
Locally Updatable and Locally Decodable Codes

Nishanth Chandran∗ Bhavana Kanukurthi† Rafail Ostrovsky‡

Abstract

We introduce the notion of locally updatable and locally decodable codes (LULDCs). In addition to
having low decode locality, such codes allow us to update a codeword (of a message) to a codeword of a
different message, by rewriting just a few symbols. While, intuitively, updatability and error-correction
seem to be contrasting goals, we show that for a suitable, yet meaningful, metric (which we call the
Prefix Hamming metric), one can construct such codes. Informally, the Prefix Hamming metric allows
the adversary to arbitrarily corrupt bits of the codeword subject to one constraint – he does not corrupt
more than a δ fraction (for some constant δ) of the t “most-recently changed” bits of the codeword (for
all 1 ≤ t ≤ n, where n is the length of the codeword).

Our results are as follows. First, we construct binary LULDCs for messages in {0, 1}k with constant
rate, update locality ofO(log2 k), and read locality ofO(kε) for any constant ε < 1. Next, we consider the
case where the encoder and decoder share a secret state and the adversary is computationally bounded.
Here too, we obtain local updatability and decodability for the Prefix Hamming metric. Furthermore,
we also ensure that the local decoding algorithm never outputs an incorrect message – even when the
adversary can corrupt an arbitrary number of bits of the codeword. We call such codes locally updatable
locally decodable-detectable codes (LULDDCs) and obtain dramatic improvements in the parameters
(over the information-theoretic setting). Our codes have constant rate, an update locality of O(log2 k)
and a read locality of O(λ log2 k), where λ is the security parameter.

Finally, we show how our techniques apply to the setting of dynamic proofs of retrievability (DPoR)
and present a construction of this primitive with better parameters than existing constructions. In
particular, we construct a DPoR scheme with linear storage, O(log2 k) write complexity, and O(λ log k)
read and audit complexity.

1 Introduction

Standard error correcting codes (ECC) enable the recovery of a message even when a large fraction of its
codeword is corrupted. One disadvantage of ECCs is that, in order to read even a single bit of the data,
the entire codeword needs to be decoded. This becomes very inefficient if a user frequently needs to access
specific parts of the underlying data. (For example, think of the data as being a user’s movie preferences.
Then in order to learn his rating of a specific movie, we would need to decode the entire codeword.)Locally

∗Email: Microsoft Research, India, Email: nichandr@microsoft.com. Part of this work was done while this author was at
AT&T Labs - Security Research Center, NY.
†Department of Computer Science, UCLA, Email: bhavanak@cs.bu.edu. Research supported in part by NSF grants

CNS-0830803; CCF-0916574; IIS-1065276; CCF-1016540; CNS-1118126; CNS-1136174; and in part by the Defense Advanced
Research Projects Agency through the U.S. Office of Naval Research under Contract N00014-11-1-0392. The views expressed
are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government.
‡Department of Computer Science and Mathematics, UCLA, Email: rafail@cs.ucla.edu. Research supported in part

by NSF grants CNS-0830803; CCF-0916574; IIS-1065276; CCF-1016540; CNS-1118126; CNS-1136174; US-Israel BSF grant
2008411, OKAWA Foundation Research Award, IBM Faculty Research Award, Xerox Faculty Research Award, B. John
Garrick Foundation Award, Teradata Research Award, and Lockheed-Martin Corporation Research Award. This material is
also based upon work supported by the Defense Advanced Research Projects Agency through the U.S. Office of Naval Research
under Contract N00014-11-1-0392. The views expressed are those of the author and do not reflect the official policy or position
of the Department of Defense or the U.S. Government.

mailto:nichandr@microsoft.com
mailto:bhavanak@cs.bu.edu
mailto:rafail@cs.ucla.edu

decodable codes LDCs, introduced by Katz and Trevisan [15], overcome this problem and allow recovery
of a single symbol of the message by reading only a few symbols of the potentially corrupted codeword.
Another disadvantage of standard ECCs is that, in order to change even a single bit of the data, the entire
codeword needs to be recomputed. A natural question to ask is: can we obtain codes which also allow us
to change the underlying data by rewriting only a few symbols of the codeword? That is,

Can we build an ECC that allows you to decode and update the message by reading and/or modifying
sub-linear number of symbols of the codeword?

In this work, we explore this question and its cryptographic connection.

1.1 Codes with locality

Locally Decodable Codes. As mentioned before, locally decodable codes (LDCs), introduced by Katz
and Trevisan [15] are a class of error correcting codes, where every bit of the message can be probabilistically
decoded by reading only a few bits of the (possibly corrupted) codeword. In more detail, a binary locally
decodable code encodes messages in {0, 1}k into codewords in {0, 1}n. The parameters of interest in such
codes are: a) the rate of the code ρ = k

n ; b) the distance δ, which signifies that the decoding algorithm
succeeds even when δn of the bits of the codeword are corrupted; c) the locality r which denotes the number
of bits of the codeword read by the decoding algorithm; and d) the error probability ε that denotes that
for every bit of the message, the decoding algorithm successfully decodes it with probability 1− ε. Ideally,
one would like to minimize both the length of the code as well as the locality; unfortunately, there is a
trade-off between these parameters. On the one hand, we have the Hadamard code that has a locality of
2; however its length is exponential in k. (Indeed, the best code length for LDCs with constant locality are
super-polynomial in k [29, 7, 5].). On the other hand, the best known codes with constant rate, [16, 10, 13],
have a locality of O(nε) for any constant 0 < ε < 1. For a survey on locally decodable codes, see Yekhanin’s
survey [30].

Locally Updatable and Locally Decodable Codes. As we mentioned before, LDCs (and error
correcting codes in general) are extremely useful as they provide reliability even when many bits of the
codeword may be corrupted; unfortunately, the (unavoidable) price that we pay is that even small changes
to the message result in a large change to the codeword. In this work, we ask “can we have locally decodable
codes that are locally updatable?”. That is, can we have locally decodable codes such that in order to obtain
a codeword of message m′ from a codeword of message m (where m and m′ differ only in one bit) one only
needs to modify a few bits of the codeword? We call such codes locally updatable and locally decodable
codes (LULDCs); the number of bits that are modified by the update algorithm is then referred to as the
update locality and the number of bits read by the (local) decoding algorithm is referred to as the read
locality.

The Prefix Hamming Metric. As in the case of LDCs, our goal is to tolerate a constant fraction of
errors while achieving subliniear locality (for both read and update). However, a little thought reveals that
updatability and error correction are conflicting goals – if a code tolerates a δ-fraction of errors then, to
change even one bit of the data, at least 2δ-fraction of the codeword symbols do need to be re-written.

In light of this, we consider a weaker, yet meaningful, adversarial model of corruption. In this model,
the adversary is still allowed to corrupt constant fraction of the bits of the codeword. However, the bits
of the codeword have an “age” associated with them and the adversary is allowed to corrupt fewer of the
younger/newer bits and is allowed to corrupt many of the older bits. Whenever we touch (i.e., write) a
particular bit i of the codeword during an update procedure, this bit becomes a young bit with an age less
than every other bit in the codeword. At this point of time, the ith bit of the codeword is the youngest bit

2

in the codeword. Now, suppose we touch the jth bit of the codeword, then this bit becomes the youngest
bit, with the ith bit now becoming the second youngest bit of the codeword and so on. Note that if we
were to now touch the ith bit, it would once again become the youngest bit of the codeword.

We allow the adversary to corrupt a constant fraction of the bits of the codeword subject only to one
constraint – he never corrupts more than a δ fraction of the t youngest bits (for all 1 ≤ t ≤ n). We call
this metric the Prefix Hamming Metric. This metric models a situation where the longer the time a bit
of the codeword resides in the system, the easier it is for an adversary to corrupt it. That is, stored data
(codeword bits) gets “stale” unless refreshed, and hence the more time the data is untouched, the more
errors it will have.

Comparison with Tree Codes. Our error model is similar to the one considered by Schulman [24],[25]
in his seminal work on Tree Codes. Tree codes were specifically designed for streaming messages and allow
the encoding of messages one bit at a time; the corresponding codeword symbol for every bit of the message
is obtained by traversing down a tree. The codeword of the message is obtained by simply concatenating all
the individual codeword symbols. Schulman’s code guarantees the following: consider any two (different)
paths of length t beginning at a particular node in the tree (that denote two different messages); then,
the codewords corresponding to these messages have Hamming distance at least αt (for some constant α).
Alternately viewed, at any given instance, as long as the adversary does not corrupt more than a α fraction
of the t most recently transmitted codeword symbols, the codeword will decode to the correct message.
Tree codes were designed for arbitrary (polynomial length) messages; however, we do not know of explicit
constructions of tree codes with constant rate.

In our work, the message and codeword lengths are fixed in advance. But the message bits can be
updated in a streaming fashion by rewriting certain bits of the codeword. Our adversarial error model says
the following: at any given instance, as long as the adversary does not corrupt more than a particular
constant fraction of the t most recently rewritten bits of the codeword (for all t), the codeword will decode
to the correct message.

1.2 Our Results

Information-theoretic Codes. We first construct an LULDC in the information-theoretic setting for
the Prefix Hamming metric. We define this metric and such codes in detail in Section 2; for now, we give
an overview of the result and the parameters that we achieve.

• Result 1 (Informal): We construct binary LULDCs for the Prefix Hamming metric for messages in
{0, 1}k. Our codes have a rate of O(1), an amortized update locality of O(log2 k) and a worst case
read locality of O(kε) for any constant ε < 1. For codes that operate on a larger alphabet Σ, with
|Σ| ≥ log k, we can improve the update locality to O(log k) (other parameters remaining the same).

Computational Codes. Next, we consider a scenario where the encoder and decoder share a secret
state S and where the adversary is computationally bounded. In such a setting, we are able to provide the
added guarantee that the (local) decoding algorithm never outputs an incorrect message, irrespective of the
number of corrupted bits in the codeword. For the sake of clarity, we refer to such codes as locally updatable
and locally decodable-detectable codes (LULDDCs). In addition to providing stronger guarantees, we
also obtain dramatic improvements over the parameters achieved by our information-theoretic LULDC
construction. In particular, we obtain the following parameters:

• Result 2 (Informal): We construct binary LULDDCs for messages in {0, 1}k. Our codes have constant
rate, an amortized update locality of O(log2 k) and a worst case read locality of O(λ log2 k), where
λ is the security parameter of the system.

3

Finally, we note that our techniques for building LULDDCs lend themselves to the construction of a
Dynamic Proof of Retrievability (DPoR) scheme. Below we discuss our result on DPoR, which we believe,
is of independent interest.

Dynamic Proofs of Retrievability. Informally, a proof of retrievability allows a client to store data
on an untrusted server and later on, obtain a short proof from the server, that indeed all of the client’s
data is present on the server. In other words, the client can execute an audit protocol such that any
malicious server that deletes or changes even a single bit of the client’s data will fail to pass the audit
protocol, except with negligible probability in the security parameter1. Proofs of retrievability, introduced
by Juels and Kaliski [14], were initially defined on static data, building upon the closely related notion of
sublinear authenticators defined by Naor and Rothblum [18]. Several works have studied the efficiency of
such schemes [26, 6, 2, 1] with the work of Cash, Küpçü, and Wichs [3] considering the notion of proofs
of retrievability on dynamically changing data; in other words, they constructed a proof of retrievability
scheme that allowed for efficient updates to the data. Their DPoR scheme has O(k) server storage, O(λ)
client storage, O(λ log2 k) read complexity, O(λ2 log2 k) write and audit complexity2. We improve their
parameters and obtain the following result:

• Result 3 (Informal): We obtain a construction of a dynamic proof of retrievability with O(k) server
storage, O(λ) client storage, O(λ log k) read complexity, O(log2 k) write complexity and O(λ log k)
audit complexity3.

1.3 Our Techniques

We now give a high-level overview of the techniques used to obtain our results. We shall make use of the
hierarchical data structure introduced by Ostrovsky [19],[20] in the context of oblivious RAMs. Oblivious
RAMs [8, 19] allow efficient random access to memory without revealing the access pattern to an adversary
that observes the reads and writes made to memory. ORAM protocols hide the access pattern by making
use of several tools carefully put-together. Here we distill out exactly what we need for our construction.
In particular, we will primarily make use of the hierarchical data structure, coupled with certain other
techniques, to construct LULDCs.

