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Abstract — The query execution imposes two types of costs on the platform:

Processing streaming queries at scale has received a lot of at{a) network overheads to deliver the streams from their sources to
tention recently. Systems, such as S4, Storm, Photon, MillWheel, the servers, and (b) processing overheads on the servers éutexe
and Kinesis, can efficiently execute (“elephant”) queries that pro- ing the logic related to the query.
cess streams with high rates, and typically scale-out the execution This paper focuses on the cost of delivering the network stream
of each query. We envision a platform in the opposite side of the inside the platform. The platform may need to download the streams
spectrum. Our queries process relatively slower streams, but thefrom remote network servers, but we shall assume an efficient-mech
challenge is to handle very high density of queries per server. Suchanism for those downloads. As is common in current cloud ser-
a system democratizes the access to a streaming platform, and envices, the query execution service may run on top of a generic com-
ables “mice” queries, on behalf of users, to consume stream data,pute platform, such as Amazon’s EC2 [2], Azure Compute [32], or
e.g.,news, weather, travel related information, and so on. A chal- Rackspace [26]. Hence, we cannot assume an efficient distribution
lenging problem for the design of such a system is how to place of the network streams inside the platforeng.,by using multicas-
gueries among available servers. On one hand, we expect balanceting. Therefore, when a server executes one or more queries that
workload among servers. On the other hand, we expect queries areead from a particular source, then the platform creates an internal
packed into servers such that the network traffic is minimized by network stream to deliver the stream to that server, and consumes
reducing the chance of sending identical data streams to multiple network resources proportional to the rate of the stream. However,
servers. This trade-off makes it hard to effectively place queries we do assume that a stream is delivered at most once per server.
into servers. When we consider queries subscribing to more than We also assume flexibility in the processing of the stream data;
one source and query/server dynamics, this problem becomes evemisers may express their processing requirements using arbitrary
harder. “user defined functions” (UDFs). Hence, the queries impose a non

In this paper, we formalize the problem of placing “mice” queries trivial processing overhead on the servers.
into the servers of a streaming platform. We propose approxima-  Hence, to provide a scalable and cost-effective query hosting ser-
tion algorithms and derive approximation bounds for the following vice, the platform needs to reduce network and processing over-
cases (1) the offline case where queries are stable and known aheaHeads. Intuitively we anticipate that many queries will use the
of time, akin to an “oracle”, and (2) the online case without depar- same input streams. For example, many users may be interested
tures and known query popularities. For the general online prob- in traffic updates from the same city, or weather updates for the
lem, we propose effective heuristic algorithms. An extensive set same region. Hence, it is be beneficial to co-locate those queries to
of experiments demonstrates that the proposed algorithms providethe same server, and transport the relevant network streams once.

good performance in a wide-range of scenarios. However, the servers have limited processing capacity, and hence
. . . the assignment needs to also balance the server load.
Categories and Subject Descriptors Three practical requirements further complicate the query as-

signment problem. First, the queries should be able to subscribe
to more than one stream. This is required, for example, to support
joins, and it is a common feature in many CEP systems. Second,
the assignment of queries to servers should be semi-permanent.

H.3.4 INFORMATION STORAGE AND RETRIEVAL ]: Sys-
tems and Software-Bistributed Systemdd.2.4 [Database Man-
agement: Systems—Query Processing

General Terms That means that the platform should avoid moving queries between
servers, for example to reduce overheads, as this requires moving
Algorithms, Experimentation (query) state while guaranteeing that the query does not miss any
stream updates. Obviously, queries will be re-assigned when their
Keywords server fails, but such events should be the exception. Hence, the

platform much make a good decision about the assignment of a
guery to a server, when the query arrives. Third, we expect churn
both in the queries (queries have limited lifetime) and in servers

. (due to server failures and re-cycles). The queries arrive and de-
1 Introduction part dynamically, and the assignment of queries to servers should

Complex Event Processing (CEP)|[20] has been important for pro- be robust to query and server dynamics.

cessing streaming data in financial, monitoring, and recently data In this paper, we propose and study the problem of assigning
analytics applications. Platforms such as [S4 [38, 23], Stbrin [28], Streaming queries to servers, under the requirements and assump-
Photon [[4], Millwheel [1] and Amazon’s Kinesis|[3]. enalseal- tions described above. We use both analysis and simulations to
abledata analytics over data streams, where both the stream typeginderstand the complexity of the problem and to design efficient
and the processing requirements are very flexible. However, thosealgorithms for assigning queries to servers. In summary, the con-
platforms typically target applications that ingest high data rates, tributions of this work are as follows:

and need tecale-outhe execution of the queries; we callthem big e Formulate the problem of assigning streaming queries to servers
(“elephant”) queries. We envision a similar type of event process- (Section 2), in the context of an online platform that hosts queries
ing platforms, but where the intended use is to execute, on behalf on behalf of the users as a service.

of users, queries that ingest relatively slower data streams; we call e Show that the problem of reducing network load while balanc-
those small (“mice”) queries. For example, a user may want to ing server load is NP complete(Secfidn 3), and provide approxi-
process streams related to traffic, weather, and news updates, butnation boundd{Section 4).

since the user typically cannot manage the required infrastructure e We propose and study offline (Sectidn 4) and online (Section 5)
herself, she wishes to offload the execution of the query to a cloud heuristics for the problem. Offline heuristics assume an oracle than
service (and be notified only when there are updates). A cloud plat- knows ahead of time all queries. We use the offline heuristics to
form that provides such services needs to achieve large density ofreason about the performance of the assignment process, and to
queries to servers to be scalable and cost-effective. draw inspiration for the online heuristics.

streaming systems, complex event processing, query placement
network stream optimizations



e Using analysis and simulatiof (Secfioh 6), we identify the ber of queries assigned to this server.

LeastCost online heuristic that gives the best performance, even  Given a real number > 0 as the allowed slackness for balancing

under query and server churn, and is often up to four times better the load across servers, a query assignment is specifiedibjpint

than (naive) random assignment. subset of querie®;,Q>,...,Qk. A query assignment is said to

o satisfy thev-load balancing constraint, if the following holds

2 Problem Definition n
) ) Qj| < (1+v):, forall j=1,2,... k,

A query streaming platform contains three key componesasrces k

queries andservers wherev is also referred to as threlative relaxation ratio

Source Sources provide input data streams to queries. Each source | gt 2(Q) be the universe of all possiblepartitions (Qr, Qs,
publishes new data at some rate. Bet {s1,s,...,5m} be the set ..., Q) with respect toQ such thatQ; UQ, U ---UQ = Q and
of sources, and lat(s) be the traffic rate of sourcec S The total Qi NQj = 0 for anyi # j. We formally define the problem Query
traffic rate of a set of source&® C Sisw(S) = TscgW(S). Partition QP) as follows.

