

−2(d(n)+1− n
k)

2

n

)

. (9)

Combining with (7), we have

Pr(d j (n)> d(n))≤ exp

(

−2ν2

k2 n

)

.

Therefore,

Pr
(

∪k
j=1{d j (n)> d(n)}

)

≤ ke−
2ν2

k2 n.

From this it follows thatd j (n)≤ d(n) for all j = 1, . . . ,k with high
probability provided that the following condition holds

k= O

(

ν
√

n
logn

)

.

Note that for givenε > 0, d j (n) ≤ d(n) for all j = 1, . . . ,k to hold
with probability at least 1− ε it suffices that

n≥ k2

2ν2 log

(

1
ε

)

. (10)

Given ν > 0, we want the the algorithm to switch to relative load
balancing once the probability of violation of the relative imbalance
is guaranteed to be smaller or equal than givenε > 0. By (7) the
switch over from the absolute to relative balancing constraints hap-
pens at the smallest integern such thatn≥ αk/ν . Combined with
(10), we observe that it suffices to switch over when the number of
queriesn satisfies (10) and it suffices that the absolute relaxation

7

parameterα is chosen such that

α ≤ k
2ν

log

(

1
ε

)

.

An important insight from this is that the absolute relaxation ratio
α should not be taken too large, and it should be at most a quantity
that scales linearly with the number of serversk (in practice,α ≥ 10
works well).

6 Experimental Evaluation
This section evaluates the off-line and on-line algorithms of Sec-
tion 4 and Section 5 using extensive simulations. We start by de-
scribing the experimental set-up (Section 6.1), and then analyze the
network traffic overheads of those algorithms. Our results support
the following hypotheses:

1. Suitable assignment policies reduce network traffic substan-
tially compared with naïve random query assignment.

2. One of our query assignment policies,LeastCost, consis-
tently exhibits superior performance than other online, and
sometimes even offline, query assignment policies, in a wide
range of configurations.

3. LeastCost scales with respect to the number of queries, sources,
and servers; moreover, it is robust to dynamic arrival and de-
parture for both queries and servers.

6.1 Experimental Setup

Synthetic query subscription. We generated input queries based
on the model of [16]. Queries’ subscription can be represented by
a bipartite graphG = (S,Q,E), whereS is the set of sources,Q
is the set of queries, and there is an edge(s,q) ∈ E if and only if
queryq receives data from sources. For convenience, we say that
all queries that use the same set of sources belong to the samequery
type. Let m be the total number of sources, andn the total number
of queries. We assume thatG is a random bipartite graph with given
degree distribution over source vertices and given distribution over
query vertices. In particular, we assume a family of random bipar-
tite graphs where (1) the degree distribution of source vertices is a
Zipf distribution with exponentβ (modeling heavy-tailed statistics
in source popularities [16, 17]), and (2) the degree of query vertices
is fixed to parameterd > 0. For brevity, we assume that each query
increase the load on the server by one unit.

Offline algorithms. We implement the following offline algorithms:
(1) incremental cost based approachIC, (2) minimum query pack-
ing based approachMQP, and (3) min-max traffic cost per server
MMS. Note that those three algorithms incorporate the single-
source query assignment algorithm when using single-source queries.
As a baseline, we use the following random offline assignment al-
gorithmOffRand: (1) randomly select all queries of the same query
type; (2) randomly select a server of available space to host queries;
(3) assign queries to the selected server until either the server is sat-
urated or all queries (of query type) have been assigned; (4) remove
server or query type from further consideration; and (5) repeat from
(1) until all queries are assigned.

Online algorithms. We implemented the following online algo-
rithms: (1) Least incremental traffic firstLeastCost, (2) Least num-
ber of sources firstLeastSource, and (3) Least query types first
LeastQT. As a baseline, we implemented a random online algo-
rithm OnRand as follows: given a query, we find the candidate
servers that can accept the new query without violating the balance

constraint, and then randomly select one of them as the target server
for assignment.