Hierarchical Data Structure. At a high level, this data structure comprises of buffers buff0, · · · , buffτ
of increasing size. Buffer buffi has 2i elements and each element in the buffer is of the form (index, value).
In addition, there is a special buffer, buff∗ which has all bits of the message in order (and hence without
an index). To read a value at a particular index i, we scan the buffers in top-down manner. To write (or
re-write) a value v at index i, we write it to the top buffer. Writing to buffers evenutally fills them up.
To handle this, buffers are periodically combined and moved to an empty buffer in some lower level in a
careful manner.

LULDCs for the Prefix Hamming Metric. The first idea behind our construction in the information-
theoretic setting is as follows. To achieve local decodability, we encode each buffer (including buff∗) with
a locally decodable code (LDC). Whenever we wish to update a bit of the message, we will write it to the
topmost buffer buff0 and re-encode the top buffer using an LDC to encode this latest update. Naturally,
the top buffer gets full after an update operation. Whenever we encounter a full buffer, we move its

1Formally, this guarantee is provided by requiring the existence of an extractor algorithm, that given black-box rewinding
access to any malicious server that passes the audit with non-negligible probability, will extract all of the client’s data, except
with negligible probability.

2The work of Cash et al. [3] considered the complexity without explicitly including the (storage as well as verification)
complexity of the MAC; if one did this, then the parameters obtained will all be larger by a factor of O(λ).

3These parameters include the cost for storage and verification of the MACs.

4

contents to the buffer below it (that is, we decode the entire buffer, combine top level buffers together and
re-encode them at a level below, once again using an LDC for the encoding). When we wish to (locally)
decode a particular index i of the message, we scan buffers one-by-one starting with topmost buffer. Now,
note that we need to check if a particular index is found in a buffer or not. In order to do this, we always
ensure that buffers store (index, value) pairs that are sorted according to the index value. This will enable
us to perform a binary search (decoded via the underlying LDC) to check if a buffer contains a particular
index i or not. Since we are performing the binary search via the decode algorithm of the underlying LDC,
we must ensure that the decode does not fail with too high a probability; hence, we repeat the decode
procedure at each level some fixed number of times to ensure this and make sure that our overall local
decoding algorithm succeeds except with ε probability. When the index is found, we stop searching lower
level buffers and output the value retrieved (our construction will always ensure that if an index value was
updated, then the latest value of the index will be stored at a high level buffer). If the index is not found,
then we read the corresponding element from the special buffer buff∗, once again using the underlying
LDC.

Since we must store every updated element as a (index, value)-pair, the above described technique will
decrease the rate of the code by a factor of O(log k). Hence, in order to ensure that our code has constant
rate, we carefully choose the total number of buffers τ + 1 in our construction to ensure that we obtain
constant rate codes and yet achieve good update and read locality.

Now, in the above construction, we first show that the decode and update algorithms succeed (with
small locality) as long as an adversary corrupts only a constant fraction of the bits of each buffer. We
then proceed to show that if an adversary corrupts bits of the codeword according to the Prefix Hamming
metric, then he can only corrupt a constant fraction of the bits of each buffer (within a factor of 2). This
gives us our construction of LULDCs.

Computational LULDDCs. To obtain our construction in the computational setting, at a high level,
we follow our information-theoretic construction. However, there are three main differences. First, when
decoding the ith bit of the codeword, we still scan each buffer to see if a “latest” copy of the ith bit is
present in that buffer. However, now, because we are in the computational setting, we no longer need to
store the buffer in sorted order and perform a binary search. Instead, we simply use hash functions to check
if a particular index is present in a buffer or not. Furthermore, we use cuckoo hash functions to minimize
our read locality in this case. Second, we store each buffer using a computational LDC that has constant
rate and O(λ) locality (such codes are obtained through the construction of Hemenway et al. [12]). Third,
we authenticate each bit of the codeword using a message authentication code so that we never decode
incorrectly (irrespecitve of the number of errors that the adversary introduces).

The above ideas do not suffice for our construction: in particular, if we applied these techniques, we
do not obtain a constant rate code as MACing each bit of the codeword would result in a O(λ) blowup in
the rate of the code. One could think of MACing O(λ) bits of the codeword, block by block, but then this
would result in a O(λ2) blowup in the read locality, as we must read λ bits now in each buffer through
the underlying LDC. In order to obtain our result, we MAC each bit of the codeword using a constant size
MAC; this technique is similar in spirit to the use of constant size MACs when authenticating codewords
in the context of optimizing privacy amplification protocols [4]. To obtain our result, we make a careful use
of these constant size MACs to verify the correctness of a codeword as well as to decode correctly (except
with negligible probability).

Dynamic Proofs of Retrievability. Cash et al. [3] showed how to convert any oblivious RAM (ORAM)
protocol that satisfied a special property (which they define to be next-read-pattern-hiding (NRPH)) into
a dynamic proof of retrievability (DPoR) scheme. We show that we do not need an ORAM scheme with
this property and the techniques used to construct LULDDCs can be used to directly build a DPoR

5

scheme. Moreover, we do not need to hide the read and write access pattern, thereby leading to significant
savings in the complexity. In particular, we show, that by encoding each buffer of the ORAM structure
using a standard error correcting code (that is also appropriately authenticated with constant size MACs),
and additionally storing authenticated elements of the raw data in the clear, we can use the techniques
developed for LULDDCs to construct a DPoR scheme with O(k) server storage, O(λ) client storage,
O(λ log k) read complexity, O(log2 k) write complexity and O(λ log k) audit complexity. Moreover, these
parameters include the cost for storage and verification of the MACs.

We remark here, that in a concurrent and independent work, Shi et al. [27] show how to construct
a dynamic proof of retrievability scheme using techniques similar in spirit to ours. On the one hand,
our construction achieves slightly better parameters than theirs: namely, they obtain a write complexity
of O(λ log k) (as opposed to O(log2 k) in our work) and audit complexity of O(λ2 log k) (as opposed to
O(λ log k) in our work). On the other hand, their protocol is publicly verifiable, while our construction is
not.

1.4 Organization of the paper

In Section 2, we introduce our notion of locally updatable and locally decodable codes as well as formally
define the Prefix Hamming metric. We present our construction of locally updatable and locally decodable
codes for the Prefix Hamming metric in Section 3. We consider the computational setting in Section 4 and
construct locally updatable and locally decodable-detectable codes. Finally, we give our construction of a
dynamic proof of retrievability scheme in Section 5. Due to the lack of space, we present further details of
our schemes and proofs in the Appendix.

2 Definitions

Notation. Let k denote the length of the message. LetM denote a metric space with distance function
dis(,). Let the set of all codewords corresponding to a message m be denoted by Cm – we will define this
set shortly. Let n denote the length of all codewords. m(i) denotes the ith bit of message m for i ∈ [k],
where [k] denotes the set of integers {1, 2, · · · , k}.

2.1 Codes with Locality

Locally decodable codes. We first recall the notion of locally decodable codes. Informally, locally
decodable codes allow the decoding of any bit of the message by only reading a few (random) bits of the
codeword. Formally:

Definition 1 (Locally decodable codes). A binary code C : {0, 1}k → {0, 1}n is (k, n, rk, δ, ε)-locally
decodable if there exists a randomized decoding algorithm D such that

1. ∀m ∈ {0, 1}k, ∀i ∈ [k], ∀cm ∈ Cm, and for all ĉm ∈ {0, 1}n such that dis(cm, ĉm) ≤ δn:

Pr[Dĉm(i) = m(i)] ≥ 1− ε,

where the probability is taken over the random coins of the algorithm D.

2. D makes at most rk queries to ĉm.

Locally updatable codes. We now define the notion of locally updatable and locally decodable codes.
A basic property that updatable codes must have is that one can convert a codeword of message m into
a codeword of message m′ (where m′ and m differ possibly only at the ith position), by changing only
a few bits of the codeword of m. However, we will obtain codes that have a stronger property; namely,

6

will ensure that we can convert any string that decodes to m into a string that decodes to m′. That is,
let m and m′ be two k-bit messages that (possibly) differ only in the ith position, where m′(i) = bi. For
some appropriate metric space that defines a measure of closeness, given a string ĉm that is “close” to a
codeword for message m, our update algorithm (that writes bit bi at position i) must convert ĉm into a
new string ĉm′ that is now “close” to a codeword for message m′. Furthermore, the update algorithm must
query and change only a few bits of ĉm. Additionally, our code should also be locally decodable.

Before we present the formal definition of a locally updatable and locally decodable code, we first need
to define the set of codewords Cm for a message m. Conceptually, with a locally updatable code, there are
two kinds of codewords that correspond to a message m – ones obtained by computing E(m) and those
obtained by computing updating the codeword of different message m′.

We let mibi denote a message that is exactly the same as m except possibly at the ith position (where

it is bi). Note that mibi maybe equal to m itself.

Definition 2 (The set Cm). For a message m, if there exists a message m̄, codeword c �m = E(m̄) (possibly

m̄ = m and c �m = cm) and a (possibly empty) set of indices {i1, · · · , it} such that m = m̄i1b1 ···itbt and
cm = u(....u(u(c �m, i1, b1), i2, b2),, it, bt), then cm is in the set Cm.

It is easy to see that Cm contains all the codewords that decode to m. We now present the formal
definition of a LULDC.

Definition 3 (Locally updatable and locally decodable codes (LULDC)). A binary code C : {0, 1}k →
{0, 1}n is (k, n, w, r, δ, ε)-locally updatable and locally decodable if there exist (possibly) randomized algo-
rithms ELDC, U and D such that the following conditions are satisfied:

1. Local Updatability:

(a) Let m0 ∈ {0, 1}k and let cm0 = ELDC(m0). Let mt be a message obtained by any (potentially
empty) sequence of updates. (t = 0 corresponds to the case where the codeword has not been
updated so far.) Then ∀m0 ∈ {0, 1}k, ∀cm0 ∈ Cm0 , ∀t,∀mt, ∀it+1 ∈ [k], ∀bt+1 ∈ {0, 1}, for all
ĉmt ∈ {0, 1}n such that dis(ĉmt , cmt) ≤ δn,

• The actions of U ĉmt (it+1, bt+1), change ĉmt to u(ĉmt , it+1, bt+1) ∈ {0, 1}n, where
dis(u(ĉmt , it+1, bt+1), cmt+1) ≤ δn for some cmt+1 ∈ Cmt+1, where mt+1 and mt are iden-
tical except (possibly) at the itht+1 position, where mt+1(it+1) = bt+1.

(b) The total number of queries and changes that U makes to the bits of ĉm is at most w.

2. Local Decodabilty:

(a) Let mt denote the latest message. ∀mt ∈ {0, 1}k,∀i ∈ [k], ∀cmt ∈ Cmt, and for all ĉmt ∈ {0, 1}n
such that dis(cmt , ĉmt) ≤ δn:

Pr[Dĉmt (i) = mt(i)] ≥ 1− ε,

where the probability is taken over the random coins of the algorithm D.

(b) D makes at most r queries to ĉmt.

2.2 The Prefix Hamming Metric

If we want codes that are truly updatable, the update locality w needs to be << δn. However, as mentioned
earlier, we cannot hope to achieve such locality for metrics where an adversary can arbitrarily corrupt a
constant fraction of the bits of the codeword. (Indeed, if we updated a codeword from cm to cm′ with a
locality of w, then by corrupting those w bits of cm′ , an adversary can ensure that the decoding algorithm
does not output the correct message – in particular, the decode algorithm would output m instead of m′.)

7

In light of this, we turn to a new, yet meaningful metric, for which we can guarantee that even if
an adversary corrupts a bounded number of bits of the codeword, though not in a completely arbitrary
manner, our decode algorithm still functions correctly. At a high level, bits of the codeword “age” and the
adversary can corrupt a fraction of the bits as a function of their age. Our metric relies crucially on the
order in which bits were written or updated during the creation of a codeword – nonetheless, we abuse
notation and refer to Prefix-Hamming as a metric. We first define the “age-ordering” of a codeword.

Definition 4 (Age-ordering of a codeword). Let c ∈ {0, 1}n. Let w1 denote the index/position of the
most recent bit of the codeword that was either written or updated. Let w2 denote the unique index of the
next most recent bit that was written/updated and so on, with wn denoting the index of the earliest bit
written (in comparison with the rest of the bits of the codeword). We call w1, · · · ,wn the age-ordering of
c. c(wi) denotes the bit value of the codeword at index wi. For all 1 ≤ t ≤ n, let c[1, t] denote the bits
c(w1), · · · , c(wt).