(E)uer:y. Queries process data stfreams that orlglrflate from sources. DEFINITION 1 (QP). Given as input a set of sources S with
ach query ]E?rocisses a seto |npué strheams rfom one or rgoretral"fic rates w, a set of queries Q, k servers, and a real number
sources. Defin® = {qu, 0, .., Gn} to be the set of queries, an v >0, the goal is to find a query partitiofQ1, Qo, ..., Qk) € Z(Q)

let S, € Sbe the set of sources required by quary Q. such that (1) the overall traffic cog‘-‘:l f(Qj) is minimized, and
We also use the conceptiery typethat we define as follows. 2)1Qi] < (1+v)1.Vj €K )
= k :

DefineT C 25to be a set of source combinations such tat T
foranyqe Q. Fort € T, letn; be the number of queries that require
a set of source and any query that requires a set of soutciss 3 Hardness and Benchmark

also called a typé query. Note that the total number of queries  |n this section, we discuss query partitioQR) problem and the

satisfien = 3 et . _ _ infeasibility of a naive solution tQP.
Moreover, letN(s) be the set of queries that require souseeS First, we show thaQP is NP-complete, so we have to resort
as one of the input streanis., N(s) = {q€ Q|se &}. to approximation algorithms. Moreover, we demonstrate a naive

eapproximation ratio that any feasible algorithm holds.
Second, we discuss the infeasibility of a standard random as-
signment algorithm. In particular, we characterize the expected

considers two criteria: (ninimizing network traffi@and (2)bal- that it can greatly increase network traffic.

ancing server load 3.1 NP Hardness

I\_letwork traffic. We are interested in minimizing r_1etwork _traf- It is computationally hard to solve th@P problem and the follow-
fic between sources and servers. When two queries require data}ng theorem characterizes its hardness

streams from the same source, if the queries are hosted by two

different servers, this source has to send d_uplicgted streams to_the THEOREM 1. The query partition@P) problem is NP-complete.
servers, which results in extra network traffic. Since higher traffic

implies higher operational cost, a streaming query system prefers a

query assignment that minimizes the network traffic. If a serveris =~ PROOF Consider the decision problem @P: given source$
assigned a set of queri€¥ C Q and this set contains at least one along with their traffic ratev, queriesQ, k servers, a real number
query that requires strease S, then this contributes a traffic cost v > 0, and another real numbgr> 0, does there exist a query
of w(s). Hence, the total network traffic cost for a server hosting partition(Q1,Qo,...,Qx) € Z(Q) such that

Q' is given by
1. 3%, f(Qj) < y.and

Server. Servers are containers that evaluate queries. We assum
there arek identical servers in a query streaming platform.

f(Q)= ZSW(S)min{\N(S) nQ'[,1}.
se 2. |Qj| < (1+v){ for each servej =1,2,... k.

Balanced server load We define feasible solutions as query as- The proof consists of two steps, showing that@B)’s decision
signments resulting in balanced server load. A query assignment isproblem is NP-hard, and ()P’s decision problem is NP.
feasible meaning that the processing workload of a server is within  First, we prove the NP-hardness. Consider a special case where
its capacity. In practice, it is difficult to define servers’ capability; (1) each query type depends on exactly one sourcey(®)= 1
therefore, we use balanced workload across servers to remove thdor anys < S, and (3)y = |S. In other words, we need to find a
need to know the server capacity limits. The implicit assumption feasible solution such that queries of the same type are assigned to
is that in a practical system the operational point is such the sys- the same server. We can reduce an arbitrary instance of bin packing
tem runs at a query load that allows for a feasible assignment, andproblem [14] to an instance of the special case: (1) we reduce an
in this case balancing the load across different servers is a naturalitem to a query type, where the item’s size is reduced to the number
objective. of queries for the corresponding type; (2) the number of bins is re-
Moreover, we assume that each query adds a fixed amount ofduced to the number servers; and (3) the size of each bin is reduced
workload to a server. A query streaming platform usually hosts to the upper limit for each server’s load. Since bin packing problem
simple queries that consist of a few primitive operations on data is NP-hard, we conclude th@P's decision problem is NP-hard.
streams and take similar processing time. Therefore, we assume Second, given a solution @P’s decision problem, we can check
that queries involve identical amount of processing cost, say of unit whether it is feasible in polynomial time, so té problem is NP.
size. To this end, the workload of a server corresponds to the num- In all, QP is NP-complete. []



whered is the mean number of queries per source, which follows
by Jensen’s inequality. From the latter upper bound, it follows that
the expected network cost is less or equal to{mjk}m. Hence,
random query assignment guarantees a small expected network cost
in case of small mean number of queries per source. In other cases,
. it can be grossly suboptimal, which we demonstrafe in Section 6.
3.2 Random Query Assignment Benchmark The performance inefficiency of simple random query assign-
A naive query assignment is to assign each query to a server pickedment asks for designing more sophisticated query assignment algo-
uniformly at random and independently of other query assignments. rithms that perform better with respect to the two criteria of min-
This is a standard load balancing strategy that can be efficiently ap-imizing the network traffic cost and balancing the processing load
proximated by hash partitioning of query identifiers. This strategy across servers. In the following sections, we propose better approx-
is efficient with respect to balancing the number of queries across imation algorithms to offlin&@P problem in Sectiohl4, and discuss

Moreover, the following holds for any feasible algorithms.

PrROPOSITION 1. Given an instance oRP, any feasible solu-
tion cannot be more than k times larger than the optimal solution,
where k is the number of servers.

servers. Specifically, it guarantees maximum load of

n nlogk
E+O( K )

with probabilityo(1), for n>> k(logk)® ([24]). However, this pol-
icy can be grossly inefficient with respect to network traffic cost,
which we show here analytically andlin Secfidn 6 experimentally.

PROPOSITION 2. Consider a streaming query system with a set
S of m sources and k servers such thatjderies use the stream

online algorithms that irrevocably assign queries to servers at their
arrival instances in Sectid 5.

4 Offline Query Partition

In this section, we discuss how to approximately solve off@e
and derive theoretical approximation guarantees.

First, we study the approximation bound for a more general case,
where each query might subscribe to more than one source, eferre
to asmulti-sourceQP. When sources have identical traffic rate,
we show that there exists an algorithm that is able to approximate

from source s as input. Under random query assignment to servers, myiti-sourceQP within 2dmax(1 -+ 10gk), wheredmax is the maxi-

the expected network traffic cost is

(a5 (- 0)

PROOF Consider an arbitrary sourceand an arbitrary server
j. ds queries use as input the stream from sowdénder random
query assignment, there will be at least one such query in s¢rver
with probability 1— (1 — 1/k)d5. Summing over all serverggives
the expected number of servers to which the stream of seueed
to be transferred, and further summing over all sousogises the

@)

the expected number of streams that need to be transferred from4

sources to servers, which corresponds to total network traffic.

mum number of sources to which a query subscribes kandhe
number of servers. Sinakaxis usually small in practice [4], this
is a much tighter bound compared with the naive bokinore-
over, we propose several approximation algorithms that might have
looser approximation bounds in theory, but have competitive per-
formance in practice.

