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Hardware trends

* Main memory is inexpensive
* 100 GB—1 TB per server
* 10—-100 TBs in a small cluster

* New data centre networks
* 40 Gbps throughput (100 this year)
e 1-3 ps latency
* RDMA primitives
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Remote direct memory access

* Read and write remote memory
* NIC performs DMA requests
* Remote CPU not involved

* We use RDMA extensively
* Reads for directly reading data

* Writes into remote buffers for messaging

* Great performance
* Bypasses kernel
* Bypasses remote CPU
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Average latency us (log)
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Applications

e Data centre applications
* Irregular access patterns
* Low latency

* Data serving
* Graph store
* Key value-store

* Enabling new applications



Outline

* FaRM programming model

* Design
* Synchronization
e Hashtable

* Experimental results
* Future work



How to program a modern cluster?

We have:
e TBs of DRAM

e 100s of CPU cores

e RDMA network
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Desirable:

* Keep data in memory

* Access data using RDMA

* Collocate data and computation
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Symmetric model

Access to local
memory is
much faster

Server CPUs
are mostly idle
with RDMA

o
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Machines store data and execute application



Shared address space

Supports direct
RDMA of objects

Programmability
a welcome bonus
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Transactions: simplify programming

General primitive

Strong consistency:

serializability

Transparent:
* location

* concurrency
* failures

Shared address space
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Atomic execution of multiple operations
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FaRM API: transactions

Tx *TxStart ()

Addr TxAlloc (Tx *tx, int size, Addr hint);
vold TxFree (Tx *tx, Addr addr);

ObjBuf *TxRead (Tx *tx, Addr addr, int size);
ObjBuf *TxOpenForWrite (Tx *tx, ObjBuf *obj);

bool TxCommit (Tx *tx);



Optimizations: lock-free reads

Efficient: read is
a single RDMA

Strong consistency:
serializability

Harder to compose:

custom validation

Shared address space
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Optimizations: locality awareness



Optimizations: locality awareness

Addr TxAlloc (Tx *tx,

Collocate data ° int size,
accessed together Addr hint);

. . vold SendMsg (Addr a,
Ship computation G e G Msg *m) ;
to target data

Local ﬁ e

Optimized
single-server
transactions

RPC
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Consistency model

* Strong consistenc . oN: oN: o§: oN:

* Strict serializability for transactions t, =
* Linearizability for data structures

* Weak timing assumptions 0P, % =S 0P

* Eventual synchrony t, 1 |
* Bounded clock drift

Serial
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Outline

* FaRM programming model

* Design
* Synchronization
* Hashtable

* Experimental results

e Future work
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FaRM run

Applications

time

Key-value

Graph store
store

FaRM Hashtable

Synchronization

Shared address space

Communication

2X

8X

24x better than
published RDMA
key-value store

10x-40x better than
TCP state-of-the-art
key-value store



Transactions

Buffer writes

. HEm . Lock Validate Update and unlock
S,
RDMA| [ RDMA RDMA | RDMA

S3 I
Execution Commit
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Lock-free reads

* Transactions can be expensive
* Require many messages

* FaRM exposes lock-free reads

* Consistent object state
* One RDMA operation

e Strictly serializable with transactions
* Equivalent to a one-read transaction



Lock-free reads

H
eaqer W
version
64-bit version Ensistent if viIions match
to avoid nd object is not locked
overflownloBeaddeksicmmenR&pd dtrta
Uekad e

Read requires three network accesses

21



FaRM lock-free reads
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Outline

* FaRM programming model

* Design
e Synchronization
e Hashtable

* Experimental results

e Future work
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FaRM hashtable

e Optimize for lookups
* Majority of accesses are lookups
* Goal: lookup with a single RDMA read

* Update with transactions
e Simplifies updates
* Performance: ship updates to data owner

 Correctness
* Goal: linearizability



Distributed hashtable
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First attempt: chaining

Overflow )

chaining Q Q )

Inlined

data
Lookup(5)
One read in the common case. Not quite.
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Hopscotch hashtable [Herlihy ‘O8]

Invariant:
element in
neighbourhood
E—)
Lookup(5)

Hashtable lookup with a single RDMA
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Maintaining invariant

B Displace
A\

Displace items
to make room in

neighbourhood

Resize when
displacing does not help

Use large neighbourhoods: 32 elements

Insert

!

)
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FaRM hashtable

Overflow
chaining

Element in
neighbourhood

Space efficiency:
multiple items
per FaRM object




Overlapping neighbourhoods




Consistent neighbourhoods

Remove

Neighbourhood
versions

1f obJ,.nv e = 0bJ,.nv ¢ —
retry _ i

Lookup ()
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Outline
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e Future work
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Latency us (log)
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TAO [Bronson ‘13, Armstrong “13]

* Facebook’s in-memory graph store

* Workload
 Read-dominated (99.8%)
* 10 operation types

* FaRM implementation
* Nodes and edges as FaRM objects
* FaRM pointers between them
* Lock-free reads for lookups
* Transactions for updates

6 Mops/s/srv
(10x improvement)

42 us average latency
(40 — 50x improvement)
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A step towards future data centres

* Enabling new applications

* Graph processing
* Scale-out OLTP
* Deep neural networks

Transactions

[y
Future hardware | ﬁiﬁ —
 Software hardware co-design N\ R
e )

* Integrated network
* Non-volatile memory

Fault tolerance

Data structures

Deep neural networks



FaRM [NSDI “14]

* Platform for distributed computing
* RDMA
* Dataisin memory

e Shared memory abstraction
* Transactions
* Lock-free reads

* Order-of-magnitude performance improvements
* Enables new applications
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