We are now ready to define how the adversary in our model can corrupt bits of the codeword. That is,
we define our metric space and its distance function.

Definition 5 (The Prefix Hamming Metric). Let c ∈ {0, 1}n. Let w1, · · · ,wn denote the age-ordering
of c. Let c′ ∈ {0, 1}n and for 1 ≤ t ≤ n, let c′[1, t] denote the bits c′(w1), · · · , c′(wt). We say that
the Prefix Hamming distance between c and c′, denoted by Prefix(c, c′) is ≤ δn if for all 1 ≤ t ≤ n,
Hamm(c[1, t], c′[1, t]) ≤ δt, where Hamm(x, y) denotes the Hamming Distance between any two strings x
and y of equal length.

3 LULDCs for the Prefix Hamming Metric

3.1 Our results

In this section, we show how to construct locally updatable locally decodable error correcting codes
(LULDCs) that are resilient to a constant fraction of adversarial errors for the Prefix Hamming metric
that we defined in Section 2.2. Formally, we show:

Theorem 1. Let τ = log k− log(log k+1)−1. Let CLDC be a family of (ki, ni, ri, ε, δ)−locally decodable code
for Hamming distance with algorithms (ELDC,DLDC), where ki = 2i(log k+1) for all 0 ≤ i ≤ τ . Additionaly,
let CLDC contain a (k∗, n∗, r∗, ε, δ)−locally decodable code for Hamming distance, where k∗ = k. Let ρi = ki

ni

for all i and let ρ∗ = k∗

n∗ . Then there exists a (k, n, w, r, ε, δ2) − LULDC code C = (E ,D,U) for the Prefix
Hamming metric achieving the following parameters:

• Length of the code (n): n = n∗ +
τ∑
i=0

ni.

• Update locality (w): w = (log k + 1)
τ∑
i=0

1
ρi

+ log k+1
ρ∗ , in the worst case.

• Read locality (r): r = 8(1−ε)
(1−2ε)2T log T

ε + r∗, where T = (log k + 1)

(
r0 +

∑
1≤j≤τ

jrj

)
, in the worst

case.

As a corollary to Theorem 1, using the LDCs from [16, 10, 13] we obtain:

Corollary 1. For every ε, α > 0, there exists a (k, n, w, r, ε, δ)− LULDC code C = (E ,D,U) for the Prefix
Hamming metric achieving the following parameters, for some constant 0 < δ < 1

4 :

• Length of the code (n): n = 2k
1−α .

8

• Update locality (w): w = O(log2 k), in the amortized sense.

• Read locality (r): r = O(kε
′
), for some constant ε′, in the worst case.

Large alphabet codes. We remark that for codes over larger alphabet Σ, with |Σ| ≥ c log k for some
constant c, we can modify our code to obtain a better update locality of O(log k) (other parameters
remaining the same).

3.2 Code description

We will now construct the codes that will prove Theorem 1. Our codeword will have a structure similar to
that of the hierarchical data-structure used by Ostrovsky [19, 20] in the construction of oblivious RAMs.
Let τ = log k − log(log k + 1)− 1. Each codeword of C will consist of τ + 1 buffers, buff0, . . . , buffτ and a
special buffer buff∗. We will ensure that as updates take place, at any point of time, buffi will be either
empty or full (for all i > 0). A full buffer, buffi, will contain an encoding of a set µi of 2i elements. In
particular, µi = [(a1

i , v
1
i), . . . , (a

2i
i , v

2i
i)] where aji is an address (between 0 and k − 1) and vji is the value

corresponding to it. buffi (when non-empty) will store ψi = ELDC(µi). The special buffer buff∗ will contain
an encoding of the bits of the entire message in order, without address values; in particular, buff∗ stores
ψ∗ = ELDC(m).

Encode algorithm. Our encoding algorithm works as follows:

Algorithm E(m):

1. Creates the τ + 1 empty buffers (buff0, . . . , buffτ).

2. Let µ∗ = {m(1), · · · ,m(k)}, where m(i) denotes the ith bit of the message. It computes ψ∗ =
ELDC(µ∗) and stores it in buff∗.

Local update algorithm. Our update algorithm updates a string ĉm (such that Prefix(ĉm, cm) ≤ δn,
for some cm ∈ Cm) into a string ĉ′m, setting m(i) to bi.

Algorithm U ĉm(i, bi):

1. If the first buffer is empty, computes ELDC(i, bi) and stores it in buff0.

2. If the first buffer is non-empty, it finds the first empty buffer. Let this be buffj . It decodes all the
buffers above it to get µ0 to µj−1

4. Recall that each µh is a set of (a, v) pairs where a denotes the
address (of length log k) and v denotes a value (∈ {0, 1}). It merges all these pairs of values as well
the pair (i, bi) in a sorted manner (where the sorting is done on address) and stores it in µj . Note,
there are 2j elements and therefore µj is now a full buffer.

Handling Repetitions: While merging elements from multiple buffers, we might encounter repetition
of addresses. Instead of removing repetitions, we simply ensure that all values stored in the buffers
until j − 1 store only the “latest value” corresponding to the repeated address. (The latest value is
easy to determine – it is the first value corresponding to the buffer that you encounter when reading
the buffers in a top-down manner. Of course, for the address being inserted, namely i, the latest
value will be bi.)

4Here, these buffers need not be decoded using the local decoding algorithm and one can obtain perfect correctness by
simply running the standard decoding algorithm for the error correcting code.

9

3. The update algorithm computes ψj = ELDC(µj) and stores it in buffj .

4. The buffers from µj−1 . . . µ0, in that order, are now set to empty by writing special symbols into it.
Looking ahead, the order in which this done is important as this ensures that buffh always has bits
that are “younger” than the bits in buffh+1 for all h (when considering the age-ordering of the bits).

5. If none of the buffers are empty, namely, all buffers buff0, · · · , buffτ are full, then the update algorithm
simply re-computes a new encoding of the message using the LDC encode algorithm and stores it in
buff∗. In other words, the algorithm decodes all the buffers to obtain the latest value of each bit,
concatenates these bits together to form µ∗ = {m(1), · · · ,m(k)} and encodes these bits to compute
ψ∗ = ELDC(µ∗). Once again, the buffers from buffτ to buff0 are set to empty in that order by writing
special symbols into it.

Local decode algorithm. Recall that our buffers satisfy the following conditions:

• The buffers are always sorted (based on the address a).

• If the address a “appears” in the same buffer multiple times, then all values corresponding to this
address are the same. (This is guaranteed by the way we handle repetitions during our merging
procedure.)

• Finally, across multiple buffers, the most recent value corresponding to an address appears in the
higher buffer (i.e. a lower buffer value).

Algorithm Dĉm(i):

1. The decode algorithm starts with the top-most buffer (buff0) and proceeds downwards until it finds
the address i.

2. To search a buffer buffj for the element i, it performs a binary search on elements stored in that
buffer. Because buffj contains an LDC encoding, we additionally need to use DLDC() algorithm to
access these j elements. Since DLDC() might fail with ε probability to decode one coordinate of
the underlying message, we need to repeat DLDC() multiple (i.e. λ) times to amplify the success
probability (where λ is a carefully chosen parameter).

3. If element i is not found in any of the buffers buff0 through buffτ , then the algorithm simply (locally)
decodes the ith element from buff∗ (which contains an LDC encoding of the message).

3.3 Proof of Theorem 1

We shall now prove Theorem 1; namely, we show that the construction described above in Section 3.2 is
a locally updatable, locally encodable binary error correcting code (for the Prefix Hamming metric) with
the parameters listed in Theorem 1. Instead of directly proving Theorem 1, we will instead show that the
construction is a LULDC for a metric that we call the Buffered-Hamming metric. From this, the proof of
Theorem 1 directly follows. We shall now define the Buffered-Hamming metric and its associated distance
function.

Buffered-Hamming Distance. Let c ∈ {0, 1}n comprise of buffers buff = buff0, . . . , buffq of lengths
n0, . . . , nq respectively. Let c′ ∈ {0, 1}n be another string with buffers buff ′ = buff ′0, . . . , buff ′q. Then we
say that Buffered-Hamming Distance, BHdis(cm, c

′) ≤ δn if ∀i Hamm(buffi, buff ′i) ≤ δni.

10

Lemma 1. Let τ = log k− log(log k+ 1)− 1. Let CLDC be a family of (ki, ni, ri, ε, δ)−locally decodable code
for Hamming distance with algorithms (ELDC,DLDC), where ki = 2i(log k+1) for all 0 ≤ i ≤ τ . Additionaly,
let CLDC contain a (k∗, n∗, r∗, ε, δ)−locally decodable code for Hamming distance, where k∗ = k. Let ρi = ki

ni

for all i and let ρ∗ = k∗

n∗ . Then the construction described above in Section 3.2 is a (k, n, w, r, ε, δ)−LULDC
code C = (E ,D,U) for the Buffered-Hamming metric achieving the following parameters:

• Length of the code (n): n = n∗ +
τ∑
i=0

ni.

• Update locality (w): w = (log k + 1)
τ∑
i=0

1
ρi

+ log k+1
ρ∗ , in the worst case.

• Read locality (r): r = 8(1−ε)
(1−2ε)2T log T

ε + r∗, where

T = (log k + 1)

(
r0 +

∑
1≤j≤τ

jrj

)
, in the worst case.

Proof. Length of the code. Recall that we have buffers in levels 0, 1, . . . , τ . Each buffer encodes a message
µj of length kj = 2j(log k + 1); the encoding is denoted ψj and is of length nj . Buffer buff∗ contains an

LDC encoding of a message of length k. It is easy to see that the length of the code n = n∗ +
τ∑
i=0

ni.

Read locality and Decode Correctness. We now analyze the read locality and the decodability
of our code. Let ĉm be the given (corrupted) codeword and let ĉm be such that BHdis(ĉm, cm) ≤ δn,
where cm ∈ Cm for the most “recent” m ∈ {0, 1}k (obtained after an encoding of a message and possible
subsequent updates). We compute the read locality of our local decoding algorithm and also prove that
for all i ∈ [k], the decoding algorithm will output m(i) with probability ≥ 1− ε.

Let µ = {µ0, . . . , µτ} and let ψ = {ψ0, . . . , ψτ}, where ψi = ELDC(µi). Let CjLDC denote the locally
decodable code used to encode µj . We use µx(y) to denote the yth bit of µx. Recall that in order to read
an index i of the message m = m0, . . . ,mk, the algorithm Dψ(i) does a binary-search on the buffers in a
top-down manner to see if there is a value corresponding to address i. The worst case locality occurs when
mi has never been updated. In this case, the binary search needs to be done on every buffer and will then
conclude by performing a (local) deocoding for the ith bit in buff∗ which contains ψ∗ = ELDC(m).

We first calculate the number of bits of µj (for j ≥ 1), one would need to read, if we were doing the
binary search directly over µj . There are 2j elements i.e.,(a, v) pairs, in level j. So the binary search would
need to look at j elements (in the worst case). Each element has length log k + 1. The total number of
bits of µj we access if we did a binary search over µj would be j(log k + 1) (for j ≥ 1). Dψ(i) learns these

bits by making calls to DψjLDC which has locality rj . Therefore the number of bits of ψj , read via calls to

DψjLDC, is at most j(log k+ 1)rj (for 1 ≤ j ≤ τ) and (log k+ 1)rj (for j = 0). (Recall, that in buff∗, a binary
search is not performed and the decode algorithm simply decodes the (single) ith bit of the message via
LDC decode calls to ψ∗.)

Define a set Read and add (x, y) to it if µx(y) was accessed; let T = |Read|. Then,

T = (log k + 1)

r0 +
∑

1≤j≤τ
jrj

 and (1)

the total decode locality r = Tλ+ r∗ (2)

Equation 2 follows from that fact that in order to read a bit of µj correctly, we must amplify the success

probability of DψjLDC, by taking the majority of λ executions (Note, that just as in standard LDCs, even

11

though our LULDC allows a decoding error of ε, we cannot afford to have an error of ε while reading every
bit of our binary search in every buffer, as this would lead to an overall worse error probabaility). If the
element is not found in the buffers buff0 through buffτ , then we only need to read 1 bit of the underlying
message via a single LDC decoding call to ψ∗ and hence we pay an additional r∗ in our read locality.