Parameters. In most the experiments, we considered four parame-
ters: (1) the exponentβ that governs sources’ Zipf degree (popular-
ity) distribution ranging from 1.0 to 3.0 with default value 2.0, (2)
the number of sources per query from 1 to 10 with default value 2,
(3) the number of servers from 10 to 1000 with default value 100;
and (4) the number of queries from 10K to 1M with default value
100K.

When considering query or server dynamics, we also consider
the following parameters when studying the algorithms’ perfor-
mance: (a) mean query life-time (Section 6.3.2), and (b) server
departure rate (Section 6.3.3).

Moreover, for all the offline algorithms, we fixed the relative re-
laxation ratioν to be 0.05. For all the online algorithms, we fixed
the relative relaxation ratioν to be 0.05, and the absolute relaxation
ratio α to be 10 (Section 5.2.2).

Performance metrics. We employedreplication factoras the met-
ric to evaluate the performance of algorithms. Lettc be the result-
ing traffic cost of an algorithm,S be a set of sources with traffic
costw, and f (S) be f (S) = ∑s∈Sw(s). The replication factor of an
algorithm is defined by tc

f (S) . Intuitively, replication factor presents
normalized traffic cost resulting from an algorithm.

We run each configuration 10 times, and present the average
value.

6.2 Offline Algorithms
We examine the replication factor and competitive ration of the of-
fline algorithms in Figure 3. Note that we assume the same unit
traffic rate for all sources; we examine arbitrary traffic rates in Sec-
tion 6.4.

Figure 3(a) shows the network traffic replication factors while
varying the exponent of the Zipf distribution for the number of
queries per source (source popularity); observe that lower values
are better. In particular, the number of sources per query is fixed to
2, the number of queries is set to 100K, and the number of servers
is fixed to 100. We have the following observations. (1) Heav-
ier power-law distributions (i.e.,smaller exponents) result to larger
replication factors. This is intuitive as a heavier tail implies the
existence of a few sources with many query subscription, which
makes query assignment more challenging. (2)IC andMMS con-
sistently exhibit the best performance, up to 4 times better than
OffRand.

Figure 3(b) shows the network traffic replication factor while
varying the number of sources per query. In particular, the exponent
for the power-law source popularity distribution is fixed to 2.0, the
number of queries is set to 100K, and the number of servers is 100.
We have the following observations. (1) The replication factor in-
creases with the number of sources per query. (2) For single-source
queries, the replication factor is no more than 2, which confirms
the theoretical guarantee in Theorem 3. In fact, it is nearly op-
timal. (3) Another noteworthy property is a diminishing increase
of the replication factor with the number of sources per query. It
is observed for all the offline algorithms considered. Specifically,
OffRand andMQP reach a plateau replication factor at about two
or three sources per query. (4)MMS exhibits the best performance,
and this is matched byIC for sufficiently small number of sources
per query.

Figure 3(c) plots the network traffic replication factorvs. the
number of servers, when the exponent for the power-law source
popularity distribution is 2.0, the number of queries is 100K, and

8

 1

 10

 100

 1 1.5 2 2.5 3

R
ep

lic
at

io
n

fa
ct

or

Exponent β

OffRand
MQP

IC
MMS

(a) Varying exponentβ

 0
 1
 2
 3
 4
 5
 6
 7
 8

 0 2 4 6 8 10
R

ep
lic

at
io

n
fa

ct
or

Number of sources per query

OffRand
MQP

IC
MMS

(b) Varying #sources/query

 0
 1
 2
 3
 4
 5
 6
 7
 8

 10 100 1000

R
ep

lic
at

io
n

fa
ct

or

Number of servers

OffRand
MQP

IC
MMS

(c) Varying #servers

 0
 1
 2
 3
 4
 5
 6
 7
 8

 10000 100000 1e+06

R
ep

lic
at

io
n

fa
ct

or

Number of queries

OffRand
MQP

IC
MMS

(d) Varying #queries

Figure 3: Performance of offline query assignment.

the number of sources per query is 2. We observe that the replica-
tion factor increases with the number of servers, but this increase is
sub-linear in the number of servers.