Second, we focus on a special caseQd#f, where each query
subscribes to only one source, referred tosamyle-sourceQP.
We show that there exists an algorithm that is able to approximate
single-sourc&P within a constant 2.

1 Multi-source Query Partition

presents tHdQP algorithm that achieves a non-

Note that, assuming that the stream of each source is used by atrivial approximation bound, arld Section 4]1.2 introduces two ap-
least one query, the network traffic cost is at least the number of dis- proximation algorithms of competitive performance.

tinct sourcesn. On the other hand, the maximum possible network
traffic cost is at moskm, which is achieved when each server re-

4.1.1 MQP algorithm

quires each input stream. Fr¢m Equaiign 1, note that the expected, challenging question to multi-sourc@P is whether there exists

network traffic cost of random query assignment is nearly equal

1, d
to the worst-case network cost wheneggF s (1—£) < 1. In

a polynomial-time algorithm that can guarantee an approximation
ratio that is independent of the number of sources and the number

fact, the worst-case network traffic cost is achievable under the ran- of queries, or simply tighter than the naive approximation bdund
dom query assignment policy: consider as input a set of sources(the number of servers). In this paper, we provide an affirmative

and a set of queries that are partitioned iktbalanced pieces so
that there arem/k sources and/k queries in respective pieces

requires input from each source $ and none fron\ S;. The
subscription of queries to sources corresponds to a collecti&n of
disconnected complete bipartite graphs, each mjtk sources and

answer to this question! Specifically, ketS, andQ be the number
of servers, the set of sources, and the set of queries consideaed in
multi-sourceQP, respectively.

THEOREM 2. For any given S with identical traffic rates, there
exists a polynomial-time algorithm for multi-sour€& with ap-

n/k queries. In this case, frofn Equafioh 1, the expected network proximation ratio

traffic cost is
(1— (1= 1/K"*)km

which for largen tends to the worst-case network traffic coskot

2dmax(logk+1).

where Ghax= Mmaxecq|S|. Furthermore, this bound holds for gen-
eral traffic rates with an extra factor @ = maxsw(s)/ Mingcsw(s).

In comparison, the best strategy is to assign each piece of queries to

a distinct server; this achieves minimal network traffic and perfect
load balancing. The inefficiency of the random query assignment

can thus be made arbitrarily large by takintarge enough.
Itis worth noting fronf Equation|1 that the expected network cost
of random query assignment is less or equdlite (1— 1/k)4)km

This result has an important practical implication: in systems
where the number of data sources required by a query is arbitrary
but bounded by a small positive integhtay, there exists a polynomial-
time algorithm that guarantees network traffic cost that is at most



2dmax of the optimum network traffic cost, up to a factor that is
logarithmic in the number of serveks

In the following, we prove Theoreld 2 in three steps. (1) We
demonstrate that given a multi-sourQ® with k servers, if we can
optimally solvek minimum query type packimgoblems, referred
to asMQP and defined shortly, we can approximate multi-source
QP within 2(1+logk). (2) We show thaMQP is NP-complete.
(3) We further show that we can approxim3&QP within dmax.
When the context is clear, we also call the algorithm achieving the
bound in TheoremIXQP algorithm.

We start with the definition foM QP problem.

DerINITION 2  (MQP). Given a set of queries Q along with
their query types TC 25, a corresponding set of sources S with
their traffic rate w, and a positive real numbér> 0, MQP is to
find a subset of query types T T such that (15 nt > 6 and
(2) M(UteT S ) Is minimized.

Next, we decompos@P problem intok MQP problems as fol-
lows.

1. Givenk servers andh queries, select an arbitrary server as
the target server for assignment.

. Suppose we find a subset of query tyjpés T for the MQP
problem with

(k—21)n
k

Let O be the subset of queries corresponding tpand let

its traffic cost bef (Q).

6=n—(1+v)

@)

. Note that there is a capacity constrain{df-v){ for each
server. Ifyicr g > (14 V)g, to construct a feasibl®,
we arbitrarily select a query type, keep a feasible number
of them, and put the rest queries of the query type back into
the query pool.

4. We repeat the above steps until all queries are assigned.

Note that the constraints of tifgP problem imply thatQ;j| > 6,
for serverj = 1,2, ... k. In this view, theMQP problem with6 as
given in [2) is a relaxation of th@P problem.

Let Q]—* C Q be the optimal solution for theIQP problem on the

j-th server f (Q*) be the corresponding traffic cost, and OPT be the
optimal solution for the original multi-sourd@P problem.

LEMMA 1. Given a multi-sourc&QP problem with k servers,
successive solving of MIQP problems yields a feasible solution
for the QP problem; moreover, if we can solve eddQP problem
optimally with@;, ..., Q;, we can guarantee

k
Y f(Q)) < 2(logk+1)OPT.
=1

PrROOF The proof follows by upper bounding the cost incurred

in each round where queries are assigned to a server by solving a

MQP problem. We first show the upper bound for the traffic cost

SinceMQP is a relaxation of the&QP problem, it hoIdsf(Q’{) <
f(Qj), whereQj is the subset of queries assigned to server
OPT for all 1< j < k. Since OPE(n) = OPT, we obtain

= }OPT.

}OPTk(n) K

HCHESS

©)

Consider thej-th server. Let OP{_j,1(n’) be the optimal so-
lution givenn’ remaining queriesk — j + 1 servers, and the capac-
ity constraint(1+ v) g (note that this constraint remains the same
throughout the algorithm). We claim that

f(Qj) < OPT, forl< j<k. 4)

k—j+1
Suppose Inequatiofl(4) is true, the proof for Lenitha 1 follows

by summing up the upper bounds [ (3) ahd (4) and using the fact

that harmonic serieldy holdsHy < logk+ 1. We prove Inequation

@) as follows.

First, note that givem queries and the same capacity constraint
per server, if there exist feasible solutions for a system afidk
servers, such thgt< k, then we prove that ORTn) < 20PT,(n).

For OPT(n), let cost be the traffic cost for servér Without loss
of generality, suppose that the servers are enumerated such that
cost > cosb > ... > cosk. Then, we have

i k

cost + cost.
2,50 2

i=]+1
Using OPk(n), we can construct a feasible solution that requires
only j servers by (1) arbitrarily selecting a sergex j with avail-
able space, and (2) sequentially assigning queries on detver
to servera. If serverais full before all queries from servérare
assigned, then arbitrarily select another sealet j with available
space for the remaining queries from serigeand we repeat the
procedure until all queries from serveare assigned. If all queries
from serverb are assigned but servarstill has available space,
we find another servdy > j, and assign queries from sent#rto
servera. By the above procedure, we can construct a feasible solu-
tion using onlyj servers. The resulting extra cost is no more than
j x cost 1, since in the above procedure we break the sequential
assignment at mogttimes, and each time add in no more than the
cost ofcost ;. Therefore,

OPTk(n) =

j k
cost + COS§ + j *COSt 11
200 2 ‘i

i=]+1
j
2 Zcost + cosj
i= i:JZ+1

k
and, thus, it follows that

OPTj(n) <

<

OPT;j(n)
OPTk(n)

i k
- ZZizlcost + zki:HlCOSt <2
y{_, cos} + ¥4 1COS
Hence,

OPTj(n) <20PT(n), forall 1< j <k (5)

of assigning queries to the first server, and then demonstrate how Second, givelk servers and the same capacity constraint, if there

we bound the traffic cost for the remaining servers.