In order to determine r, all that is left, is for us to determine λ. Let the variable #Succ(x, y) denote the

number of calls such that Dψ
′
x

LDC(y) = µ(x, y). Let SuccRead(x, y) denote that event that #Succ(x, y) > λ
2 .

First, since ĉm is such that BHdis(ĉm, cm) ≤ δn, it follows that, Hamm(ψ′j , ψj) ≤ δ|ψj | for all 0 ≤ j ≤ τ

and Hamm(ψ∗
′
, ψ∗) ≤ δ|ψ∗|. Now, since C

ψ′j
LDC has error-rate ε, E[#Succ(x, y)] = λ(1− ε). By the Chernoff

bound5, Pr[#Succ(x, y) ≤ λ
2] ≤ p = e

−λ(1−2ε)2

8(1−ε) .
In other words,

Pr[SuccRead(x, y) = 0] ≤ p = e
−λ(1−2ε)2

8(1−ε) (3)

i.e.,
∑

(x,y)∈Read

Pr[SuccRead(x, y) = 0] ≤ Tp. (4)

Our goal is to ensure that

Pr

 ∧
(∀(x,y)∈Read)

SuccRead(x, y) = 1

 (≥ 1− Tp) ≥ 1− ε.

In other words, we need to set λ such that Tp ≤ ε. Substituting for p = e
−λ(1−2ε)2

8(1−ε) , we get that

λ ≥ 8(1− ε)
(1− 2ε)2

log

(
T

ε

)
.

By setting λ = 8(1−ε)
(1−2ε)2 log

(
T
ε

)
and substituting in Equation 2, we get that the decode locality,

r =
8(1− ε)
(1− 2ε)2

T log
T

ε
+ r∗.

This proves the correctness and the read locality of our decoding algorithm.

Update Locality and Correctness. First, we count the number of coordinates accessed in order to
rewrite one bit of the message mi. This includes the total number of coordinates read and written.

It is easy to see that in algorithm UCm(x, bx), buffer buffj (for 0 ≤ j ≤ τ) is rewritten every 2j steps.
Buffer buff∗ is re-written every 2τ+1 steps. In 2j updates (when j < τ + 1), therefore, the total number of
bits re-written is

= 2j
|µ0|
ρ0

+ 2j−1 |µ1|
ρ1

+ . . .+ 20 |µj |
ρj

= 2j |µ0|
∑

0≤i≤j

1

ρi
(since µi = 2µi−1,∀i)

When j ≥ τ + 1, buff∗ is re-written and hence, in this case, the total number of bits re-written is

5Recall that for a variable X with expectation E(X), the Chernoff bound states that for any t > 0, Pr[X ≤ (1− t)E(X)] ≤

e−
t2E(X)

2 . In this case, X = #Succ(x, y);E(X) = λ(1− ε); t = 1−2ε
2−2ε

.

12

= 2j
|µ0|
ρ0

+ 2j−1 |µ1|
ρ1

+ . . .+ 2j−(τ+1) |µτ |
ρτ

+ 2j−(τ+1) |k∗|
ρ∗

= 2j |µ0|
∑

0≤i≤τ

1

ρi
+ 2j−(τ+1) |k∗|

ρ∗

The amortized update locality w per update is

|µ0|
∑

0≤i≤τ

1

ρi
+
|k∗|

2τ+1ρ∗
= (log k + 1)

∑
0≤i≤τ

1

ρi
+

log k + 1

ρ∗
.

Achieving a Worst-case Guarantee. Note that, similar to the constructions of oblivious RAMs, one
can convert the amortized update locality into a worst-case guarantee on the write locality, by distributing
the work over many write operations. At a high level, this works by maintaining an additional “working
copy” of data structure. Once levels 1, . . . , i − 1 of the first data structure are filled in, the contents of
level i are computed. This process takes place even as levels 1, . . . , i − 1 of the second data structure are

being filled in. This gives us a worst case write locality of w = (log k + 1)
τ∑
i=0

1
ρi

+ log k+1
ρ∗ for the Buffered

Hamming metric. Note, however, that a similar argument does not translate to the setting of the Prefix
Hamming metric (since one would need to re-write parts of buffers at various levels at various points of
time) and hence we only get an amortized bound for this metric.

To show update correctness, we must now argue, that if we begin the update algorithm with a corrupted
codeword ĉmt , such that BHdis(ĉmt , cmt) ≤ δn and update the message mt to mt+1 (where mt and mt+1

differ (possibly) only at the itht position, where mt+1(it) = bt+1), then we modify ĉmt to ĉmt+1 where
BHdis(ĉmt+1 , cmt+1) ≤ δn for some cmt+1 that is a codeword of mt+1. To see this, observe that, the update
algorithm decodes all buffers buff0, · · · , buffj for some 0 ≤ j ≤ τ and possibly re-encodes these buffers
into buffj+1. Additionally, the update algorithm sets buffers buffj , · · · , buff0 to empty. In certain cases,
the update algorithm might re-write buffer buff∗. Note that if buffj+1 was written/re-encoded, then all
buffers buffj through buff0 were also re-encoded. Similarly, if buff∗ was re-encoded, then all buffers buffτ
through buff0 were also re-encoded. Now, since BHdis(ĉmt , cmt) ≤ δn, it follows that all the buffers that
were decoded by the update algorithm, decoded correctly and these buffers were then re-encoded without
any errors. Hence, for all these buffers 0 ≤ h ≤ j + 1 in ĉmt+1 , Hamm(ψ̂h, ψh) ≤ δ|ψh|. For buffers that

were not touched, since no change was made to these buffers, we still have that Hamm(ψ̂h, ψh) ≤ δ|ψh| (for
h > j + 1 and for ψ∗). From these, it follows that BHdis(ĉmt+1 , cmt+1) ≤ δn.

This proves the update correctness as well as the update locality of our update algorithm. This
completes the proof of Lemma 1.

Lemma 2. Let C = (E ,D,U) be the above described (k, n, w, r, ε, δ)−LULDC code for the Buffered-Hamming
metric. Then C is a (k, n, w, r, ε, δ2)− LULDC code for the Prefix Hamming metric.

Proof. Note that in our code construction, during a write/update operation, we never change the bits of
the codeword in a buffer buffi without changing the bits of the codeword in a buffer buffj for any j < i.
Furthermore, even when we change the bits of the codeword in a buffer buffi, we then change the bits of
the codeword in buffers buffi−1, · · · , buff0 in that order. This means that if we consider the age-ordering
of cm, denoted by w1, · · · ,wn, then the indices corresponding to a buffer buffj will always precede indices
corresponding to a buffer buffi, for any i > j. Now, since every buffer buffi+1 is twice the size of buffer buffi,
it follows that if two codewords cm and ĉm are such that Prefix(cm, ĉm) ≤ δn

2 , then BHdis(cm, ĉm) ≤ δn,
which gives us our result.

The proof of Theorem 1 now follows by simply combining Lemmas 1 and 2.

13

4 Computational setting

4.1 Codes for computationally bounded adversaries

In the previous section, we showed how to construct LULDC codes for the Prefix-Hamming metric. As
noted before, we cannot construct LULDCs for metrics where the adverary can arbitrarily corrupt a
constant fraction of the bits of the codeword. Since it is impossible to construct codes for the case of
arbitrary adversarial errors, one could consider a setting where the decode algorithm will either decode
to the correct message or detect if it is not able to do so; in other words, the decode algorithm will
never output an incorrect message. Here too, it is easy to see that, unfortunately, one cannot have such
information-theoretic error correcting codes. However, we show that by moving to the computationally-
bounded adversarial setting, and by allowing the encoder/decoder to maintain a secret state S, one can
construct error correcting codes with optimal rate that are locally updatable. Our code will provide the
following guarantees:

• If the Prefix Hamming condition is satisfied, then every bit of the message will be locally decodable.

• Additionally, the (local) decoding algorithm will never output an incorrect bit of the message.

These guarantees allow us to achieve a tradeoff between detecting arbitrary adversarial errors and
decoding a smaller class of errors. We will provide such a guarantee even when the adversary gets to
observe the history of updates/writes made to the codeword; we denote the history of updates/writes
made by hist6.

We now define such locally updatable locally decodable-detectable error correcting codes (LULDDC).
As before, we provide our definition for the binary case, but this can be generalized to codes for larger
alphabet Σ. Let λ be the security parameter and neg(λ) denote a function that is negligible in λ. We begin
with the definition of the Prefix Hamming metric for the computational setting.

Definition 6 (The Computational Prefix Hamming Metric). Let E ∈ {0, 1}r7. Let c be of the form
E1, . . . ,En. Let w1, · · · ,wn denote the age-ordering of c. For some c′ of the form E1, . . . ,En and for 1 ≤
t ≤ n, let c′[1, t] denote the elements c′(w1), · · · , c′(wt). We say that the Computational Prefix Hamming8

distance between c and c′, denoted by Prefixcomp(c, c′), is ≤ δn if for all 1 ≤ t ≤ n, Hamm(c[1, t], c′[1, t]) ≤ δt,
where Hamm(x, y) denotes the Hamming Distance between any elements x and y.

Definition 7 (Locally updatable and locally decodable-detectable codes for adversarial errors (LULDDC)).
A binary code C : {0, 1}k → {0, 1}n is (k, n, w, r, λ, S)-locally updatable and locally decodable/detectable
if there exist randomized algorithms U and D such that the following conditions are satisfied:

1. Local Updatability:

(a) Let the state be initialized to S0. Let m0 ∈ {0, 1}k and let cm0 = E(m0,S0). Let mt be a
message obtained by any (potentially empty) sequence of updates. (Note that the state S is
updated everytime an update is made.) Let hist contain the entire history of updates made on
potentially corrupted codewords. Let ĉmt be the final codeword obtained.

Then ∀m0 ∈ {0, 1}k,∀t,∀mt, ∀i ∈ [k],∀b ∈ {0, 1}, for all probabilistic polynomial time (PPT)
algorithms A, for all hist and for all ĉmt ∈ {0, 1}n output by A(mt, i, b, hist), the following
condition holds with all but a negligible probability:

6While this is the same guarantee that we provide even in the information-theoretic setting, we make this explicit here as
we wish to endow the computationally bounded adversary with as much power as possible.

7We will think of E as a bit bi followed by its constant sized authentication tag σi = MAC(bi).
8While the definition of the distance function is not computational, we call it the computational prefix hamming distance,

as this distance function is used only for the computational LULDDC construction. In our LULDDC codes, security guarantees
will hold for codeword corruptions made by computationally bounded adversaries.

14

• If ∃cmt ∈ Cmt such that Prefixcomp(ĉmt , cmt) ≤ δn, then the actions of U ĉmt (i, b,St), change
ĉmt to u(ĉmt , i, b, St) ∈ {0, 1}n, where Prefixcomp(u(ĉmt , i, b, St), cmt+1) ≤ δn for some cmt+1 ∈
Cmt+1, where mt+1 and mt are identical except (possibly) at the ith position, and mt+1(i) = b.

(b) The total number of queries and changes that U makes to the bits of ĉmt is at most w.

2. Local Decodabilty-Detectability:

(a) Let mt ∈ {0, 1}k denote the latest message, as determined by hist. Then ∀hist, ∀mt ∈ {0, 1}k,∀i ∈
[k], for all probabilistic polynomial time (PPT) algorithms A and for all ĉmt ∈ {0, 1}n output by
A(mt, i, hist):

• If ∃cmt ∈ Cmt such that Prefixcomp(ĉmt , cmt) ≤ δn, then

Pr[Dĉm(i,S) = m(i)] = 1− neg(λ),

where the probability is taken over the random coin tosses of the algorithm D and randomness
used to generate S.

• If ∀cmt ∈ Cmt ,Prefixcomp(ĉm, cm) > δn, then

Pr[Dĉm(i,S) = m(i) or ⊥] = 1− neg(λ),

where the probability is taken over the random coin tosses of the algorithm D and randomness
used to generate S.

(b) D makes at most r queries to ĉmt.

