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1. Introduction
Answering point-to-point distance queries in graphs is a fundamental building block for many
applications [37] in social networks, search, computational biology, computer networks, and road
networks. Dijkstra’s algorithm [39] can answer such queries in almost linear time, but this can
take several seconds on large graphs.This motivates two-phase algorithms, in which auxiliary data
computed during preprocessing is used to accelerate on-line queries. Although there are practical
exact algorithms for road networks [2,12,18] and some social and communication graphs [3–5,22,23,
41], none is robust on a wide range of inputs.

We propose an exact algorithm that is much more robust to network structure, scales to large
networks, and improves (or at least is competitive with) existing specialized solutions. Our method is
based on hierarchical hub labeling (HHL) [3], a special kind of 2-hop labeling [16]. HHL preprocessing
first orders vertices by importance, then transforms this ordering into labels that enable fast exact
shortest-path distance queries (either in RAM or in external memory [1, 22, 36]). Labels can be
optionally compressed with no loss in correctness. See Figure 1 for an illustration.
While there are fast algorithms to transform an ordering into the corresponding labeling [3,4],

finding a good ordering is challenging. Heuristics that are effective on road networks [3,18] or on
unweighted, undirected small-diameter networks [4] are not robust on other inputs. Compression
strategies are similarly specialized to particular networks [4, 14]. We close both gaps by introducing
efficient algorithms to find good orders (Section 3) and compress the resulting labels (Section 4)
on a wide variety of inputs, including some which no other known method can handle. Our
experiments (Section 5) show that our methods are robust, scaling to graphs with tens of millions
of arcs. We answer queries to optimality within microseconds using significantly less auxiliary data
than previous approaches, effectively widening the range of inputs that can be dealt with efficiently.
This is the full version of an extended abstract [13] presented at the 22nd European Symposium on
Algorithms (ESA 2014).

2. Background
The input to the distance query problem is a directed graph G = (V,A) with a positive length
function ` : A→ Z>0. Let n = |V | and m = |A|. We denote the length of a shortest path (or the
distance) from vertex v to vertex w by dist(v, w). A distance query takes a pair of vertices (s, t) as
input and outputs dist(s, t).
A labeling algorithm [33] preprocesses the graph to compute a label for every vertex such that

an s–t query can be answered using only the labels of s and t. The 2-hop labeling or hub labeling (HL)
algorithm [16] is a special case with a two-part label L(v) for every vertex v: a forward label Lf (v)
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Figure 1: Overview of the hierarchical labeling algorithm framework. An ordering is computed
for the input graph and used to compute a labeling for fast exact distance queries. An
optional compression step reduces the space consumption of this labeling.
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and a backward label Lb(v). (For undirected graphs, each vertex stores a single label that acts
as both forward and backward.) The forward label Lf (v) is a sequence of pairs (w,dist(v, w)),
with w ∈ V ; similarly, Lb(v) has pairs (u,dist(u, v)). Vertices w and u are said to be hubs of v.
To simplify notation, we often interpret labels as sets of hubs; v ∈ Lf (u) thus means label Lf (u)
contains a pair (v,dist(u, v)). The size |L(v)| of a forward or backward label is its number of hubs.
A labeling is the set of labels for all v ∈ V and its size is ∑

v(|Lf (v)|+ |Lb(v)|). The average label size
is the size of the labeling divided by 2n. Labels must obey the cover property: for any s and t, the
set Lf (s)∩Lb(t) must contain at least one hub v that is on the shortest s–t path. We do not assume
that shortest paths are unique; to avoid confusion, we mostly refer to (ordered) pairs [u,w] instead of
paths u–w. We say that a vertex v covers (or hits) a pair [u,w] if dist(u, v) + dist(v, w) = dist(u,w),
i.e., if at least one shortest u–w path contains v.

To find dist(s, t), an HL query finds the hub v ∈ Lf (s)∩Lb(t) that minimizes dist(s, v) + dist(v, t).
If the entries in each label are sorted by hub ID, this takes linear time by a coordinated sweep over
both labels, as in mergesort.