Let OPT; () be the optimal solution for a multi-sour€& prob-
lem withn’ queries,j servers, and the capacity constrdib#-v)¢.
Note that OPE(n) = OPT. For the firsMQP problem, an optimal
subset of querieQ] assigned to server 1 with traffic cob(Qy).

exist feasible solutions for assigningandn; with nj < nj, then
OPTi(ni) < OPTi(n;). (6)

Finally, sincef (Q}) < —t7OPTk_j+1(), @) and [®), it fol-



lows more queries, we can measure titzdfic costafter assigning at least
N 2 one query of type to serverj. (2) We select the paift*, j*) that
f(Qj) < mop'ﬂ for1<j<k results in the least traffic cost. (3) We assign queries of tjie
J serverj* as many as possible until servgris full or there is no
U queries of typé* any more.

In Lemmé[1, we derived an approximation ratio for @@ prob- 4.2 Single-source Query Partition
lem under assumption of an oracle providing an optimal solution to
MQP problem. We next show thalQP is NP-complete; there-
fore, it is difficult to find a polynomial-time algorithm that solves
MQP optimally.

In this section, we study single-sour@®, where each query sub-
scribes to only one data source. Note that in single-soQftethe
number of query types equals to the number of sources; therefore,
we use the term source and the term query type interchangeably.
We propose an approximation for single-sou@e that assigns
queries to servers successively over a number of rounds as gown
PROOF. We sketch the proof as follows. (1) To prove NP-hardnesdrigurel. For servey, we defined; to be the free capacity of server

LEMMA 2. MQP problem is NP-complete.

we can reduce the NP-hard minimdwunion problemi[31] tdtMQP j,» and at the beginning of round 0, we initialide = L(1+ v)- EJ
problem. (2) Itis easy to verify a solution in polynomial timel.] wherev > 0 is the relative relaxation ratio. Moreover, we defige
to be the number of unassigned queries requiring sasifce., all
We propose the following algorithm to approxim&f&QP. queries that use the same sousge

1. Order query types in decreasing order with respect to the Input: a single-sourc@P instance:
number of queries. Output: the resulting query assignment.

2. Repeatedly pick the query type of the largest number of queries 1. While True

. . s Select servey with the largest free capacity
until the number of assigned queries is no less than Select query type (sourcedf the largest traffic ratey(s)

b < min(dj, ns)
Assignb type-ss queries to servey
dj <dj—b

LEMMA 3. Suppose sources have identical source traffic rates,
the above algorithm approximat&sQP problem within factor ghax,

©CoNoO,wWN

where Ghax = Mmaxcg|Sy|. In the general case of arbitrary source Ng < Ns—b
traffic rates, where the ratio of the maximum source traffic rate to if there is no more queries
return

the minimum source traffic is at most a paramed@rthe above
algorithm approximateMQP problem within factor ghaxw.

PROOF. In the above algorithm, we pick the query types of the Figure 1: The 2-approximation for single-sourceQP.
largest number of queries to saturate a server. Suppose we even- o ) o
tually selecth query types, we conclude that the number of query ~ THEOREM 3. The approximation algorithm shown in Figdre 1

types considered in an optimal solution is no less thareth+ A has the following guarantees: (1) approximation ratidlef £ < 2,

be the number of query types obtained from the optimal solution. Where m is the number of sources and k is the number of servers,
For each query type, the above algorithm at most takgs times for sources of identical source traffic rates; and (2) approximation
more traffic rate compared with the optimal solution, when traffic ratio of 2, for sources of arbitrary source traffic rates.

r_ate is identical pverall sources; meanvyhile, ?t at most_talﬂ%&w PrROOF Note that in the proof, we focus on the cases where
times more traffic rate, when traffic rate is arbitrary. This completes ¢ ns< dj forallse Sandj =1,2,...,k, since the other cases can
the proof of the lemma. L] be reduced to the above cases. We assumekthah; otherwise,

4.1.2 Competitive algorithms we can find the optimal solution in polynomial time.
In this section, we present several approximation algorithms, in-
cluding incremental cost based approa¢teferred to adC) and
min-max traffic cost per servdreferred to asMiMS). Although
these two algorithms only hold the naive approximation bokind
they demonstrate competitive performance in practice (see Sec-
tion[8). These two algorithms are described as follows.

Identical source traffic rates. Without loss of generality, we as-
sumew(s) = 1, for allse€ S. In the following, we show the lower
bound for the optimal solution and the upper bound for the approx-
imate solution.

The lower bound for the optimal solutionng since each source
will be used by at least one server in the system.

The upper bound for the above algorithrrkis m, and it is de-
Incremental cost based approachl|C assigns queries in multiple  rived as follows. (1) At each round, we either make a query type
rounds. At each round, it assigns queries to a server in three stepstake all the remaining space of a server, or make a server include
(1) Given a query typé € T of non-zero number of queries and all the remaining queries of a query type. In other words, either the
a serverj of space to host more queries, we can measurénthe  number of available servers or the number of available query types
cremental traffic costesulting from assigning at least one query of decreases by 1. (2) To this end, we safely claim that the number
typet to serverj. (2) We select the pait*, j*) that results in the of required rounds cannot go beyokd- m. (3) Since each round

least incremental cost. (3) We assign queries of tyge serverj* increases traffic rate by at most 1, the total traffic rate cannot be
as many as possible until servgris full or there is no queries of more thark+ m.
typet* any more. Using the lower and upper bounds, we obtain the approximation

. ) . A ratio of 1+ k/m.
Min-max traffic cost per server. MMS aims to minimize the max- atio of 1+ k/

imum traffic cost among servers in multiple rounds. At each round, Arbitrary source traffic rates. Similarly, we demonstrate the
it assigns queries to a sever in three steps. (1) Given a query typelower bound for the optimal solution and the upper bound for the
t € T of non-zero number of queries and a seryef space to host approximate solution.