4.2 Our Results

In this section, we present a construction of a LULDDC in the computational setting. In particular, we
show:

Theorem 2. There exists a (k, n, w, r, λ, S) locally updatable and locally decodable-detectable error correct-
ing code C = (E ,D,U), for the Computational Prefix Hamming metric, achieving the following parameters,
for some constant 0 < δ < 1

4 :

• Length of the code (n): n = O(k).

• Update locality (w): w = O(log2 k), in the amortized sense.

• Read locality (r): r = O(λ log2 k), in the worst case.

Similar to the information-theoretic consturction, we use a heirarchical data structure to store our
codewords. In addition, we use cuckoo hashing and private key locally decodable codes, both of which are
reviewed in Appendix A.1.

LULDDC Overview. We start by recalling the construction of the information-theoretic LULDC code
from Section 3.2. Recall that codewords had τ buffers. Each buffj encoded 2j (address, value) pairs, stored
in a sorted manner. We performed a binary search to search for a particular address, a within buffj . The
first difference is that we now use computational locally decodable codes to encode each buffer. (Such codes
were introduced by [21]. In this work, we use the construction due to [12].) The next difference in the
secret key setting is that we optimize the search performed on the buffers by using cuckoo hash functions9.

9Cuckoo hash functions were first used in conjunction with the hierarchical data structure [19],[20] by Pinkas and Rein-
man [23] to obtain an ORAM construction. While it was shown that this construction does not hide the access pattern (i.e.,
which elements were read/written) [9],[17], as we will see, the underlying data structure coupled with cuckoo hashing can still
be used securely to obtain a LULDDC code.

15

In particular, an element (a, v) is inserted at location h`,1(a) or h`,2(a). To search for an address a in a
particular buffer buff`, our decode algorithm only needs to read locations h`,1(a) and h`,2(a). (Of course,
as in the information-theoretic case, we don’t store the buffers in the clear. Rather we store an encoding of
the buffers, now computed using the codes of [12] and the locations, h`,1(a) and h`,2(a), are read via calls
to the underlying decode algorithm.) The second difference from the information theoretic construction
is that we now use message authentication codes to detect a scenario where the codeword has too many
errors. (To ensure local decodability, we need to authenticate each bit of the codeword separately.) This
guarantees that our computational LULDDC code never decodes to an incorrect message.

Optimizing Parameters. While the above approach does give us an LULDDC construction, it doesn’t
give us our desired parameters. In particular, message authentication tags need to be of length at least λ,
causing a blow-up of at least λ in the parameters. To avoid this, we use constant-size MACs instead.

Constant-size Message Authentication Codes. Such message authentication codes (MAC) authen-
ticate each bit of the message being authenticated (in this case, the codeword) with a tag of length O(1).
While, individually, such MACs can be forged with constant probability, as we will see in our construction,
they can be made secure when we are checking ω(λ) MAC values at a time.

At a high-level our decode algorithm will work as follows: we check the authenticity of λ randomly
chosen bits of the codeword in each buffer. If most of the tags verify, we get a guarantee that less than a
certain constant fraction of the bits of the codeword are corrupted. (Indeed, since each tag is computed
with an independent MAC key, the odds that an adversary forges λ tags on his own, is negligible.) This,
in turn, ensures that less than a constant fraction of bits of each codeword are corrupted, except with
negligible probability10, and therefore the codeword will decode correctly. (To the best of our knowledge,
the idea of combining constant sized MACs with error correcting codes in such a way, was first used in
the context of optimizing privacy amplification protocols in [4].) This combined with certain other ideas,
give us the construction with parameters stated in Theorem 2. The final construction is described in
Appendix A and the proof of Theorem 2 is presented in Appendix A.3.

5 Dynamic Proof of Retrievability

A proof of retrievability scheme enables a client, storing his data on an untrusted server, to execute an
audit protocol such that a malicious server that deletes or changes even a single bit of the client’s data
will fail to pass the audit protocol, except with negligible probability in the security parameter. Proofs of
retrievability, introduced by Juels and Kaliski [14], were initially defined on static data building upon the
closely related notion of sublinear authenticators defined by Naor and Rothblum [18]. The work of Cash,
Küpçü, and Wichs [3] considers this notion for dynamically changing data; in other words, they constructed
a proof of retrievability scheme that allowed for efficient updates to the data. Cash et al. showed how
to convert any oblivious RAM (ORAM) protocol that satisfied a special property (which they define to
be next-read-pattern-hiding (NRPH)) to construct a dynamic proof of retrievability (DPoR) scheme. We
show that the techniques used to construct LULDDCs can be used to build a DPoR scheme. In addition
to being conceptually simple, our construction also significantly improves the parameters achieved by [3].

At a high-level, our construction follows the same approach as our LULDDC scheme. One main
difference is that in addition to storing encoded messages in buff0 to buffτ and buff∗, we will store the
decoded, authenticated, message of every buffer in another set of τ + 2 buffers. The read algorithm works
by reading these buffers (instead of the encoded buffers) and verifying their respective MACs. The write
algorithm works the same as before – except that it writes to both encoded and unencoded buffers. The

10This condition remains true only if all the buffers contain codewords that are at least λ-bits long. We will ensure this by
starting our buffers only at a particular level.

16

audit algorithm works by checking λ randomly chosen locations of each of the encoded buffers and verifying
their MACs. Additionally, to obtain good write complexity, we use linear time encodable and decodable
standard error correcting codes [28] to encode each buffer, as opposed to using locally decodable codes.

We use these and a few other ideas to ensure that the storage on the server’s side is O(k). The
complexity of the PWrite protocol is O(log2 k), similar to the complexity of the update algorithm of our
LULDDC. The complexity of the PRead protocol is simply O(λ log k) as we need to read a constant number
of elements in each buffer (along with their MACs of length λ). Finally, the complexity of the Audit protocol
is O(λ log k) as we read λ elements of the codeword in each buffer, along with their constant-size MACs.
The client storage is O(λ). We present the details of our DPoR scheme in Appendix B.

5.1 Dynamic PoR

A dynamic PoR scheme [3] comprises of four protocols PInit,PRead,PWrite, and Audit between two stateful
parties: the client C and a server S who is untrusted. The client stores some data m with the server and
wishes to perform read, write, and audit operations on this data. In detail, the corresponding protocols
are:

• PInit(1λ,Σ, k): In this protocol, the client initializes an empty data storage on the server of length k,
where each element in the data comes from an alphabet Σ. The security parameter is λ.

• PRead(i): In this protocol, the client reads the ith location of the data and outputs some value vi at
the end of the protocol.

• PWrite(i, vi): In this, the client sets the ith location of the data to vi.

• Audit(): In this protocol, the client verifies that the server is maintaining the data correctly so that
they remain retrievable. The client outputs either accept or reject.

The (private) state of the client is implicitly assumed in all the above protocols and the client may also
output reject during any of the protocols if it detects any malicious behavior on the part of the server. A
dynamic PoR scheme must satisfy three properties: correctness, authenticity, and retrievability. We refer
the reader to Appendix B.1 for the formal definitions of these properties.

5.2 Construction

We now describe our construction of a dynamic PoR scheme. We first note that although an LULDDC
is very similar to the notion of a dynamic PoR, we do not use the construction of our LULDDC directly
to obtain a dynamic PoR. The reason is that, the LULDDC does not (by itself) support an efficient audit
mechanism; on the other hand, an LULDDC satisfies an additional property that corrupted codewords
decode as long as the Prefix Hamming condition is satisfied. This leads to a slightly less efficient construc-
tion for LULDDCs. Now, we show that we can use ideas developed in the construction of LULDDCs to
obtain a dynamic PoR scheme. As is in the works of dynamic PoR [3], we work over an alphabet Σ and
all elements that are stored on the server are elements of the alphabet. Our construction of dynamic PoR
is very similar to our construction of LULDDCs. We present the construction here and defer the proof to
Appendix B.

As before, the client will store τ buffers buff0 to buffτ along with a special buffer buff∗. A difference
between LULDDCs and our dynamic PoR construction is that we will make use of a standard error
correcting code (as opposed to a locally decodable error correcting code) to encode elements stored in each
buffer; however, we will use codes that are linear time encodable and decodable (in order to minimize the
computational complexity of our construction). Such codes were constructed in the work of Spielman [28].
We will denote such an error correcting code with the encoding algorithm Elin and Dlin. Another difference

17

is that, in addition to storing encoded messages in buff0 to buffτ and buff∗, we will store the decoded,
authenticated, message of every buffer in another set of τ + 2 buffers; call these buffers plain0 to plainτ and
plain∗. Finally, we shall use two types of message authentication codes: to MAC the elements of buffers
buff0 to buffτ and buff∗ (that store codewords), we shall use constant size MACs; however, to MAC the
elements of buffers plain0 to plainτ (that store elements of the message in the clear), we shall use MACs
with MAC length λ. We shall abuse notation and denote both these MACs by MAC (it will be clear from
context which type of MAC we use).

• PInit(1λ,Σ, k): This protocol is very similar to the Encode algorithm of our LULDDC. Namely, when
storing data m = m(1), · · · ,m(k) = µ∗ on the server, with m(i) ∈ Σ, the client computes ψ∗ =
Elin(µ∗) and η∗ = {(ψ∗(j)||σ∗(j))}, where ψ∗(j) is the jth element of ψ∗ and σ∗(j) = MAC(ψ∗(j)).
The client stores η∗ in buff∗. Additionally the client will also store every element of m along with its
MAC in plain∗11.

• PWrite(i, vi): To write element vi into position i, C does as follows:

– If the first buffer is non-empty, find the first empty buffer – this can be determined using ctr,
but for now, we just assume that we learn this by decoding buffers in a top-down manner and
scanning them to see if they contain any non-empty element. Let the first empty buffer be at
level j.

– Update S to S′ so that it now contains an incremented counter.

– We store (i, bi) as well as all the non-empty elements from µ0 to µj−1 into µj . To do this, we
decode ψ0 · · ·ψj−1, insert the elements into µj and then compute Elin(µj) to obtain ψj . We
compute ηj(`) = {ψj(`), σj(`)}. (The authentication tags σj(`) are recomputed with the latest
key corresponding to level j, which in turn is computed from S′).

– Additionally, we store the plain message µj in plainj . Note, that whenever reading an element,
we read the element along with its MAC and reject if the MAC does not verify.

– The buffers from buffj−1 . . . buff0, as well as plainj−1 . . . plain0, are now set to empty by writing
special elements into it (along with appropriate MAC values).

• PRead(i): To read the ith element of the most recent message stored on the server, the client does
the following:

– The algorithm starts with the top-most buffer (plain0) and proceeds downwards until it finds
the address i.

– Note that plainj contains µj in plaintext. To search a buffer buffj for an index i, we read the
locations hj,1(i) and hj,2(i). If either of these locations contains an entry (i, v) then v is the
output of the algorithm.

– If we reach the last buffer, plain∗, we read the element v stored at address i in plain∗. If the
tag σ does not verify, for any element read (in any of the buffers), then the algorithm outputs
reject, otherwise v is the output12.

• Audit(): The audit protocol works as follows:

11In order to reduce the storage complexity, every λ
|Σ| elements are grouped together and MACed so that the storage

complexity remains at O(k) and does not become O(kλ).
12Note, that because of the way we MAC the plaintext values in plain buffers, when we read a single element from plain,

we may have to read an additional λ
|Σ| elements in order to verify the MAC; we ignore this in the description for ease of

exposition.

18

– For every buffer buff0 to buffτ as well as buff∗, pick λ locations of the codeword ψj (stored in
buffj) at random and read these λ elements along with their MAC values.

– If all the MACs verify, then output accept, otherwise output reject.

Acknowledgments. We thank the anonymous reviewers of TCC 2014 for their very valuable feedback.

References

[1] G. Ateniese, S. Kamara, and J. Katz. Proofs of storage from homomorphic identification protocols.
In Advances in Cryptology - ASIACRYPT 2009, 15th International Conference, pages 319–333, 2009.

[2] K. D. Bowers, A. Juels, and A. Oprea. Proofs of retrievability: theory and implementation. In
Proceedings of the first ACM Cloud Computing Security Workshop, CCSW 2009, pages 43–54, 2009.

[3] D. Cash, A. Küpçü, and D. Wichs. Dynamic proofs of retrievability via oblivious ram. In Advances
in Cryptology - EUROCRYPT 2013, 32nd Annual International Conference, pages 279–295, 2013.