Our focus is on hierarchical hub labelings (HHL). Given a labeling, let v . w if w is a hub of L(v).
Abraham et al. [3] define a hub labeling as hierarchical if . is a partial order. (Intuitively, v . w
if w is “more important” than v.) Natural heuristics for finding labelings produce hierarchical
ones [3, 4, 18,22].
Abraham et al. [3] show that one can compute the smallest HHL consistent with a given

ordering rank(·) on the vertices in polynomial time. In this canonical labeling, vertex v belongs
to Lf (u) if and only if there exists w such that v is the highest-ranked vertex that hits [u,w].
Similarly, v belongs to Lb(w) if and only if there exists u such that v is the highest-ranked vertex
that hits [u,w]. Although canonical labelings were originally defined under the assumption that
shortest paths are unique [3], the same definition holds when they are not [19]. The algorithms by
Abraham et al. [2, 3] to compute a labeling from a given order are polynomial, but impractical for
most graph classes.
More recently, Akiba et al. [4] proposed the Pruned Labeling (PL) algorithm, which efficiently

computes a labeling from a given vertex order. (We will use it as a subroutine.) Starting from empty
labels, PL processes vertices from most to least important (higher to lower rank). The iteration
that processes vertex v adds v to all relevant labels. To process v, it runs two pruned versions
of Dijkstra’s algorithm [39] from v. The first works on the forward graph (out of v) as follows.
Before scanning a vertex w (with distance label d(w) within Dijkstra’s algorithm), it computes
a v–w distance estimate q by performing an HL query with the current partial labels. (If the labels
do not intersect, set q = ∞.) If q ≤ d(w), the [v, w] pair is already covered by previous hubs
and the algorithm prunes the search (ignores w). Otherwise (if q > d(w)), it adds (v,dist(v, w))
to Lb(w) and scans w as usual. The second Dijkstra computation uses the reverse graph and is
pruned similarly; it adds (v,dist(w, v)) to Lf (w) for all scanned vertices w. Note that the number of
Dijkstra scans equals the size of the labeling. Also, rather than assuming shortest paths are unique,
PL breaks ties on-line in favor of more important (higher-ranked) vertices. Akiba et al. show that
PL is correct and produces a minimal labeling (deleting any hub violates the cover property). We
show that it is also hierarchical and thus canonical.

Lemma 2.1. PL finds a hierarchical labeling.

Proof. We show that if rank(v) > rank(u), then u is not a backward hub of v (forward hubs can be
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analyzed in a similar way). The algorithm can add u to Lb(v) only if v is scanned during the forward
pruned Dijkstra computation from u. Consider the maximum ranked vertex x that hits [u, v]. We
process x before u and v; since x is the maximum vertex to hit [u, x], when processing x we add it
to Lf (u) and to Lb(v). Therefore, during the forward Dijkstra computation from u, the u–v query
using the current labels returns dist(u, v). This implies that we will not scan v.

3. Computing Orderings
Knowing how to efficiently compute a hierarchical labeling from an order, we now consider how to
find orders that lead to small labelings. (Recall that any order produces correct labels.) One can
sidestep this issue by using the order implied by vertex degrees [4, 22]; using degree as a proxy for
importance works well for some unweighted and undirected small-diameter networks, but is not
robust. Contraction Hierarchies (CH) [3] orders vertices bottom-up, using only local information
that is carefully updated as decisions are made. This often leads to small labels [3], but can be costly
because the number of updates may be superlinear and the updates themselves may be expensive.
For better results, Abraham et al. [3] propose a greedy top-down algorithm. It finds good labels

for a wide range of graph classes, but is too expensive (in both time and space) for large instances.
In this section, we recap this basic algorithm and then show that using on-line tie breaking leads to
even better orders, but with greater preprocessing effort. Finally, we propose a sampling technique
that makes the basic algorithm much faster while still finding good solutions.

3.1. Basic Algorithm
The basic algorithm [3] defines the order greedily: the i-th highest ranked vertex (hub) is the one
that hits the most previously uncovered shortest paths (i.e., not covered by the i− 1 hubs already
picked). To implement this rule efficiently, the basic algorithm starts by building n full shortest
path trees, one rooted at each vertex of the graph. The tree Ts rooted at s represents all uncovered
shortest paths starting at s. This effectively makes shortest paths unique: the algorithm assumes
that only vertices on the s–t path in Ts can hit the pair [s, t]. The number of descendants of v in Ts

is thus the number of uncovered shortest paths that start at s and contain v. The total number of
descendants of v over all trees, denoted by σ(v), is the number of shortest paths that would be hit
if v were picked as the next most important hub.