The lower bound for the optimal solutionigS), since we have Input: (1) an incoming query requiring a set of sources;
to transfer each source at least once (g) K Soners ?nd the queries they are hos@g. .., Q«:
o L L. relative relaxation ratio;

The upper bound for the approximate solutionig8), and it is E4; a predefined metrib!;

derived as follows. Denote with the number of rounds to assign Output: the server that will hos.
queries of query typs, which in total introducess- w(s) of traf-

fic cost into the system. By the same argument as for the case of
identical source traffic rates, the total number of rounds is at most
m-+Kk, i.e., S scsrs < k+m. From this it follows that

Es(rs_ 1) <k

Since 0< ns < dj, we can guarantee that the thjgtuery types (in
terms of traffic rate) will be assigned at most once. Therefore,

Zg(rs —w(s) < kw1 <W(S)

k
. . . _11Qj!
. Find candidate serve@®= {i | |Q|+1< (1+ V)XJ%}

1

2. FindC* C C such thatvi € C*,

3. M(Qiu{a}) >M(Qju{d}),vjeC
4. if |[C==1

5 return the only server irfC*

6. else

7 return the servelp = argminec-{|Qi|}

Figure 2: The sketch for online algorithms.

] ) addqinto the server. (3) If there is only one servedh we assign
wherew, 1 is thek+ 1-largest traffic rate among all query types. o the server; otherwise, we select the least loaded serveidfom

The total traffic rate satisfies and then assigq to the server.
zsrsw(s) <w(S) + zs(rs_ Dw(s) < 2w(S), In this worl_<,_we propose three metrics to support online as-
& & signment decision: (1least incremental cost firgreferred to as

LeastCost), (2) least source cost per server firGeferred to as
LeastSource), and (3)least number of query types firgeferred

to asLeastQT). Given a query and a set of querie®; hosted by
Remark. For single-sourc&P, there exists a constant factor ap-  serverj, the three metrics behave as follows.

proximation algorithm, and this guarantee holds for any number of

sourcesm, number of queries, and number of servels More- LeastCost. If f(Q;U{q}) — f(Qj) results in a smaller incremental
over, if in addition the source traffic rates are identical, then an traffic cost, we will give servey a higher score as below.
approximation ratio of % k/m can be guaranteed. Thus, this ap- 1

proximation ratio guarantee can be arbitrarily near to the best one MLeastCost (Qj U {0}) = O U 0

by ensuring a sufficiently large number of sources relative to the (Qju{a}) - 1(Qy)

number of servers. In a practical system, this suggests that in theLeastCost is a natural metric foQP: since the ultimate goal @P
case of single-source queries and many sources with approximatelyis to minimize traffic cost in a systermegastCost approaches this
identical traffic rates, it would be computationally feasible to guar- goal by locally minimizing traffic cost at each query arrival.
antee nearly optimal performance.

hence the algorithm approximates the problem within factor(2.

LeastSource. If f(QjU{q}) results in a smaller traffic cost, we

5 Online Query Partition will give serverj a higher score as below.
In this section, we consider onlin@P, which assign queries to MLeastSource(Qj U{Q}) = #
servers at their arrival time. We focus on the class of online algo- f(Qju{a})

rithms that decide which server to host an incoming query based on| et Cost has a potential issue: one server might subscribe too
(1) the set of source streams required by the given incoming query many sources because of local optimal decisions such that many in-
and (2) the queries that were previously assigned to servers and argoming queries will be assigned to the server, the server will be full
still in the system. The key to design such an online algorithm is qickly, and eventually the server becomes unavailable for host-
to choose a metric that indicates which server to host the incoming ing incoming queries. If this effect propagates among servers, the
query, and a reasonable metric should combine the two optimiza- gyera]| traffic cost in the system will be very high. To mitigate this
tion criteria: load balancing and network traffic cost minimization. offect we come up witheastSource that aims to balance the traf-

In the following, we present several greedy metrics for online algo- fic cost among servers such that no server will subscribe too many
rithms and the intuition behind those metrics in Sedfioh 5.1. More- ¢qreces and result in too high traffic.

over, we provide a discussion in Sectlon]5.2 on how to make use
of extra information (Section 5.2.1) or resources (Sedfion5.2.2) to LeastQT. Let Tj be a set of query types such théte Tj, there

improve the performance of online algorithms. exists at least one query of typdosted by servej, andtq be the
. . query type ofg. If |Tj U {tq}| is smaller, we will give servefj a

5.1 Greedy online algorithms higher score as be|lod\,_ tall

In this section, we present three greedy online algorithms, and de- 1

scribe the intuition behind those algorithms. MLeastsource(Qj U{a}) =

Although the three algorithms follow different metrics to de- ITj U{ta}]
cide which server to host an incoming query, they share a common LeastCost and LeastSource have a common issue: a few servers
pipeline as shown in Figuké 2. Given an incoming qugtyservers might subscribe too many popular sources. If one server subscribe
along with the corresponding set of queries a server is hosting, thetoo many popular sources, it is able to host queries of various query
relative relaxation ratio, and a predefined metrM, the server to types, and will be crowded quickly. If this effect propagates in
hostq is decided as follows. (1) From &l servers, we find the the system, we have to make many servers subscribe those popular
candidate servel@ each of which will not violate the balance con- sources. One way to mitigate this effect is to limit the number of
straint if we addg into the server. (2) Fror@, we find the servers query types in a server such that no server can host too many query
C* each of which will have the highest score in termavwif we types and get crowded soon.



5.2 Discussion the initial phase, a system uses a balance constraint decided by ab-

In this section, we discuss how we develop online algorithms when solute _relaxatlon ratio. When the system_ hosts T“Ofemf'e.s-
we switch back to the balance constraint decided by relative re-

we have more knowledge or more resources. The above metrics . ; L
laxation ratio. Letn be the number of queries in the system. The

provide heuristic algorithms to solve onliGE. Indeed, given the . id to be-absolutely bal d.ifth ber of .
limited knowledge of only information about the incoming query _system IS salo to be-absolutely balanced, It € number of queries
any server is no more thaﬂw a, wherea > 0 is the absolute re-

and assigned queries in a system, we might not have much space t ) ; | . :

develop gophigticated algor)i/thms. Howe?/er, in practice, we r?]ight ?gxatlon ratio. The system Is said to bb+ v)-relatively balancr?d,
know some statistical information about queries, and might relax if the numbe_r of QUErIES In any SErver 1S no more than-v) - ¢,

the load balancing constraint at specific conditions. wherev > Ois the relative relaxation ratio.