[4] N. Chandran, B. Kanukurthi, R. Ostrovsky, and L. Reyzin. Privacy amplification with asymptotically
optimal entropy loss. In Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC
2010, pages 785–794, 2010.

[5] Y. M. Chee, T. Feng, S. Ling, H. Wang, and L. F. Zhang. Query-efficient locally decodable codes of
subexponential length. Computational Complexity, 22(1):159–189, 2013.

[6] Y. Dodis, S. P. Vadhan, and D. Wichs. Proofs of retrievability via hardness amplification. In Theory
of Cryptography, 6th Theory of Cryptography Conference, TCC 2009, pages 109–127, 2009.

[7] K. Efremenko. 3-query locally decodable codes of subexponential length. In STOC, Proceedings of
the 41st Annual ACM Symposium on Theory of Computing, pages 39–44, 2009.

[8] O. Goldreich. Towards a theory of software protection and simulation by oblivious rams. In STOC,
pages 182–194, 1987.

[9] M. T. Goodrich and M. Mitzenmacher. Privacy-preserving access of outsourced data via oblivious
ram simulation. In ICALP (2), pages 576–587, 2011.

[10] A. Guo, S. Kopparty, and M. Sudan. New affine-invariant codes from lifting. In ITCS, Innovations
in Theoretical Computer Science, pages 529–540, 2013.

[11] B. Hemenway and R. Ostrovsky. Public-key locally-decodable codes. In Advances in Cryptology -
CRYPTO 2008, 28th Annual International Cryptology Conference, pages 126–143, 2008.

[12] B. Hemenway, R. Ostrovsky, M. J. Strauss, and M. Wootters. Public key locally decodable codes with
short keys. In 14th International Workshop, APPROX 2011, pages 605–615, 2011.

[13] B. Hemenway, R. Ostrovsky, and M. Wootters. Local correctability of expander codes. In ICALP (1),
pages 540–551, 2013.

[14] A. Juels and B. Kaliski. Pors: proofs of retrievability for large files. In Proceedings of the 2007 ACM
Conference on Computer and Communications Security, pages 584–597, 2007.

[15] J. Katz and L. Trevisan. On the efficiency of local decoding procedures for error-correcting codes.
In STOC, Proceedings of the 32nd Annual ACM Symposium on Theory of Computing, pages 80–86,
2000.

19

[16] S. Kopparty, S. Saraf, and S. Yekhanin. High-rate codes with sublinear-time decoding. In STOC,
pages 167–176, 2011.

[17] E. Kushilevitz, S. Lu, and R. Ostrovsky. On the (in)security of hash-based oblivious ram and a new
balancing scheme. In SODA, pages 143–156, 2012.

[18] M. Naor and G. N. Rothblum. The complexity of online memory checking. In 46th Annual IEEE
Symposium on Foundations of Computer Science (FOCS 2005), pages 573–584, 2005.

[19] R. Ostrovsky. An efficient software protection scheme. In CRYPTO, pages 610–611, 1989.

[20] R. Ostrovsky. Efficient computation on oblivious rams. In H. Ortiz, editor, STOC, pages 514–523.
ACM, 1990.

[21] R. Ostrovsky, O. Pandey, and A. Sahai. Private locally decodable codes. In Automata, Languages and
Programming, 34th International Colloquium, ICALP 2007, pages 387–398, 2007.

[22] R. Pagh and F. F. Rodler. Cuckoo hashing. J. Algorithms, 51(2):122–144, 2004.

[23] B. Pinkas and T. Reinman. Oblivious ram revisited. In T. Rabin, editor, CRYPTO, volume 6223 of
Lecture Notes in Computer Science, pages 502–519. Springer, 2010.

[24] L. J. Schulman. Communication on noisy channels: A coding theorem for computation. In 33rd
Annual Symposium on Foundations of Computer Science, FOCS, pages 724–733, 1992.

[25] L. J. Schulman. Deterministic coding for interactive communication. In Proceedings of the 25th Annual
ACM Symposium on Theory of Computing, STOC, pages 747–756, 1993.

[26] H. Shacham and B. Waters. Compact proofs of retrievability. In Advances in Cryptology - ASIACRYPT
2008, 14th International Conference on the Theory and Application of Cryptology and Information
Security, pages 90–107, 2008.

[27] E. Shi, E. Stefanov, and C. Papamanthou. Practical dynamic proofs of retrievability. In ACM
Conference on Computer and Communications Security, pages 325–336, 2013.

[28] D. A. Spielman. Linear-time encodable and decodable error-correcting codes. In Proceedings of the
Twenty-Seventh Annual ACM Symposium on Theory of Computing, STOC, pages 388–397, 1995.

[29] S. Yekhanin. Towards 3-query locally decodable codes of subexponential length. In Proceedings of the
39th Annual ACM Symposium on Theory of Computing, San Diego.

[30] S. Yekhanin. Locally decodable codes. Foundations and Trends in Theoretical Computer Science,
6(3):139–255, 2012.

A Computational LULDDC Construction

A.1 Building blocks

Cuckoo Hashing. In this technique, introduced by Pagh and Rodler [22], there are two hash functions
(h1, h2) with associated hash tables (T1, T2). An element x is located at either h1(x) (in table T1) or at h2(x)
(in T2). To insert an element x, it is inserted in its first location (h1(x)), kicking out the element previously
there. This displaced element is moved into its other location, possibly displacing another element. This
process continues until no element is kicked out or it runs too long (i.e., more than c log n steps for an
appropriate constant c). In the latter case (which is referred to as a failure), new hash functions are chosen

20

and the entire table is rehashed. Informally, the lemma from [22] states that if m = (1 + ε)n (where m is
the size of the hash tables), the probability that the insertion of a new key causes failure (after n items
have been inserted) is Θ(1

n2).

Private-key Locally Decodable Codes. Locally decodable codes in the computational setting were
introduced in the work of Ostrovsky, Pandey, and Sahai [21] who constructed an encryption scheme where
every bit of the message could be decrypted “locally” even when a fraction of the bits of the ciphertext
were corrupted by a computationally bounded adversary. We refer the reader to [21, Definition 4] for the
formal definition. In the public-key setting, Hemenway and Ostrovsky [11] constructed the first public key
locally decodable codes and the best known public key locally decodable codes were given in the work of
Hemenway et al. [12]. Of course, such codes are also private key locally decodable codes and further more
these codes can be constructed from any semantically secure encryption scheme (namely from one-way
functions in the private key setting). More formally, the theorem in [12] is:

Theorem 3 ([12] (restated)). Assume the existence of a semantically secure encryption scheme. Then,
there exists a private-key (k, n, r, ζ, ε)-locally decodable error correcting code with n = O(k), r = O(λ),
ζ = O(1), ε = neg(λ), where neg is a function that is negligible in the security parameter λ. Furthermore,
the size of the secret key of this code is O(λ).

A.2 Our LULDDC Construction.

We now build our code (denoted Ccomp) in the secret key setting. The secret state S consists of a counter
ctr (that is incremented everytime an update takes place), and a key to a PRF. S is used to generate the
various keys used by the code. Similar to the information-theoretic case, each codeword c of Ccomp consists

of τ + 1 buffers, buff0, . . . , buffτ , where τ = log
(

k
log k

)
. In addition, there is a special buffer, buff∗, which

has a structure different from the other buffers.
µi contains (1 + γ)2i cells (for some γ > 1) – each being either a “non-empty” cell containing a

(address, value)-pair or an “empty” cell containing a special symbol π. There are at most 2i non-empty
elements in µi at any point of time, and these elements are stored using cuckoo hash functions (hi,1, hi,2).
The remaining locations of µi are filled with empty elements. We let ψi = ELDC(µi). For each bit j
of ψi, let σi(j) = MAC(ψi(j)). Set ηi = {(ψi(j)||σi(j))}. buffi contains ηi. µ∗ contains all the bits of
m in order (without the address values). ψ∗ = ELDC(µ∗) and η∗ = {(ψ∗(j)||σ∗(j))}. The codeword is
cm = [buff0, . . . , buffτ , buff∗]. Let α be a constant. We will pick α (as a function of δ and ζ) later on
appropriately.

Encode algorithm. Our encoding algorithm works as follows:

Algorithm E(m,S):

1. Let µ∗ = m(1), · · · ,m(k), where m(i) denotes the ith bit of the message. Let ψ∗ = ELDC(µ∗) and
η∗ = {(ψ∗(j)||σ∗(j))}, where ψ∗(j) is the jth bit of ψ∗ and σ∗(j) = MAC(ψ∗(j)).

2. Creates the τ + 1 empty buffers (buffτ , . . . , buff0) in that order; i.e., the underlying µi contains only
special symbols.

Local Update Algorithm. The update algorithm takes as input a (potentially corrupted) codeword ĉ,
an index i, a bit bi, and the latest state S. Let the latest value of the message, as determined by hist, be
m. Then if there exists some codeword cm such that c ∈ Cm and Prefixcomp(ĉ, c) ≤ δn, then the update
algorithm outputs ĉ′ where Prefixcomp(ĉ′, c′) ≤ δn such that c′ ∈ Cm′ and m′ and m are identical except
possibly at the ith position, where m′(i) = bi.

21

Recall that each codeword has multiple buffers of the form ψi(j)||σi(j) where ψi(j) is one bit of the
codeword and σi(j) is its constant sized message authentication tag. We refer to each of these ψi(j)||σi(j)
as an element of buffi.

Algorithm U ĉm(i, b,S):

1. If the first buffer is empty, compute ψ = ELDC(i||b); σ = MAC(ψ) and insert η = (ψ||σ) into the first
buffer.

2. If the first buffer is non-empty, find the first empty buffer – note this can be determined easily from
ctr. Let the first empty buffer be at level j.

3. Store (i, bi) as well as all the non-empty elements from µ0 to µj−1 into µj . To do this, we decode
ψ0, · · · , ψj−1, insert the elements into µj and then compute ELDC(µj) to obtain ψj . We compute
ηj(`) = {ψj(`), σj(`)}. (The authentication tags σj(`) are recomputed with the latest key corre-
sponding to level j.) When decoding ψ0, · · · , ψj−1, ensure that at least (1 − δ)|ψj | MACs in every
buffer verify; otherwise, output ⊥.

4. Starting from buffj−1 up to buff0, fill each of the buffers with empty elements in order. In other
words, set the underlying µ`s for each of the buffers to contain only special symbols.

Handling Repetitions: Note that if some address a appears in multiple levels, the top-most of
the levels has the most recent value corresponding to address a and therefore that is the value stored.
We store only the latest value corresponding to each address a in the top-most level that it appears
in. To ensure this, we insert elements into µj starting with the most recent (namely (i, b)) and
proceeding in a top-down manner. We insert an element (a, v, σ) into location hj,1(a), only if neither
hj,1(a) nor hj,2(a) already contain an element with address a. (Collisions due to cuckoo-hashing are
resolved in the standard way as described above.)

Optimization: Since the internal state S contains storage proportional to λ, the buffers
buff0, . . . , buff log(2λ

log k
), may be stored in the secret state itself and therefore do not need to be au-

thenticated. This will ensure that the length of all ψj(`)s (which are part of the codeword), is at
least λ. It is because of the fact that we are always authenticating and verifying messages (here by
messages, we mean the codeword ψj) of length at least λ, we are able to use constant sized tags in a
secure manner.

Local Decode Algorithm. The algorithm for reading the ith bit works as follows:

Algorithm Dĉm(i,S):

1. Randomly select λ elements from each of the buffers.

2. For each of the elements, verify that σ(j) = MAC(ψ(j)). (Note that this verification is done with
appropriate MAC keys generated from S.)

3. If, for even one level, less than αλ of the tags verify, then output ⊥. Else go to the next step.

4. The decode algorithm starts with the top-most buffer (buff0) and proceeds downwards until it finds
the address i.

5. For now, assume that buffj contains µj instead of its encoding. Then to search a buffer buffj for an
index i, we read the locations hj,1(i) and hj,2(i). If either of these locations contains an entry (i, v)
then v is the output of the algorithm.

22

Since buffj contains {ψj(`), σj(`)}, the steps we just described are implemented via calls to the
underlying decoder DLDC.

6. If we reach the last buffer, buff∗, we read the element v stored at address i in the buffer – once again,
via calls to DLDC. v is the output of the algorithm.