Each iteration of the algorithm picks as the next hub the vertex v∗ for which σ(v∗) is maximum.
To prepare for the next iteration, it removes the subtree rooted at v∗ from each tree (as the paths
they represent are now covered by v∗) and updates the σ(·) values of all descendants and ancestors
of v∗. This algorithm is path-greedy: it maximizes the number of new paths hit in each iteration.
Abraham et al. also propose a label-greedy variant, which picks the vertex v∗ that maximizes the
ratio between σ(v∗) and the number of labels to which v∗ will be added; this leads to slightly better
labels. Note that the basic algorithm breaks ties off-line (a-priori) while computing the initial trees;
the resulting paths determine not only which hub to select next, but also to which labels this hub is
added. Our experiments thus refer to it as OffPG (path-greedy) or OffLG (label-greedy). Both
variants run in O(mn logn) time [3].
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3.2. Better Tie-breaking
When shortest paths are far from unique (as in some unweighted small-diameter networks), the
basic algorithm underestimates the number of pairs hit by each hub it picks. Since it breaks ties
a-priori, it produces bigger labels than needed. For better results, we propose a simple hybrid
algorithm: first compute a vertex order using the basic algorithm, then use PL to find the labeling.
Since PL breaks ties in favor of paths with the highest maximum vertex rank, this can lead to
substantially smaller labels with little overhead. We refer to this algorithm as HybPG (path-greedy)
or HybLG (label-greedy).
We also propose an algorithm that breaks ties on-line while selecting the order. Although

impractical for large instances, it finds the smallest hierarchical labels we are aware of (on moderate-
sized inputs). It follows the same approach as the basic algorithm, picking in each iteration the
hub v∗ (not picked before) that covers the most uncovered pairs [u,w]. The challenge is finding v∗
efficiently in every iteration: since ties are broken on-line, we must implicitly maintain the numbers
of descendants in all shortest path DAGs, which is harder than in trees.

Thus, during initialization, we compute an n× n distance table between all n vertices and create
an n× n boolean matrix in which entry (u,w) indicates whether the pair [u,w] is already covered
by a previously selected hub. All entries [u,w] with finite dist(u,w) are initially false. For each
vertex v, we maintain σ(v), the number of new pairs that would be covered if v were selected as the
next hub. Initially, this is the total number of pairs [u,w] hit by v. For a fixed v, this value can be
found in O(n2) time: check for each [u,w] if dist(u, v) + dist(v, w) = dist(u,w).
Each iteration of the algorithm is as follows. First, pick a vertex v for which σ(v) is maxi-

mum (in O(n) time). Then find the set Q of uncovered pairs hit by v (note that |Q| = σ(v));
this takes O(n2) time using the distance table and the boolean matrix. For each pair [u,w] ∈ Q,
mark [u,w] as covered and add v to both Lf (u) and Lb(w) (if not there already). Finally, update
the other σ values: for each pair [u,w] ∈ Q and vertex x ∈ V , decrease σ(x) by one if x hits [u,w].
This step takes O(|Q|n) time. Since any pair appears in some Q at most once during the algorithm,
the combined size of all Q lists is O(n2). Altogether, the algorithm runs in O(n3) worst-case time
and Θ(n2) space. This path-greedy algorithm can be extended to be label-greedy with the same
bounds. (See Appendix A.1.) We call these variants OnPG and OnLG, respectively.

3.3. Finding Good Orderings Faster
All methods considered so far are impractical for large graphs, since they use Ω(n2) space and
time. We thus propose an improvement of the path-greedy hybrid algorithm (HybPG) that uses
sampling to compute estimates σ̃(·) on the σ(·) values. The estimates need only be precise enough
to distinguish important vertices (those for which σ(·) is large) from unimportant ones. We can
tolerate fairly large errors on the estimate of unimportant vertices. Intuitively, if σ(v)� σ(w), we
want to have σ̃(v) > σ̃(w).

A natural approach is to build k � n trees from random roots and set σ̃(v) to be the total number
of descendants of v in all trees of the sample [11]. (Sampling paths uniformly would be ideal, but
too costly.) Once a vertex v∗ is picked (from a priority queue), we update counters as in the basic
algorithm, with all descendants of v∗ removed from the sampled trees. Unfortunately, when k is
small (as required for good performance), such σ̃(v) estimates are only accurate for very important
vertices (with many descendants in most trees); as sampled trees get smaller, we have insufficient
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information to assess less important vertices.
We deal with this by generating more trees (from new roots) as the algorithm progresses. We

grow them using Dijkstra’s algorithm, but pruning vertices already covered by previously picked
hubs (like in PL). Newly added trees thus only contain uncovered paths and get smaller as the
algorithm progresses, keeping space and time under control. Since we need partial labels for pruning,
we add v∗ to all relevant labels (running one PL iteration from v∗) right after v∗ is selected as next
hub. We balance the work spent growing trees and constructing (adding hubs to) labels. Let ct be
the total number of arcs and hubs touched so far while building new trees (the k original trees are
free); define cl similarly, for operations during label construction. We generate trees from random
new roots until either ct > cl or the total number of vertices in existing trees exceeds 10kn. To
bound the space usage, we represent small trees as hash tables (see Appendix A.2 for details).