. . . In an online system, when the number of input queries is small,
5.2.1 With known query type distribution we apply absolli{[e load balancing constraint tF()) bglance the work-
When we deal with onlin€QP, we might know the information load of servers; when the number of queries becomes sufficiently
about query type statistics. In particular, such statistics consist of large, we switch to relative balancing constraint to balance the work-
the rate at which specific query types will arrive in the system, and load. In other words, given the values of parametendv and

may well be available in production systems that have been in oper-the number of input queries, the load balancing constraint for
ation for some time, which allows us to collect and maintain statis- each servey is defined to belj(n) < d(n), whered;j(n) is the num-

tics about the query workload. ber of queries already assigned to serivand
Concretely, with such statistical knowledge, we can develop an n n
online algorithm as follows. Assume that popularity of query types d(n) = max(E +0,(14v)- P )

is known: the probability that an incoming query is of typf®l-
lows a multinomial distribution with paramete(td, t € T), where

T C 25is the universe of considered query types . Knowing this
distribution allows us to develop an online algorithm that makes  One question is how to set providedv. In the following, we
reservations for query types in advance, and then assigns queriepresent one principled way to do so. Assume that the probability of
at their arrival times based on their query types. This allows one assigning a query to a server is according to a uniform random dis-
to emulate what an offline algorithm does. Given, t € T), we tribution across servers. Under this assumptidi(n), dz(n), . .., dk(n))
reduce an onlinQP to an offlineQP as follows. is a random variable according to multinomial distribution with pa-

- ) ) rametersn and (1/k,1/k;...,1/k) wherez‘j‘:ldj(n) =n. By the
1. A (the probability that a type-query arrives) is reduced t0  njon bound, we have
ny (number of type-queries);

Note that a system switches to the relative load balancing as soon
as the number of input queriesatisfiem > (a /v)k.

k

2. 3j, the probability that servejrreceives a query, is reduced to Pr<Ulj(:1{dj (n) > d(n)}) < ) Pr(dj(n)>d(n).  (8)
the balance constraint, the number of queries a server could =1
host at most, and in particular, we ggt= % in the algorithm; Using Hoeffding’s inequality, we obtain

3. 1%, the probability that a type-query is assigned to server 2(d(n)+1— E)Z
j, is reduced to the number of typejueries in servey. Pr(d;(n) > d(n)) < exp{ ———————— )

Therefore, with the statistical information on query type distribu-
tion, we can reuse the offline algorithms discussed in Settion 4 to
solve onlineQP.

Combining with [T), we have

2v2
Pr(dj(n) > d(n)) <exp ")
5.2.2 Relaxed Load Balancing Constraints
QP problem is defined as a bi-criteria optimization problem where
one of the criteria is balancing the load across different servers. K 22y
Specifically, the problem corresponds to finding a query partition Pr<UJ:1{dJ(n) - d(n)}) ske
such that the maximum load is at madt+ v) of the mean load  From this it follows thatl; (n) < d(n) for all j = 1,...,k with high
across different servers, for given input parameter0. For an on- probability provided that the following condition holds
line QP, requiring to obey this condition at each query assignment

instance may well be too restrictive and amount in sub-optimal k—O (v n )
\/ logn /"

Therefore,

query assignments with respect to the long-run network traffic cost.

ExAMPLE 1. Consider a system dDservers, and a fixed rela-  NOte that for givere > 0, dj(n) < d(n) forall j = 1,...,k to hold
tive relaxation ratio o.05. The firstL0 queries will be distributed ~ With probability at least 1- € it suffices that
to 10 different servers, and that may resulti0 different copies of K2 1
the same stream, if those queries read from the same source. This n> 202 log (*) . (10)

. - o ; v £

is because the average load times the relaxation is strictly less than

1 until the 10-th query. In general, during the initialization, the ~ Givenv > 0, we want the the algorithm to switch to relative load

allocation of queries to servers will be grossly sub-optimal. balancing once the probability of violation of the relative imbalance
is guaranteed to be smaller or equal than gigen 0. By (1) the

To resolve the above issue, we consider a relaxation of the load switch over from the absolute to relative balancing constraints hap-
balancing constraints that is defined as follows. (1) We define an- pens at the smallest integesuch thah > ak/v. Combined with
other balance constraint for a system in its initial phase, and use (I0), we observe that it suffices to switch over when the number of
absolute relaxation ratido control the balance constraint. (2) In  queriesn satisfies[(ID) and it suffices that the absolute relaxation



parameten is chosen such that constraint, and then randomly select one of them as the target server

for assignment.
a< L lo 1
—2v 9 £

Parameters In most the experiments, we considered four parame-
ters: (1) the exponeift that governs sources’ Zipf degree (popular-
ity) distribution ranging from 1 to 30 with default value D, (2)
the number of sources per query from 1 to 10 with default value 2,
(3) the number of servers from 10 to 1000 with default value 100;
and (4) the number of queries from 10K to 1M with default value
6 Experimental Evaluation 100K, o . .
When considering query or server dynamics, we also consider
This section evaluates the off-line and on-line algorithms of Sec- the following parameters when studying the algorithms’ perfor-
tion 4 and_Section|5 using extensive simulations. We start by de- mance: (a) mean query life-time (Section 613.2), and (b) server
scribing the experimental set-Up (Secfiod 6.1), and then analyze thedeparture rate (Sectin 6.8.3).
network traffic overheads of those algorithms. Our results support  Moreover, for all the offline algorithms, we fixed the relative re-
the following hypotheses: laxation ratiov to be Q05. For all the online algorithms, we fixed
the relative relaxation ratio to be 005, and the absolute relaxation
ratio a to be 10[[Secfion 5.2.2).

Performance metrics We employedeplication factoras the met-

ric to evaluate the performance of algorithms. tebe the result-

ing traffic cost of an algorithmS be a set of sources with traffic
costw, and f(S) be f(S) = T sswW(s). The replication factor of an
algorithm is defined byf%). Intuitively, replication factor presents
3. LeastCost scales with respect to the number of queries, sourcesprmalized traffic cost resulting from an algorithm.

and servers; moreover, it is robust to dynamic arrival and de-
parture for both queries and servers.

An important insight from this is that the absolute relaxation ratio
a should not be taken too large, and it should be at most a quantity
that scales linearly with the number of servie(s practice,a > 10
works well).

1. Suitable assignment policies reduce network traffic substan-
tially compared with naive random query assignment.

2. One of our query assignment policidssastCost, consis-
tently exhibits superior performance than other online, and
sometimes even offline, query assignment policies, in a wide
range of configurations.

We run each configuration 10 times, and present the average
value.