Finally, Figure 3(d) shows that the network traffic replication fac-
tor is invariant to the number of input queries, (the exponent for
the power-law source popularity distribution is 2.0, the number of
servers is set to 100, and the number of sources per query is 2).

In summary, Figure 3 demonstrates thatMMS consistently out-
performs other offline algorithms, and results in up to 4 times per-
formance gain compared with the naïve offline algorithmOffRand.

6.3 Online Algorithms
In this section, we examine the performance of online algorithms
in the following settings: (1) online arrival of queries without query
departure and a fixed number of servers, (2) online arrival of queries
with query departure and a fixed number of servers, and (3) dy-
namic arrival and departure for both queries and servers.

6.3.1 Query Arrivals, No Departures
Figure 4 plots the replication factor for online algorithms, in similar
settings as Figure 4. The two sets of plots are qualitatively similar,
hence, we focus next on their differences.

First, LeastCost exhibits the best performance, and sometimes
even outperforms the best offline algorithmMMS. Second, the per-
formance ofLeastSource is close toLeastCost. Third,LeastCost
performs up to 4 times better thanOnRand, and the performance
gain is close to what we observed betweenMMS andOffRand in
the offline case. The performance ofLeastQT is virtually identical
to that ofOnRand. Thus typicallyLeastQT provides no benefits.

6.3.2 Query Arrivals and Departures
A streaming query service hosts queries posted by users, and many
such queries would be hosted only for a limited time,e.g.,the user
may be interested in travel updates only while on the road. Hence,
it is important to examine query assignment strategies in a system
with query arrivals and departures. To this end, we used the follow-
ing model of query dynamics.

We consider the query arrival and departure process as a discrete
time process ofτ time steps: (1) at each time step, the number of
arrived queries follows a Poisson distribution; and (2) each arrived
query is associated with a lifetime, which is drawn from some dis-
tribution. In particular, we considered two parametric families of
distributions: (1) exponential distributions that model the cases of
light-tailed query lifetimes, and (2) Pareto distribution that model
the cases of heavy-tailed query lifetimes. However, we found simi-
lar results for the two different families of distributions, so we only
present the results for the exponential distribution.

Figure 5 plots the performance of online algorithms while con-
sidering query dynamics, where the mean query lifetime ranges

from 10 to 1M time steps with default value 100K, the average
number of arrived queries per time step is 1, and the total number
of discrete time stepsτ is set to be 1M in all cases. In general, we
observe thatLeastCost consistently yields the best performance. In
Figure 5(d), we varied the mean query lifetime. By Little’s law, the
mean number of queries in the system is the product of the query
arrival rate and the mean query lifetime, and thus the given range
covers the mean number of queries in the system from 10 to 1M
queries. Given that the number of servers is 100 (in all cases in
Figure 5 except Figure 6(c)), we cover the system operating points
of 0.1 to 10K queries per server, which covers the range of lightly
to highly loaded servers. Figure 5(d) demonstrates that replication
factor tends to increase with the load of the servers for all online al-
gorithms; however, it is noteworthy that this increase is rather slow
for LeastCost, which is sub-linear in the mean query lifetime.

6.3.3 Server Arrivals and Departures

In a production environment, we also expect server churn; servers
may fail, and hence queries need to be re-assigned, and new servers
may be added to cope with increased demand, or after recycling
failed servers. It is thus important to examine the robustness of
different query assignment policies, with respect to server arrivals
and departures.

We modeled server dynamics similar to query dynamics: We
start with k servers, and queries arrive inτ time steps. At each
time step, the number of arrived queries follows a Poisson distri-
bution, and each query is associated with a lifetime that follows
an exponential distribution. Moreover, starting at time step 1, af-
ter everyγ time steps (whereγ is referred to asserver departure
rate), we make a Bernoulli trial: with probability 0.5, we add a
new server; otherwise, we randomly delete a server, and re-assign
its queries using the online algorithm (i.e., assuming that they are
new queries).