A.3 Proof of Theorem 2

We now proceed to show that code described above in Section A.2 is a LULDDC for the computational
Prefix Hamming metric. As was the case in the information-theoretic setting, we shall instead show that
the described code is a LULDDC for the computational Buffered-Hamming metric. From this, and Lemma
2, the proof of Theorem 2 will follow. The definition of the Computational Buffered-Hamming metric
naturally follows from that of the Buffered-Hamming and the Computational Prefix Hamming metrics,
but we present it below for the sake of completeness.

Definition 8 (The Computational Buffered-Hamming Metric). Let E ∈ {0, 1}r13. Let c ∈ En comprise of
buffers buff = buff0, . . . , buffq of lengths n0, . . . , nq respectively. Let c′ ∈ En be another string with buffers
buff ′ = buff ′0, . . . , buff ′q. Then, we say that the Computational Buffered-Hamming distance between c and
c′, denoted by BHdiscomp(c, c′), is ≤ δn if ∀i Hamm(buffi, buff ′i) ≤ δni.

We will first show the following lemma. From this, and Lemma 2, the proof of Theorem 2 will follow.

Lemma 3. The code described in Section A.2 is a (k, n, w, r, λ, S) locally updatable and locally decodable-
detectable error correcting code C = (E ,D,U), for the Computational Buffered-Hamming metric, achieving
the following parameters, for some constant 0 < δ < 1

4 :

• Length of the code (n): n = O(k).

• Update locality (w): w = O(log k), in the worst case.

• Read locality (r): r = O(λ2 log k), in the worst case.

Proof. Length of the code. Recall that we have buffers in levels 0, 1, . . . , τ where τ = log
(

k
log k

)
. Each

buffer encodes a message µj of length kj = 2j(log k+1). µj is then encoded into ψj using the constant rate
LDC due to [12]. Each bit of ψj is then authenticated with a constant sized MAC. Therefore the length
of each buffer buffj is asymptotically bounded by the length of µj . In addition, the code has buffer buff∗.
It is easy to see that buff∗ has length O(k) – indeed, µ∗ contains just the bits of m in order without the
address values. Therefore the length of the code

n = O(k) +
∑

0≤j≤τ
O(kj) = O(k).

Local Updatability. Our update algorithm takes as input a bit b, an index i and the state S. In
addition it has oracle access to ĉmt . If mt is the latest value of the message, as determined by hist, and if
there exists a codeword cmt , such that BHdiscomp(ĉmt , cmt) ≤ δk and cmt ∈ Cmt , then the algorithm outputs
ĉmt+1 with the following properties:

1. There exists a codeword, cmt+1 such that BHdiscomp(ĉmt+1 , cmt+1) ≤ δn

2. mt+1 and mt are identical except possibly at the ith position, where mt+1(i) = b

13Again, think of E as a bit bi followed by its constant sized authentication tag σi = MAC(bi).

23

We first analyze the update locality, i.e., we determine the number of bits of ĉmt accessed in order to
make an udpate. It is easy to see that in algorithm U ĉm(i, b,S), buffer buffj (0 ≤ j ≤ τ) is rewritten every
2j steps. Buffer buff∗ is re-written every 2τ+1 steps. In 2j updates (when j < τ + 1), therefore, the total
number of bits re-written is

= 2j |buff0|+ 2j−1|buff1|+ . . .+ 20|buffj |
= c0

(
2j |µ0|+ 2j−1|µ1|+ . . .+ 20|µj |

)
= c0j2

j |µ0| (since µi = 2µi−1, ∀i).

The penultimate equation follows since we use a constant rate LDC code and a constant sized MAC
tags, it follows that |buff`| = c0(µ`) for some constant c0.

When j ≥ τ + 1, buff∗ is re-written and hence in this case, the total number of bits re-written is

= c0j2
j |µ0|+ c12j−(τ+1)|µ∗|

Substituting for |µ0| = log k, |µ∗| = k and τ = log(k
log k), we get that the amortized update locality

w per update is O(log2 k). Note that, similar to the information-theoretic setting, one can convert the
amortized update locality into a worst-case guarantee on the write locality, by distributing the work over
the many write operations, giving us a worst case write locality of O(log k).

To show update correctness, we must now argue, that if we begin the update algorithm with a corrupted
codeword ĉmt , such that BHdiscomp(ĉmt , cmt) ≤ δn and update the message mt to mt+1 (where mt and
mt+1 differ (possibly) only at the itht position, where mt+1(it) = bt+1), then we modify ĉmt to ĉmt+1 where
BHdiscomp(ĉmt+1 , cmt+1) ≤ δn for some cmt+1 that is a codeword of mt+1. To see this, observe that, the
update algorithm decodes all buffers buff0, · · · , buffj for some 0 ≤ j ≤ τ and possibly re-encodes these
buffers into buffj+1. Additionally, the update algorithm sets buffers buffj , · · · , buff0 to empty. Note, that
when the update algorithm decodes these buffers, it checks that (1 − δ)|buffh| MAC tags verify in each
buffer. Note that if BHdiscomp(ĉmt , cmt) ≤ δn, then Hamm(ψ̂h, ψh) ≤ δ|ψh|, which in turn implies that
at least (1 − δ)|buffh| MAC tags verify in each buffer. Hence, the update algorithm will continue with
the decoding and decode each buffer. Additionally in certain cases, the update algorithm might re-write
buffer buff∗. Note that if buffj+1 was written/re-encoded, then all buffers buffj through buff0 were also re-
encoded. Similarly, if buff∗ was re-encoded, then all buffers buffτ through buff0 were also re-encoded. Now,
since BHdiscomp(ĉmt , cmt) ≤ δn, it follows that all the buffers that were decoded by the update algorithm,
decoded correctly and these buffers were then re-encoded without any errors. Hence, for all these buffers
0 ≤ h ≤ j + 1 in ĉmt+1 , Hamm(ψ̂h, ψh) ≤ δ|ψh|. For buffers that were not touched, since no change was

made to these buffers, we still have that Hamm(ψ̂h, ψh) ≤ δ|ψh| (for h > j + 1 and for ψ∗). From these, it
follows that BHdiscomp(ĉmt+1 , cmt+1) ≤ δn.

Decodability and Detectability. The decode algorithm has oracle access to a codeword ĉm and
receives as input S as well i ∈ [k]. If ĉm is close to a codeword cm where cm ∈ Cm (and m is the latest
codeword, as determined by hist), then the output of the decode algorithm should be m(i). We must
show two statements: first, we need to show that if BHdiscomp(ĉm, cm) ≤ δn, then except with negligible
probability (in the security parameter λ), our decode algorithm will output m(i); second, we must show
that even if BHdiscomp(ĉm, cm) > δn, the decode algorithm will either output m(i) or ⊥, except with
negligible probability.

To show these two statements, let the underlying private-key locally decodable code (from [12]), that
we use to encode every buffer, tolerate ζ fraction of errors; i.e., this code can locally decode every bit of
the buffer so long as at most ζ fraction of the bits of the codeword are corrupted.

24

• Let us now show the first stament above. First observe that if BHdiscomp(ĉm, cm) ≤ δn, then the

strings ĉm and cm are such that for every jth level buffer b̂uffj ∈ ĉm and buffj ∈ cm with values ψ̂j
and ψj ∈ E|ψj | respectively, at least (1 − δ)|ψj | of the elements of ψ̂j and ψj have the same value.
Now, our local decoding algorithm samples λ of these elements at random, and proceeds only if at
least αλ of the MACs verify. Note that if at least (1−δ)|ψj | of the elements of ψ̂j and ψj match, then

except with probability e
− (1−(α+δ)2)λ

2(1−δ) (which is negligible in λ when α < 1−δ), αλ of the elements will
match with the correct codeword cm and hence the MAC values of these elements will verify. Hence,
except with negligible probability, αλ of the MAC values checked in each of the buffers will verify
and therefore, except with negligible probability, the local decode algorithm will proceed to decode
the buffers to get the required values (from which the message is obtained). Now, observe, that since
since δ < ζ, and BHdiscomp(ĉm, cm) ≤ δn, it follows that Hamm(ψ̂j , ψj) ≤ ζ|ψj |, which implies that
the local decoding algorithm for every buffer will function correctly. All that remains to be shown is
that if all the buffers decode to the right value, then the local decode algorithm will indeed output
m(i); but, note that this follows from the correctness of our hierarchical data structure, in exactly
the same way as the information-theoretic LULDC. This shows the first statement.

• Let us now show the second statement. To show this, observe that if less than αλ MACs verify
in some buffer, then our local decode algorithm outputs ⊥, satisfying the required condition for
detectability. All that remains to show is that if αλ MACs verify in each buffer, then except with
negligible probability, Hamm(ψ̂j , ψj) ≤ ζ|ψj |, which implies that the local decoding algorithm for
every buffer will decode to the right value and the output of our local decode algorithm will indeed
be m(i). That is, the local decode algorithm will never output an incorrect message. To see this,
we shall prove the contra-positive. Namely, suppose Hamm(ψ̂j , ψj) > ζ|ψj |. We will then show, that
except with negligible probability, less than αλ of the MACs will verify. First, recall that elements
of ψ̂j and ψj comprise of a bit along with their constant size MAC (under the appropriate key).

Now, note that when an element of ψ̂j and the corresponding element of ψj do not match, we only
care about the case, when the bit value themselves dont match (as otherwise, decoding will still go
through successfully). Now, observe, that when the bit value of an element of ψ̂j and the bit value of
the corresponding element of ψj are different, there can only be two cases: a) the bit of the element
was changed and the corresponding (constant size) MAC of the bit was forged; or b) the bit of the
element was changed and the corresponding MAC of the bit does not verify. Let forge denote the
number of elements where the bit was changed, but the corresponding MAC of the bit still verifies
(i.e., the MAC of the bit was forged). We shall consider 2 separate cases.

– In case 1, consider the case when forge ≥ c0λ for some constant c0. Now, first observe that
Pr[forge ≥ c0λ] is negligible in the security parameter. This follows from the fact that the
security of the MAC implies that any particular MAC can only be forged with 1

2`
probability

(+ negligible in λ), where ` ≥ 1 is a constant equal to the output length of the MAC; hence,
except with negligible probability, forge < c0λ.

– In case 2, consider the opposite case; i.e., when forge < c0λ. This means that, in a buffer with
value, ψ̂j , the number of elements where the MAC does not verify is ≥ ζ|ψ̂j | − c0λ ≥ ζ ′|ψ̂j |, for

appropriately chosen constant ζ ′ ≤ ζ (this follows from the fact that |ψ̂j | ≥ λ, for all j). Since

the MAC does not verify in ζ ′ fraction of the elements, then except with probability e
− (ζ′+α−1)2λ

2ζ′

(which is negligible in λ for appropriately chosen α), we have that the number of MACs checked
that do not verify will be ≥ (1− α)λ, which means the local decoding algorithm will output ⊥,
since less than αλ MAC values will verify.

This proves that, except with negligible probability, the decode algorithm will either output m(i) or

25

⊥, even if BHdiscomp(ĉm, cm) > δn.

A note on α: Note, that α and δ must satisfy two conditions: α+ δ < 1 as well as α+ ζ ′ > 1. In order
to show the existence of such α and δ, first compute ζ ′14. Now for any α such that α + ζ ′ > 1, we can
compute appropriate δ such that α+ δ < 1, and this gives us an appropriate LULDDC with error rate δ.

Let us finally analyze the decode locality. The locality due to the verification of λ MACs of each buffer
is λ log k. We now measure the locality due to the rest of the decode algorithm. To read an index i, we scan
in a top-down manner and we need to read the elements of µ` stored at each level `. If we reach the buff∗,
we simply read the element corresponding to ith location of µ∗. Since µ` and µ∗ are stored as encodings,
we need to read these locations via calls the DLDC algorithms. Recall that we need to read 2 log k + 1 bits
of µ in each level and the locality of DLDC algorithm is λ for reading one bit of the underlying message.
Therefore the locality of D algorithm is O(λ log k) per buffer. There are τ = log k − log log k buffers.
Therefore the total locality r is O(λ log2 k).

This completes the proof of Lemma 3.

The proof of Theorem 2 now follows from Lemma 3 and Lemma 2.