6.1 Experimental Setup 6.2 Offline Algorithms

Synthetic query subscription We generated input queries based We examine the replication factor and competitive ration of the of-
on the model ofi [16]. Queries’ subscription can be represented by fline algorithms irf Figure]3. Note that we assume the same unit

a bipartite graptG = (S,Q,E), whereSis the set of sourcexQ traffic rate for all sources; we examine arbitrary traffic rates in Sec-
is the set of queries, and there is an edge) < E if and only if tion 6.4.
queryq receives data from sourse For convenience, we say that shows the network traffic replication factors while

all queries that use the same set of sources belong to thecgeme varying the exponent of the Zipf distribution for the number of
type Let mbe the total number of sources, amthe total number queries per source (source popularity); observe that lower values
of queries. We assume thats a random bipartite graph with given  are better. In particular, the number of sources per query is fixed to
degree distribution over source vertices and given distribution over 2, the number of queries is set to 100K, and the number of servers
query vertices. In particular, we assume a family of random bipar- is fixed to 100. We have the following observations. (1) Heav-
tite graphs where (1) the degree distribution of source vertices is aier power-law distributionsi(., smaller exponents) result to larger
Zipf distribution with exponenf (modeling heavy-tailed statistics  replication factors. This is intuitive as a heavier tail implies the
in source popularities [16. 17]), and (2) the degree of query vertices existence of a few sources with many query subscription, which
is fixed to parameted > 0. For brevity, we assume that each query makes query assignment more challenging.|@xndMMS con-
increase the load on the server by one unit. sistently exhibit the best performance, up to 4 times better than
OffRand.

shows the network traffic replication factor while
varying the number of sources per query. In particular, the exgonen

Offline algorithms. We implement the following offline algorithms:
(1) incremental cost based approd€h (2) minimum query pack-

ing based approaddlQP, and (3) min-max traffic cost per server for the power-law source popularity distribution is fixed t0,2he

MMS. Note that those three algorithms incorporate the single- o )
source query assignment algorithm when using single-source querin{%‘ljmber of queries is set to 100K, and the number of servers is 100.

As a baseline, we use the following random offline assignment al- crzazaevsemt/ir;ﬁ Iﬁg%ﬁ'&%gﬁiﬁ;\éﬁ?ggg g) Ere]e re(gl)'(l::%t:osr;nfaggolgr'c
gorithmOffRand: (1) randomly select all queries of the same query : o . Per query. singie&

. : 2 _queries, the replication factor is no more than 2, which confirms
type; (2) randomly select a server of available space to hostquerles,the theoretical guarantee [ Theoreln 3. In fact, it is nearly op-
(3) assign queries to the selected server until either the server is sa timal. (3) Anotk?er noteworthy propert i's a dimir;ishin incrgasz
urated or all queries (of query type) have been assigned; (4) emov : y property 9

server or query type from further consideration; and (5) repeat fr of the replication factor with the number of sources per query. It
(1) until all queries are assigned. is observed for all the offline algorithms considered. Specifically,

OffRand andMQP reach a plateau replication factor at about two
Online algorithms. We implemented the following online algo-  or three sources per query. ()MS exhibits the best performance,
rithms: (1) Least incremental traffic firkeastCost, (2) Least num- and this is matched b\C for sufficiently small number of sources
ber of sources firsteastSource, and (3) Least query types first  per query.

LeastQT. As a baseline, we implemented a random online algo- plots the network traffic replication facis. the
rithm OnRand as follows: given a query, we find the candidate number of servers, when the exponent for the power-law source
servers that can accept the new query without violating the balancepopularity distribution is 2, the number of queries is 100K, and
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Figure 3: Performance of offline query assignment.

the number of sources per query is 2. We observe that the replica-from 10 to 1M time steps with default value 100K, the average
tion factor increases with the number of servers, but this increase isnumber of arrived queries per time step is 1, and the total number
sub-linear in the number of servers. of discrete time stepsis set to be 1M in all cases. In general, we
Finally,[Figure 3(d) shows that the network traffic replication fac- observe thaleastCost consistently yields the best performance. In
tor is invariant to the number of input queries, (the exponent for Figure[5(d), we varied the mean query lifetime. By Little’s law, the
the power-law source popularity distribution i€92the number of mean number of queries in the system is the product of the query
servers is set to 100, and the number of sources per query is 2).  arrival rate and the mean query lifetime, and thus the given range
In summary[ Figure]3 demonstrates théi¥S consistently out- covers the mean number of queries in the system from 10 to 1M
performs other offline algorithms, and results in up to 4 times per- queries. Given that the number of servers is 100 (in all cases in
formance gain compared with the naive offline algorit@ffRand. Figure % excedt Figure 6(c)), we cover the system operating points
. . of 0.1 to 10K queries per server, which covers the range of lightly
6.3 Online Algorithms to highly loaded server§. Figure 5(d) demonstrates that replication
In this section, we examine the performance of online algorithms factor tends to increase with the load of the servers for all online al-
in the following settings: (1) online arrival of queries without query ~ 90rithms; however, it is noteworthy that this increase is rather slow
departure and a fixed number of servers, (2) online arrival aiiesie for LeastCost, which is sub-linear in the mean query lifetime.
with query departure and a fixed number of servers, and (3) dy-
namic arrival and departure for both queries and servers.

6.3.3 Server Arrivals and Departures

. In a production environment, we also expect server churn; servers
6.3.1 Query Arrivals, No Departures may fail, and hence queries need to be re-assigned, and new servers

plots the replication factor for online algorithms, in similar may be added to cope with increased demand, or after recycling
settings af Figure 4. The two sets of plots are qualitatively similar, failed servers. It is thus important to examine the robustness of
hence, we focus next on their differences. different query assignment policies, with respect to server arrivals
First, LeastCost exhibits the best performance, and sometimes and departures.

even outperforms the best offline algoritiiMS. Second, the per- We modeled server dynamics similar to query dynamics: We
formance ofleastSource is close toleastCost. Third, LeastCost start withk servers, and queries arrive intime steps. At each

performs up to 4 times better th&nRand, and the performance  time step, the number of arrived queries follows a Poisson distri-
gain is close to what we observed betwdéS and OffRand in bution, and each query is associated with a lifetime that follows
the offline case. The performancelafastQT is virtually identical an exponential distribution. Moreover, starting at time step 1, af-

to that ofOnRand. Thus typicallyLeastQT provides no benefits. ter everyy time steps (wherg is referred to aserver departure
) rate), we make a Bernoulli trial: with probability.B, we add a
6.3.2 Query Arrivals and Departures new server; otherwise, we randomly delete a server, and re-assign

A streaming query service hosts queries posted by users, and man)'/ts queries using the online algorithre(, assuming that they are
such queries would be hosted only for a limited tiregy. the user €W dueries). , o

may be interested in travel updates only while on the road. Hence, demonstrates online algorithms’ performance when we
it is important to examine query assignment strategies in a systemConsider both query and server dynamics. By default, we consider
with query arrivals and departures. To this end, we used the follow- 100 Servers, the exponefitfor source popularity distribution is
ing model of query dynamics. 2.0, the number of sources per query is 2, the total number of time