Figure 6 demonstrates online algorithms’ performance when we
consider both query and server dynamics. By default, we consider
100 servers, the exponentβ for source popularity distribution is
2.0, the number of sources per query is 2, the total number of time
steps is 1M, the mean number of arrived queries per time step is
1, the mean query lifetime is 100K, and the server departure rateγ
is 10K. In Figure 6(a), 6(b), 6(c), and 6(d), we varied exponentβ
for source popularity distribution, the number of sources per query,
the number of servers, and server departure rate, respectively. Con-
sistent with earlier results, we observed thatLeastCost exhibits the
best performance, and is robust with respect to the dynamics of the
server arrival and departure.

6.4 Heterogeneous Source Traffic Rates
Insofar, we have examined the performance of query assignment
algorithms for the case of sources with identical traffic rates. We

9

 1

 10

 100

 1 1.5 2 2.5 3

R
ep

lic
at

io
n

fa
ct

or

Exponent β

OnRand
LeastQT

LeastSource
MMS

LeastCost

(a) Varying exponentβ

 0
 1
 2
 3
 4
 5
 6
 7
 8

 0 2 4 6 8 10
R

ep
lic

at
io

n
fa

ct
or

Number of sources per query

OnRand
LeastQT

LeastSource
MMS

LeastCost

(b) Varying #sources/query

 0
 1
 2
 3
 4
 5
 6
 7
 8

 10 100 1000

R
ep

lic
at

io
n

fa
ct

or

Number of servers

OnRand
LeastQT

LeastSource
MMS

LeastCost

(c) Varying #servers

 0
 1
 2
 3
 4
 5
 6
 7
 8

 10000 100000 1e+06

R
ep

lic
at

io
n

fa
ct

or

Number of queries

OnRand
LeastQT

LeastSource
MMS

LeastCost

(d) Varying #queries

Figure 4: Performance of online query assignment without query departures.

 1

 10

 100

 1 1.5 2 2.5 3

R
ep

lic
at

io
n

fa
ct

or

Exponent β

OnRand
LeastQT

LeastSource
LeastCost

(a) Varying exponentβ

 0
 1
 2
 3
 4
 5
 6
 7
 8

 0 2 4 6 8 10

R
ep

lic
at

io
n

fa
ct

or

Number of sources per query

OnRand
LeastQT

LeastSource
LeastCost

(b) Varying #sources/query

 0
 1
 2
 3
 4
 5
 6
 7
 8

 10 100 1000

R
ep

lic
at

io
n

fa
ct

or

Number of servers

OnRand
LeastQT

LeastSource
LeastCost

(c) Varying #servers

 1

 10

 100

 10 100 1000 10000 100000 1e+06

R
ep

lic
at

io
n

fa
ct

or

Mean query life-time

OnRand
LeastQT

LeastSource
LeastCost

(d) Varying mean life-time

Figure 5: Performance of online algorithms with dynamic query arrivals and departures.

now examine a more general case where different sources have dif-
ferent traffic rates. Since many phenomena in nature exhibit heavy-
tail distributions [17], we expect that in practice the source traffic
rates to follow a heavy-tail distribution. We consider a range of
values of the shape parameter that span the case of fast decaying
tail (exponent value of 3) and slow decaying tail (exponent value
of 1). To define the source traffic rates, we also need to decide the
assignment of source traffic rates to sources, and how this assign-
ment correlates with other factors, such as the popularity of sources
(measured by the number of query subscriptions to a source). To
cover different possible scenarios, we consider the following three
cases: (1)random, where source traffic rates are assigned to sources
independently of their popularity, (2)positively correlated, where
the traffic rate of a source is proportional to the source’s popularity,
and (3)negatively correlated, where the traffic rate of a source is
inversely proportional to the source’s popularity.