B Dynamic Proof of Retrievability

In this section, we show how to use our techniques to construct a dynamic proof of retrievability scheme.
Informally, a proof of retrievability allows a client to store data on an untrusted server and later on obtain
a short proof from the server, that indeed all of the clients data is present on the server. In other words,
the client can execute an audit protocol such that any malicious server that deletes or changes even a
single bit of the client’s data will fail to pass the audit protocol, except with negligible probability in the
security parameter. Proofs of retrievability, introduced by Juels and Kaliski [14], were initially defined
on static data building upon the closely related notion of sublinear authenticators defined by Naor and
Rothblum [18]. Several works have studied the efficiency of such scemes [26, 6, 2, 1] with the work Cash,
Küpçü, and Wichs [3] considering the notion of proof of retrievability on dynamically changing data; in
other words, they constructed a proof of retrievability scheme that allowed for efficient updates to the data.
Cash et al. showed how to convert any oblivious RAM (ORAM) protocol that satisfied a special property
(which they define to be next-read-pattern-hiding (NRPH)) to construct a dynamic proof of retrievability
(DPOR) scheme. Here, we show that we do not need an ORAM scheme with this property and the
techniques used to construct LULDDCs can be used to build a DPoR scheme.

B.1 Dynamic PoR

We now give the definition of Dynamic PoR from Cash et al. [3]. A dynamic PoR scheme comprises of four
protocols PInit,PRead,PWrite, and Audit between two stateful parties: the client C and a server S who is
untrusted. The client stores some data m with the server and wishes to perform read, write, and audit
operations on this data. More specifically, the corresponding interactive protocols are:

• PInit(1λ,Σ, k): In this protocol, the client initializes an empty data storage on the server of length k,
where each element in the data comes from an alphabet Σ. The security parameter is λ.

• PRead(i): In this protocol, the client reads the ith location of the data and outputs some value vi at
the end of the protocol.

• PWrite(i, vi): In this protocol, the client sets the ith location of the data to be value vi

14Note that ζ′ can be obtained as function of ζ, the number of errors tolerated by the underlying LDC from [12] and c0

above.

26

• Audit(): In this protocol, the client verifies that the server is maintaining the data correctly so that
they remain retrievable. The client outputs either accept or reject.

The (private) state of the client is implicitly assumed in all the above protocols and the client may
also output reject during any of the protocols if it detects any malicious behavior on the part of the
server. A dynamic PoR scheme must satisfy three properties: correctness, authenticity, and retrievability.
For the definitions that follow, we say that P = {op0, op1, · · · , opq} is a dynamic PoR protocol sequence

if op0 = PInit(1λ,Σ, k) and, for j > 0, opj ∈ {PRead(i),PWrite(i, vi),Audit()} for some index i ∈ [k] and
value vi ∈ Σ.

Correctness. If C and S both follow the protocol honestly, then with probability 1 over the randomness
of the client:

• For all i ∈ [k], and any opj = PRead(i), the output of the client is indeed the correct value vi; i.e.,
the client outputs whatever it would have, if it stored the data on its own memory and had read the
ith position of the data.

• Every execution of Audit() protocol results in C outputting accept.

Authenticity. Informally, this requires that the client always detects if any protocol message sent by
the server deviates from the honest behavior. That is, consider the following game AuthGame �S(λ) between
a malicious S̄ and a challenger:

• The malicious server specifies a valid protocol sequence P = {op0, · · · , opq}.

• The challenger initializes a copy of the honest client C and an honest (deterministic) server S. It
executes P between C and S̄ while, in parallel, also passing a copy of every message from C to the
honest server S.

• During this protocol, if at any point of time, the message given by S̄ as a response to the client differs
from the response given by S and C does not output reject, then the adversary wins the game and
the game outputs 1. Otherwise, the game outputs 0.

The authenticity requirement states that for all PPT servers S̄, Pr[AuthGame �S(λ) = 1] is negligible in
the security parameter λ.

Retrievability. Informally, retrievability states that whenever the malicious server is in a state with a
reasonable probability δ of successfully passing an audit, the server must know the entire content of the
client’s data. This is formalized via the existence of an efficient extractor E that can recover the data m
given (black-box) access to the malicious server. Formally, define the game ExtGame �S,E(λ, p) between a
malicious server S̄, extractor E , and a challenger.

• S̄ specifies a protocol sequence P = {op0, · · · , opq}. Let m ∈ Σk be the correct value of data at the
end of executing P .

• The challenger initializes a copy of honest client C and executes P between C and S̄. Let Cfin and
S̄fin be the final states of the client and malicious server at the end of the interaction (this includes
all random coins of the malicious server). Define Succ(S̄fin) as the probability that an execution of
a subsequent Audit() protocol between S̄ and C with states S̄fin and Cfin respectively results in the
client outputting accept (this probability is only over the random coins of the client during this
execution).

27

• Run m′ ← E �Sfin(Cfin, k, 1
p), where E gets black-box rewinding access to S̄ in its final configuration

S̄fin.

• If Succ(S̄fin) ≥ 1/p and m′ 6= m, then output 1, else output 0

Retrievability requires that there exists a PPT extractor E such that, for all PPT malicious servers S̄
and every p = p(λ), we have Pr[ExtGame �S,E(λ, p) = 1] ≤ neg(λ).

B.2 Construction

We now describe our construction of a dynamic PoR scheme. We first note that although an LULDDC
is very similar to the notion of a dynamic PoR, we do not use the construction of our LULDDC directly
to obtain a dynamic PoR. The reason is that, the LULDDC does not (by itself) support an efficient audit
mechanism; on the other hand, an LULDDC satisfies an additional property that corrupted codewords
decode as long as the Prefix Hamming condition is satisfied. This leads to a slightly less efficient construc-
tion for LULDDCs. Now, we show that we can use ideas developed in the construction of LULDDCs to
obtain a dynamic PoR scheme. As is in the works of dynamic PoR [3], we work over an alphabet Σ and
all elements that are stored on the server are elements of the alphabet. Our construction of dynamic PoR
is very similar to our construction of LULDDCs described in Section A.2.

As before, the client will store τ buffers buff0 to buffτ along with a special buffer buff∗. A difference
between LULDDCs and our dynamic PoR construction is that we will make use of a standard error
correcting code (as opposed to a locally decodable error correcting code) to encode elements stored in each
buffer; however, we will use codes that are linear time encodable and decodable (in order to minimize the
computational complexity of our construction). Such codes were constructed in the work of Spielman [28].
We will denote such an error correcting code with the encoding algorithm Elin and Dlin. Another difference
is that, in addition to storing encoded messages in buff0 to buffτ and buff∗, we will store the decoded,
authenticated, message of every buffer in another set of τ + 2 buffers; call these buffers plain0 to plainτ and
plain∗. Finally, we shall use two types of message authentication codes: to MAC the elements of buffers
buff0 to buffτ and buff∗ (that store codewords), we shall use constant size MACs; however, to MAC the
elements of buffers plain0 to plainτ (that store elements of the message in the clear), we shall use MACs
with MAC length λ. We shall abuse notation and denote both these MACs by MAC (it will be clear from
context which type of MAC we use).

• PInit(1λ,Σ, k): This protocol is very similar to the Encode algorithm of our LULDDC. Namely, when
storing data m = m(1), · · · ,m(k) = µ∗ on the server, with m(i) ∈ Σ, the client computes ψ∗ =
Elin(µ∗) and η∗ = {(ψ∗(j)||σ∗(j))}, where ψ∗(j) is the jth element of ψ∗ and σ∗(j) = MAC(ψ∗(j)).
The client stores η∗ in buff∗. Additionally the client will also store every element of m along with its
MAC in plain∗15.

• PWrite(i, vi): To write element vi into position i, C does as follows:

– If the first buffer is non-empty, find the first empty buffer – this can be determined using ctr, but
for now, we will just assume that we learn this by decoding buffers in a top-down manner and
then scanning them to see if they contain any non-empty element. Let the first empty buffer be
at level j.

– Update S to S′ so that it now contains an incremented counter.

15In order to reduce the storage complexity, every λ
|Σ| elements are grouped together and MACed so that the storage

complexity remains at O(k) and does not become O(kλ).

28

– We store (i, bi) as well as all the non-empty elements from µ0 to µj−1 into µj . To do this, we
decode ψ0 · · ·ψj−1, insert the elements into µj and then compute Elin(µj) to obtain ψj . We
compute ηj(`) = {ψj(`), σj(`)}. (The authentication tags σj(`) are recomputed with the latest
key corresponding to level j, which in turn is computed from S′).

– Additionally, we store the plain message µj in plainj . Note, that whenever reading an element,
we read the element along with its MAC and reject if the MAC does not verify.

– The buffers from buffj−1 . . . buff0, as well as plainj−1 . . . plain0, are now set to empty by writing
special elements into it (along with appropriate MAC values).

• PRead(i): To read the ith element of the most recent message stored on the server, the client does
the following:

– The algorithm starts with the top-most buffer (plain0) and proceeds downwards until it finds
the address i.

– Note that plainj contains µj in plaintext. To search a buffer buffj for an index i, we read the
locations hj,1(i) and hj,2(i). If either of these locations contains an entry (i, v) then v is the
output of the algorithm.

– If we reach the last buffer, plain∗, we read the element v stored at address i in the buffer. If the
tag σ does not verify, for any element read (in any of the buffers), then the algorithm outputs
reject, otherwise v is the output16.

• Audit(): The audit protocol works as follows:

– For every buffer buff0 to buffτ as well as buff∗, pick λ locations of the codeword ψj (stored in
buffj) at random and read these λ elements along with their MAC values.

– If all the MAC checks verify, then output accept, otherwise output reject.

B.3 Correctness, Authenticity, Retrievability, and Complexity

First, observe that the correctness of the PInit(1λ,Σ, k),PWrite(i, vi), and PRead(i) algorithms follow easily
from the correctness of the encode, update and decode algorithms of our LULDDC construction. To see
the correctness of Audit(), observe that if the codeword is honestly stored by the server, along with all the
MAC values, then the client will output accept after any Audit() protocol. The authenticity of the protocol
follows easily from the unforgeability of the MAC and correctness of update and decode algorithms of our
LULDDC. To see that our protocol satisfies retrievability, observe that each of the buffers buff0 to buffτ
as well as buff∗ simply store encodings of messages stored in plain0 to plainτ and plain∗. Note, that the
error correcting code (along with MACs) allow for a static proof of retrievability on each buffer. This is
because, if we check the authenticity of λ random bits of the codeword and all MACs verify, then except
with negligible probability, most of the bits of the codeword must be present on the server (and these
must be correct bits of the codeword). This will allow an extractor algorithm to retrieve the contents of
the buffer (for a formal proof of this, see [6]). Now, note that if an adversarial server were to pass the
Audit protocol with some probability, then the server must pass the individual audit for each buffer with
at least the same probability. But the audit protocol for each buffer is a static PoR and it has an extractor
algorithm. Hence, the extractor for each of these buffers together gives us an extractor algorithm for all
the buffers and hence the current message m.

16Note, that because of the way we MAC the plaintext values in plain buffers, when we read a single element from plain,
we may have to read an additional λ

|Σ| elements in order to verify the MAC; we ignore this in the description for ease of
exposition.

29

First, observe that the storage on the server’s side is O(k). Next, note that the complexity of the PWrite
protocol is O(log k), similar to the complexity of the update algorithm of our LULDDC. The complexity
of the PRead protocol is simply O(λ log k) as we need to read a constant number of elements in each buffer
(along with its MAC of length λ)17. Finally, the complexity of the Audit protocol is O(λ log k) as we read
λ elements of the codeword in each buffer, along with their constant-szie MAC values. The client storage
is O(λ).

17Again, because of the way we MAC the plaintext values in plain buffers, when we read a single element from plain, we will
have to read an additional λ

|Σ| elements in order to verify the MAC, but this has the same length as the MAC value (λ) and

so our total complexity in each buffer is O(λ).

30

	Introduction
	Codes with locality
	Our Results
	Our Techniques
	Organization of the paper

	Definitions
	Codes with Locality
	The Prefix Hamming Metric

	LULDCs for the Prefix Hamming Metric
	Our results
	Code description
	Proof of Theorem 1

	Computational setting
	Codes for computationally bounded adversaries
	Our Results

	Dynamic Proof of Retrievability
	Dynamic PoR
	Construction

	Computational LULDDC Construction
	Building blocks
	Our LULDDC Construction.
	Proof of Theorem 2

	Dynamic Proof of Retrievability
	Dynamic PoR
	Construction
	Correctness, Authenticity, Retrievability, and Complexity