We consider the query arrival and departure process as a discret$!€PS 1S 1M, the mean number of arrived queries per time step is

time process of time steps: (1) at each time step, the number of 1 the mean query lifetime is 100K, and the server departurg/rate

arrived queries follows a Poisson distribution; and (2) each arrived S 10K. In Figur¢ 6(@), 6(®], 6(F), aiid 6(d), we varied exporfent
query is associated with a lifetime, which is drawn from some dis- for source popularity distribution, the number of sources per query,
tribution. In particular, we considered two parametric families of the number of servers, and server departure rate, respectizely. C
distributions: (1) exponential distributions that model the cases of SiStent with earlier results, we observed thedstCost exhibits the
light-tailed query lifetimes, and (2) Pareto distribution that model P€St performance, and is robust with respect to the dynamics of the
the cases of heavy-tailed query lifetimes. However, we found simi- Server arrival and departure.
lar results for the two different families of distributions, so we only .
present the results for the exponential distribution. 6.4 Heterogeneous Source Traffic Rates

plots the performance of online algorithms while con- Insofar, we have examined the performance of query assignment
sidering query dynamics, where the mean query lifetime ranges algorithms for the case of sources with identical traffic rates. We
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Figure 5: Performance of online algorithms with dynamic query arrivals and departures.

now examine a more general case where different sources have dif tree and the objective is to optimize the placement of receivers.
ferent traffic rates. Since many phenomena in nature exhibit heavy- More generally, the problem can be seen to be that of optimizing
tail distributions [[17], we expect that in practice the source traffic the data locality for efficient processing in distributed systems.

rates to follow a heavy-tail distribution. We consider a range of  viarious different kinds of resource allocation problems were pre-
values of the shape parameter that span the case of fast decaymgious|y studied, including virtual circuit routing (e.gl_[251] [5],
tail (exponent value of 3) and slow decaying tail (exponent value [17]) multi-path routing {[34]), multicommodity flows (e.d. [21]),

of 1). To define the source traffic rates, we also need to decide theyiticast virtual circuit routing (e.gl[6]L [30]), assignment of tasks
assignment of source traffic rates to sources, and how this assign+g parallel machines (e.g/ [27]), data placement in servers (e.g.
ment correlates with other factors, such as the popularity of sources[7] 28], [15]), cache placément in the context of web servers
(measured by the number of query subscriptions to a source). TO([lg]), virtual machine placement in data centers (e.g. [9], [35]).
cover different possible scenarios, we consider th(_e following three None of these resource allocation problems correspond to the query
cases: (Ljandom where source traffic rates are assigned to sources partition problem studied in this paper. A more closely related work
independently of their popularity, (Positively correlatedwhere is that of load balancing and balanced graph partitioning which we
the traffic rate of a source is proportional to the source’s popularity, discuss in some more detail in the following.

and (3)negatively correlatedwhere the traffic rate of a source is A related line of work is that of load balancing over parallel ma-

inversely proportional t_o the source’s popularity. chines, and the class of load balancing problems abstracted out as
ShOWS algorithms’ performance on heterogeneous sourcgy)is and binsproblems,e.g., see [B] 24/ 10] and the references
traffic rates over the above three cases. In particular, we consideriherein). In this context, various authors studied the problem of
the best offline algorithrMMS, all three online algorithms, andthe  yinimizing the maximum load (or congestion), elg. [7], and pack-
online random algorithnOnRand. We have the following obser-  jng of requests under knapsack constraints, £.g/[27, 13]. Random
vations. (1) The more positive the correlation between the source gyery assignment benchmark considered in this paper and com-

traffic rates and popularity of sources s, the larger the network monly deployed in practice, is a well-studied randomized load bal-
traffic replication ratio will be. (2) In most cases, the best per-

. . . nlogk ;
forming query assignment policy IsastCost. Specifically, when ~ ancing strategy with the maximum load @f+ O(y/ =) with
source traffic rates are negatively correlated with source popularity, probability o(1), for n > k(logk)® ([24]). Other such random-

LeastCost is substantially better thadMS. ized load balancing strategies have been studied, e.g. power of
two choices, where each ball is assigned to the least loaded of
7 Related Work two bins selected uniformly at random and independently from

other ball assignments. The maximum load of such a scheme is
The query partition problem studied in this paper is a resource allo- { + O(loglogk), with high probability, forn > k ([10]). Related
cation problem, formulated as a combinatorial optimization prob- work is also that on online bin packing where the bounds on the
lem. Specifically, it is related to load balancing over parallel ma- competitive ratio with respect to the offline solution were derived
chines and balanced graph partitioning problems. It can also beunder arrival inputs according to random permutation or indepen-
seen as optimizing multiple multicast information deliveries where dent and identically distributed sequenegg., see |[13] and the
each source connected to a set of queries (receivers) is a multicasteferences therein. A main distinction with all this work is that
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Figure 6: Performance of online algorithms with dynamic query and sever arrivals/departures.
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Figure 7: Performance of query assignment algorithms on heterogneous source traffic rates: (top) random, (middle) positively
correlated, and (bottom) negatively correlated.

the query partition problem is defined as a bi-criteria optimization for cardinality constraints. Our result provide better approximation
problem, where the load balancing is only one of the two criteria. ratio bounds, for a more specific class of submodular functions.
The query partition problem is an esoteric instance of a balanced
graph partitioning problem. Standard balanced graph partitioning 8 Conclusions
problem is defined as follows: given a graph witkiertices, a pos-
itive integerk and a parameter > 0, the goal is to partition asetof ~ In this paper, we have proposed and studied the assignment of
vertices intok partitions each with at mogl + v)n/k vertices and ~ streaming queries to servers. This is important in the design of
such that the number of edges cut is minimized. The best known ap-Platforms that execute small (“mice”) streaming queries as a ser-
proximation ratio for this problem i©(,/lognlogk) which is due vice. For such scenarios, where many streams need to be delivered
to [18]. We note that the query assignment problem has the samet0 servers and the density of queries to servers is high, we need
form of constraints. A notable difference is the objective function, to minimize network traffic while balancing load among servers;
which in case of the query assignment problem, is a submodular we demonstrated that this problem is NP complete, and derived
function of specific, different type. The unconstrained problem of approximation guarantees. We studied, analytically and with simu-
minimizing a submodular function in the context of graph partition- lations, off-line and on-line heuristics for this multi-objective prob-
ing was consideredt.g., by [11], who derived a 2-approximation  lem. In particular, we proposed a heuristic that performs well under
algorithm for this problem. A notable difference is that in the query @ wide range of scenarios, including query and server churn.
assignment problem the objective function is a submodular func-  Our approach treats the computations done by the queries as
tion of specific type and the problem is constrained with cardinal- black boxes. Even though we do balance the compute utilization
ity constraints.|[29] obtained the approximation raticﬁif\/%) among the server, we do not optimize the computations indepen-
for a general class of submodular function minimization, allowing dently. Assuming that it is possible to prove that two queries that
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use the same input streams, also perform similar computations,[15]
then it should be possible to also optimize the query computations,
e.g.,by executing the common computations once. Observe that [16]
in current streaming platforms, such as 54 [33], the users are en-
couraged to re-use existing computations; on the contrary, when
executing queries as a service, such optimization need to happertﬂ]
automatically. In the presence of such compute optimizations, the
minimization function of the assignment problem needs to capture
both network and compute loads (compare to the current approach[18]
of minimizing network traffic while balancing load). We leave this
problem as future work.
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