Figure 7 shows algorithms’ performance on heterogeneous source
traffic rates over the above three cases. In particular, we consider
the best offline algorithmMMS, all three online algorithms, and the
online random algorithmOnRand. We have the following obser-
vations. (1) The more positive the correlation between the source
traffic rates and popularity of sources is, the larger the network
traffic replication ratio will be. (2) In most cases, the best per-
forming query assignment policy isLeastCost. Specifically, when
source traffic rates are negatively correlated with source popularity,
LeastCost is substantially better thanMMS.

7 Related Work

The query partition problem studied in this paper is a resource allo-
cation problem, formulated as a combinatorial optimization prob-
lem. Specifically, it is related to load balancing over parallel ma-
chines and balanced graph partitioning problems. It can also be
seen as optimizing multiple multicast information deliveries where
each source connected to a set of queries (receivers) is a multicast

tree and the objective is to optimize the placement of receivers.
More generally, the problem can be seen to be that of optimizing
the data locality for efficient processing in distributed systems.

Various different kinds of resource allocation problems were pre-
viously studied, including virtual circuit routing (e.g. [25], [5],
[12]), multi-path routing ([34]), multicommodity flows (e.g. [21]),
multicast virtual circuit routing (e.g. [6], [30]), assignment of tasks
to parallel machines (e.g. [27]), data placement in servers (e.g.
[22], [25], [15]), cache placement in the context of web servers
([19]), virtual machine placement in data centers (e.g. [9], [35]).
None of these resource allocation problems correspond to the query
partition problem studied in this paper. A more closely related work
is that of load balancing and balanced graph partitioning which we
discuss in some more detail in the following.

A related line of work is that of load balancing over parallel ma-
chines, and the class of load balancing problems abstracted out as
balls and binsproblems,e.g., see [8, 24, 10] and the references
therein). In this context, various authors studied the problem of
minimizing the maximum load (or congestion), e.g. [7], and pack-
ing of requests under knapsack constraints, e.g. [27, 13]. Random
query assignment benchmark considered in this paper and com-
monly deployed in practice, is a well-studied randomized load bal-

ancing strategy with the maximum load ofn
k +O(

√

nlogk
k) with

probability o(1), for n≫ k(logk)3 ([24]). Other such random-
ized load balancing strategies have been studied, e.g. power of
two choices, where each ball is assigned to the least loaded of
two bins selected uniformly at random and independently from
other ball assignments. The maximum load of such a scheme is
n
k +O(log logk), with high probability, forn≫ k ([10]). Related
work is also that on online bin packing where the bounds on the
competitive ratio with respect to the offline solution were derived
under arrival inputs according to random permutation or indepen-
dent and identically distributed sequence,e.g.,, see [13] and the
references therein. A main distinction with all this work is that

10

 1

 10

 100

 1 1.5 2 2.5 3

R
ep

lic
at

io
n

fa
ct

or

Exponent β

OnRand
LeastQT

LeastSource
LeastCost

(a) Varying exponentβ

 0

 1

 2

 3

 4

 5

 6

 7

 0 2 4 6 8 10
R

ep
lic

at
io

n
fa

ct
or

Number of sources/query

OnRand
LeastQT

LeastSource
LeastCost

(b) Varying #sources/query

 0

 1

 2

 3

 4

 5

 6

 7

 10 100 1000

R
ep

lic
at

io
n

fa
ct

or

Number of servers

OnRand
LeastQT

LeastSource
LeastCost

(c) Varying #servers

 1

 10

 100

 100 1000 10000 100000

R
ep

lic
at

io
n

fa
ct

or

Server depature rate

OnRand
LeastQT

LeastSource
LeastCost

(d) Varying departure rate

Figure 6: Performance of online algorithms with dynamic query and server arrivals/departures.

