FaRM: Fast Remote Memory

Aleksandar Dragojevic¢, Dushyanth Narayanan, Orion Hodson, Miguel Castro

Hardware trends

* Main memory is inexpensive
* 100 GB—1 TB per server
* 10—-100 TBs in a small cluster

* New data centre networks
* 40 Gbps throughput (100 this year)
e 1-3 ps latency
* RDMA primitives

1E+7
1E+6
1E+5
1E+4
1E+3
1E+2
1E+1
1E+0

1980

1985

1990

S/GB (log)

1995 2000
Year

2005

2010

2015

Remote direct memory access

* Read and write remote memory
* NIC performs DMA requests
* Remote CPU not involved

* We use RDMA extensively
* Reads for directly reading data

* Writes into remote buffers for messaging

* Great performance
* Bypasses kernel
* Bypasses remote CPU

Machine A
DMA
RAM CPU NIC
Network
RAM CPU NIC
DMA

Machine B

Requests / us / server

OFRLrNWPULIoOONO OO

--RDMA -=RDMA msg - TCP

,
?
?
¢

5 9
<>

128 256 512 1024 2048
Transfer bytes (log)

Average latency us (log)

®RDMA -®RDMA msg <>TCP

Ommmmmen Om=m=--c Ommeee Crmmmmem Commmee (o Lrmmmmmn <>
m------ -;------- ;------ _;,------- ,------ -, -, =
o— oo o— oo o— 9
16 32 64 128 256 512 1024 2048

Transfer bytes (log)

Applications

e Data centre applications
* Irregular access patterns
* Low latency

* Data serving
* Graph store
* Key value-store

* Enabling new applications

Outline

* FaRM programming model

* Design
* Synchronization
e Hashtable

* Experimental results
* Future work

How to program a modern cluster?

We have:
e TBs of DRAM

e 100s of CPU cores

e RDMA network

(77

3

Desirable:

* Keep data in memory

* Access data using RDMA

* Collocate data and computation

3
S

Symmetric model

Access to local
memory is
much faster

Server CPUs
are mostly idle
with RDMA

o
o
o

Machines store data and execute application

Shared address space

Supports direct
RDMA of objects

Programmability
a welcome bonus

01

)
)

Oe6

08

\
)

&l
\

&l
\

&l
\

@A
\

Transactions: simplify programming

General primitive

Strong consistency:

serializability

Transparent:
* location

* concurrency
* failures

Shared address space

02

01 t
t Write

.

04

1

Write

O5

07

t1

08

010

Read

Read

Read Free

1

Alloc
Atomic execution of multiple operations

11

FaRM API: transactions

Tx *TxStart ()

Addr TxAlloc (Tx *tx, int size, Addr hint);
vold TxFree (Tx *tx, Addr addr);

ObjBuf *TxRead (Tx *tx, Addr addr, int size);
ObjBuf *TxOpenForWrite (Tx *tx, ObjBuf *obj);

bool TxCommit (Tx *tx);

Optimizations: lock-free reads

Efficient: read is
a single RDMA

Strong consistency:
serializability

Harder to compose:

custom validation

Shared address space

02

t 1

O4

O5

O7

O6

1

08

O9

010

Read Read

Atomic execution of a single read

Read

13

Optimizations: locality awareness

Optimizations: locality awareness

Addr TxAlloc (Tx *tx,

Collocate data ° int size,
accessed together Addr hint);

. . vold SendMsg (Addr a,
Ship computation G e G Msg *m) ;
to target data

Local ﬁ e

Optimized
single-server
transactions

RPC

<//O’/// >
<//O’/// >

Consistency model

* Strong consistenc . oN: oN: o§: oN:

* Strict serializability for transactions t, =
* Linearizability for data structures