 1

 10

 100

 1 1.5 2 2.5 3

R
ep

lic
at

io
n

fa
ct

or

Exponent β

OnRand
LeastQT

LeastSource
MMS

LeastCost

 0
 1
 2
 3
 4
 5
 6
 7
 8

 0 2 4 6 8 10

R
ep

lic
at

io
n

fa
ct

or

Number of sources/query

OnRand
LeastQT

LeastSource
MMS

LeastCost

 0
 1
 2
 3
 4
 5
 6
 7
 8

 10 100 1000
R

ep
lic

at
io

n
fa

ct
or

Number of servers

OnRand
LeastQT

LeastSource
MMS

LeastCost

 0
 1
 2
 3
 4
 5
 6
 7
 8

 10000 100000 1e+06

R
ep

lic
at

io
n

fa
ct

or

Number of queries

OnRand
LeastQT

LeastSource
MMS

LeastCost

 1

 10

 100

 1000

 1 1.5 2 2.5 3

R
ep

lic
at

io
n

fa
ct

or

Exponent β

OnRand
LeastQT

LeastSource
MMS

LeastCost

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10

R
ep

lic
at

io
n

fa
ct

or

Number of sources/query

OnRand
LeastQT

LeastSource
MMS

LeastCost

 0

 10

 20

 30

 40

 50

 60

 10 100 1000

R
ep

lic
at

io
n

fa
ct

or

Number of servers

OnRand
LeastQT

LeastSource
MMS

LeastCost

 0

 10

 20

 30

 40

 50

 60

 10000 100000 1e+06

R
ep

lic
at

io
n

fa
ct

or

Number of queries

OnRand
LeastQT

LeastSource
MMS

LeastCost

 1

 10

 100

 1 1.5 2 2.5 3

R
ep

lic
at

io
n

fa
ct

or

Exponent β

OnRand
LeastQT

LeastSource
MMS

LeastCost

 0
 1
 2
 3
 4
 5
 6
 7
 8

 0 2 4 6 8 10

R
ep

lic
at

io
n

fa
ct

or

Number of sources/query

OnRand
LeastQT

LeastSource
MMS

LeastCost

 0
 1
 2
 3
 4
 5
 6
 7
 8

 10 100 1000

R
ep

lic
at

io
n

fa
ct

or

Number of servers

OnRand
LeastQT

LeastSource
MMS

LeastCost

 0
 1
 2
 3
 4
 5
 6
 7
 8

 10000 100000 1e+06

R
ep

lic
at

io
n

fa
ct

or

Number of queries

OnRand
LeastQT

LeastSource
MMS

LeastCost

Figure 7: Performance of query assignment algorithms on heterogeneous source traffic rates: (top) random, (middle) positively
correlated, and (bottom) negatively correlated.

the query partition problem is defined as a bi-criteria optimization
problem, where the load balancing is only one of the two criteria.

The query partition problem is an esoteric instance of a balanced
graph partitioning problem. Standard balanced graph partitioning
problem is defined as follows: given a graph withn vertices, a pos-
itive integerk and a parameterν ≥ 0, the goal is to partition a set of
vertices intok partitions each with at most(1+ν)n/k vertices and
such that the number of edges cut is minimized. The best known ap-
proximation ratio for this problem isO(

√
lognlogk) which is due

to [18]. We note that the query assignment problem has the same
form of constraints. A notable difference is the objective function,
which in case of the query assignment problem, is a submodular
function of specific, different type. The unconstrained problem of
minimizing a submodular function in the context of graph partition-
ing was considered,e.g.,, by [11], who derived a 2-approximation
algorithm for this problem. A notable difference is that in the query
assignment problem the objective function is a submodular func-
tion of specific type and the problem is constrained with cardinal-
ity constraints. [29] obtained the approximation ratio ofΘ(

√ n
lnn)

for a general class of submodular function minimization, allowing

for cardinality constraints. Our result provide better approximation
ratio bounds, for a more specific class of submodular functions.

8 Conclusions

In this paper, we have proposed and studied the assignment of
streaming queries to servers. This is important in the design of
platforms that execute small (“mice”) streaming queries as a ser-
vice. For such scenarios, where many streams need to be delivered
to servers and the density of queries to servers is high, we need
to minimize network traffic while balancing load among servers;
we demonstrated that this problem is NP complete, and derived
approximation guarantees. We studied, analytically and with simu-
lations, off-line and on-line heuristics for this multi-objective prob-
lem. In particular, we proposed a heuristic that performs well under
a wide range of scenarios, including query and server churn.

Our approach treats the computations done by the queries as
black boxes. Even though we do balance the compute utilization
among the server, we do not optimize the computations indepen-
dently. Assuming that it is possible to prove that two queries that

11

use the same input streams, also perform similar computations,
then it should be possible to also optimize the query computations,
e.g.,by executing the common computations once. Observe that
in current streaming platforms, such as S4 [33], the users are en-
couraged to re-use existing computations; on the contrary, when
executing queries as a service, such optimization need to happen
automatically. In the presence of such compute optimizations, the
minimization function of the assignment problem needs to capture
both network and compute loads (compare to the current approach
of minimizing network traffic while balancing load). We leave this
problem as future work.

Acknowledgements
This work benefited from numerous useful discussions with a num-
ber of colleagues from Microsoft Bing IPE team and Microsoft Re-
search, including (in alphabetical order) Mike Andrews, JP Ahopelto,
Tony Bendis, Bart de Smet, Vlad Eminovici, Flavio Junqueira,
Thomas Karagiannis, Christophe Lecas, and Savas Parastatidis.

References
[1] T. Akidau et al. “MillWheel: Fault-tolerant Stream Process-

ing at Internet Scale”. English.Proceedings of the VLDB En-
dowment6.11 (2013).

[2] Amazon Elastic Compute Cloud (EC2). URL: http://aws.
amazon.com/ec2/ (visited on 12/10/2013).

[3] Amazon Kinesis. URL: http://aws.amazon.com/kinesis/
(visited on 12/10/2013).

[4] R. Ananthanarayanan et al. “Photon: Fault-tolerant and Scal-
able Joining of Continuous Data Streams”. SIGMOD’13.
ACM. 2013.

[5] J. Aspnes et al. “On-line routing of virtual circuits with ap-
plications to load balancing and machine scheduling”.Jour-
nal of the ACM (JACM)44.3 (1997).

[6] B. Awerbuch and Y. Azar. “Competitive multicast routing”.
Wireless networks1.1 (1995).

[7] Y. Azar and L. Epstein. “On-line load balancing of tempo-
rary tasks on identical machines”.SIAM Journal on Discrete
Mathematics18.2 (2004).

[8] Y. Azar et al. “Balanced Allocations”.SIAM Journal on Com-
puting29.1 (1999).

[9] N. Bansal et al. “Minimum congestion mapping in a cloud”.
PODC’11. ACM. 2011.

[10] P. Berenbrink et al. “Balanced allocations: The heavily loaded
case”.SIAM Journal on Computing35.6 (2006).

[11] C. Chekuri and A. Ene. “Approximation algorithms for sub-
modular multiway partition”. FOCS’11. IEEE. 2011.

[12] B. B. Chen and P.-B. Primet. “Scheduling deadline-constrained
bulk data transfers to minimize network congestion”. CC-
GRID’07. IEEE. 2007.

[13] N. Devanur et al. “Near optimal online algorithms and fast
approximation algorithms for resource allocation problems”.
EC’11. ACM. 2011.

[14] M. R. Garey and D. S. Johnson.Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness. W. H. Free-
man & Co., 1979.

[15] D. Golovin et al. “Quorum placement in networks: Minimiz-
ing network congestion”. PODC’06. ACM. 2006.

[16] J.-L. Guillaume and M. Latapy. “Bipartite graphs as models
of complex networks”.Physica A: Statistical Mechanics and
its Applications371.2 (2006).