* Weak timing assumptions 0P, % =S 0P

* Eventual synchrony t, 1 |
* Bounded clock drift

Serial

16

Outline

* FaRM programming model

* Design
* Synchronization
* Hashtable

* Experimental results

e Future work

17

FaRM run

Applications

time

Key-value

Graph store
store

FaRM Hashtable

Synchronization

Shared address space

Communication

2X

8X

24x better than
published RDMA
key-value store

10x-40x better than
TCP state-of-the-art
key-value store

Transactions

Buffer writes

. HEm . Lock Validate Update and unlock
S,
RDMA| [RDMA RDMA | RDMA

S3 I
Execution Commit

19

Lock-free reads

* Transactions can be expensive
* Require many messages

* FaRM exposes lock-free reads

* Consistent object state
* One RDMA operation

e Strictly serializable with transactions
* Equivalent to a one-read transaction

Lock-free reads

H
eaqer W
version
64-bit version Ensistent if viIions match
to avoid nd object is not locked
overflownloBeaddeksicmmenR&pd dtrta
Uekad e

Read requires three network accesses

21

FaRM lock-free reads

Header
version W > W 5 Wl 5

Spdtach#fitirency: ;MAEadlheclverIns[atch

-bitsione-li dd t take too |
16 blétza.olme line arbdnrggk alhodeamo a et oo long
versions t - 40 nsI

=40ns ¥ 2 *(1-€)=2ms

update_min

t

read_max

Outline

* FaRM programming model

* Design
e Synchronization
e Hashtable

* Experimental results

e Future work

23

FaRM hashtable

e Optimize for lookups
* Majority of accesses are lookups
* Goal: lookup with a single RDMA read

* Update with transactions
e Simplifies updates
* Performance: ship updates to data owner

 Correctness
* Goal: linearizability

Distributed hashtable

O

<//O’/// >

O

First attempt: chaining

Overflow)

chaining Q Q)

Inlined

data
Lookup(5)
One read in the common case. Not quite.

26

Q

\

Q

\

Q

K™

Q

SN

"

/\

S

©

"

%

S

™

S

.|||II||||
> °

oo gl
S

"y

@ © & «
e e

SpeaJ 93elany

N

27

Occupancy

Hopscotch hashtable [Herlihy ‘O8]

Invariant:
element in
neighbourhood
E—)
Lookup(5)

Hashtable lookup with a single RDMA

28

Maintaining invariant

B Displace
A\

Displace items
to make room in

neighbourhood

Resize when
displacing does not help

Use large neighbourhoods: 32 elements

Insert

!

)

29

FaRM hashtable

Overflow
chaining

Element in
neighbourhood

Space efficiency:
multiple items
per FaRM object

Overlapping neighbourhoods

Consistent neighbourhoods

Remove

Neighbourhood
versions

1f obJ,.nv e = 0bJ,.nv ¢ —
retry _ i

Lookup ()

® Chaining ™ FaRM H=8

e
—

SpeaJ 93elany

© < N
- <

Occupancy

33

Outline

* FaRM programming model

* Design
e Synchronization
* Hashtable

* Experimental results

e Future work

34

-TCP

--FaRM

160

140

o O© O O O
200064
11

st / sdnyo07

3 12 16 20

2 3 45

Servers

35

Latency us (log)

2 345

--FaRM - TCP

8 12
Servers

16

20

36

TAO [Bronson ‘13, Armstrong “13]

* Facebook’s in-memory graph store

* Workload
 Read-dominated (99.8%)
* 10 operation types

* FaRM implementation
* Nodes and edges as FaRM objects
* FaRM pointers between them
* Lock-free reads for lookups
* Transactions for updates

6 Mops/s/srv
(10x improvement)

42 us average latency
(40 — 50x improvement)

37

A step towards future data centres

* Enabling new applications

* Graph processing
* Scale-out OLTP
* Deep neural networks

Transactions

[y
Future hardware | ﬁiﬁ —
 Software hardware co-design N\ R
e)

* Integrated network
* Non-volatile memory

Fault tolerance

Data structures

Deep neural networks

FaRM [NSDI “14]

* Platform for distributed computing
* RDMA
* Dataisin memory

e Shared memory abstraction
* Transactions
* Lock-free reads

* Order-of-magnitude performance improvements
* Enables new applications

39