[17] D. Gunawardena et al. “Characterizing Podcast Services: Pub-
lishing, Usage, and Dissemination”. IMC’09. ACM. 2009.

[18] R. Krauthgamer, J. S. Naor, and R. Schwartz. “Partition-
ing Graphs into Balanced Components”. SODA’09. SIAM.
2009.

[19] P. Krishnan, D. Raz, and Y. Shavitt. “The cache location
problem”. IEEE/ACM Transactions on Networking (TON)
8.5 (2000).

[20] N. Leavitt. “Complex-Event Processing Poised for Growth”.
Computer42.4 (2009).

[21] T. Leighton and S. Rao. “Multicommodity max-flow min-
cut theorems and their use in designing approximation algo-
rithms”. Journal of the ACM (JACM)46.6 (1999).

[22] B. M. Maggs et al. “Exploiting locality for data management
in systems of limited bandwidth”. FOCS’97. IEEE. 1997.

[23] L. Neumeyer et al. “S4: Distributed Stream Computing Plat-
form”. KDCloud’10. IEEE Computer Society, 2010.

[24] M. Raab and A. Steger. “Balls into Bins - A Simple and
Tight Analysis”. Vol. 1518. Springer, 1998.

[25] H. Racke. “Minimizing congestion in general networks”. FOCS’02.
IEEE. 2002.

[26] Rackspace: the open cloud company. URL: www.rackspace.
co.uk (visited on 12/10/2013).

[27] D. B. Shmoys and Éva. Tardos. “An approximation algo-
rithm for the generalized assignment problem”. English.Math-
ematical Programming62.1-3 (1993).

[28] Storm: Distributed and fault-tolerant realtime computation.
URL: http://storm-project.net/ (visited on 12/10/2013).

[29] Z. Svitkina and L. Fleischer. “Submodular approximation:
Sampling-based algorithms and lower bounds”.SIAM Jour-
nal on Computing40.6 (2011).

[30] S. Vempala and B. Vöcking. “Approximating multicast con-
gestion”. Springer, 1999.

[31] S. A. Vinterbo.A note on the hardness of the k-ambiguity
problem. Tech. rep. DSG 2002-006. Harvard Medical School,
2002.

[32] Windows Azure: Microsoft’s Cloud Platform. URL: http://
www.windowsazure.com/en-us/ (visited on 12/10/2013).

[33] S4: distributed stream computing platform. URL: http://
incubator.apache.org/s4/ (visited on 12/10/2013).

[34] X. Zhu and B. Girod. “A distributed algorithm for congestion-
minimized multi-path routing over Ad-hoc networks”. ICME’05.
IEEE. 2005.

[35] Y. Zhu and M. Ammar. “Algorithms for assigning substrate
network resources to virtual network components”. INFO-
COM’06. IEEE. 2006.

12

http://aws.Alpha XR/ec2/
http://aws.Alpha XR/ec2/
http://aws.Alpha XR/kinesis/
www.rackspace.co.uk
www.rackspace.co.uk
http://storm-project.net/
http://www.windowsazure.com/en-us/
http://www.windowsazure.com/en-us/
http://incubator.apache.org/s4/
http://incubator.apache.org/s4/

	Introduction
	Problem Definition
	Hardness and Benchmark
	NP Hardness
	Random Query Assignment Benchmark

	Offline Query Partition
	Multi-source Query Partition
	MQP algorithm
	Competitive algorithms

	Single-source Query Partition

	Online Query Partition
	Greedy online algorithms
	Discussion
	With known query type distribution
	Relaxed Load Balancing Constraints

	Experimental Evaluation
	Experimental Setup
	Offline Algorithms
	Online Algorithms
	Query Arrivals, No Departures
	Query Arrivals and Departures
	Server Arrivals and Departures

	Heterogeneous Source Traffic Rates

	Related Work
	Conclusions