Although the total number of descendants in the sample is a natural estimator for the total over
all n trees, its variance is very high. In particular, it overestimates the importance of vertices that
are at (or near) the root of a sampled tree [17]. Replacing the sum (or average) by a more robust
measure (such as the median) would remedy this, but is costly to maintain as trees (and counters) are
updated. We achieve both robustness and speed as follows. Instead of keeping a single counter σ̃(v)
for each vertex v, we keep c counters σ̃1(v), σ̃2(v), . . . , σ̃c(v), for some constant c. Counter σ̃i(v) is
the total number of descendants of v over all trees tj such that i = (jmod c). (Here tj is the j-th
tree in the sample, not the tree rooted at j.) These counters are easy to maintain and allow us to
eliminate outliers when evaluating v, for instance by discarding the counter i that maximizes σi(v)
and taking as estimator the average value of the remaining counters. (Intuitively, if v is close to
the root of one tree, only one counter will be affected.) In general, increasing c improves accuracy,
but can be costly because the priority of a vertex depends on all its c counters. We found that
using c = 16 and discarding the two highest counters gives good results with negligible overhead (see
Appendix B.3). In case of ties, we prefer vertices maximizing σ̃(v) = ∑c

i=1 σ̃i(v). Moreover, we
ensure at least c trees are live during the execution. We call this ordering algorithm SamPG. We
have no label-greedy variant of this algorithm, as it is unclear how to obtain good estimates on the
number of labels a hub is added to.

4. Compression
Representing labels compactly is crucial for large graphs. We first show how to represent distances
or IDs with fewer bits without sacrificing query times, then propose a more elaborate technique
that exploits similarities across labels, trading higher compression for slower (but still exact and
fast enough) queries.

4.1. Basic Compression
Recall that a label Lf (u) can be seen as an array of pairs (v,dist(u, v)) sorted by hub ID v. In
practice [2], it pays to first represent all hubs, then the corresponding distances (in the same order).
Since distances are only read when hubs match, queries have fewer cache misses. We represent
distances with as few bits (8, 16, or 32) as needed for the largest distance stored in any label. (For
unweighted small-diameter networks, 8 bits are enough [4].)

Less trivially, one can use fewer bits to represent hub IDs. Abraham et al. [2] rename the hubs so
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that IDs 0 to 255 are assigned to the most important (higher-ranked) vertices, and use only 8 bits
to represent them (and 32 bits otherwise). On road networks, space is reduced by around 10% (and
queries become faster), since many hubs in each label are in this set. For greater effectiveness on
more inputs, we propose two improvements: delta representation and advanced reordering.
Delta representation stores hub IDs in difference form. Let the hub IDs in a label be h1 < h2 <

h3 < . . . We store h1 explicitly, but for every i > 1 we store ∆i = hi − hi−1 − 1. A label with
hubs (0 16 29 189 299 446 529) is thus represented as (0 15 12 159 109 146 82). Because
queries always traverse labels in order, we can retrieve hi as ∆i + hi−1 + 1. Since ∆i < hi, this
increases the range of entries that can be represented with fewer bits. (In the example above, 8 bits
suffice for all entries.) To keep queries simple, we avoid variable-length encoding. Instead, we divide
the label into two blocks: we start with 8 bits per entry, and switch to 32 bits when needed.

Our second technique is to rename vertices to increase the number of 8-bit hub entries. We could
reorder hubs by rank (as in Abraham et al. [2]) or by frequency, with smaller IDs assigned to hubs
that appear in more labels, but we can do even better (by about 10%) with advanced reordering. We
assign ID 0 to the most frequent vertex and allocate additional IDs (up to n− 1) to one vertex at a
time. For each vertex v that is yet unassigned, let s(v) be the number of labels in which v could be
represented with 8 bits if v were given the smallest available ID. Initially, s(v) is the number of
labels containing v, but its value may decrease as the algorithm progresses. Each iteration of our
method picks the vertex v with maximum s(v) value and assigns an ID to it. If multiple available
IDs are equally good (i.e., realize s(v)), we assign v the maximum ID among those, saving smaller
IDs for other vertices. In particular, the second most frequent vertex could have any ID between 1
and 256 and still be represented as 8 bits, so it gets ID 256.
The main challenge for advanced reordering is efficiently updating the s(·) values. Our lazy

implementation keeps a priority queue with estimated s̃(·) values. Each iteration picks the maximum
such element s̃(v) and computes the actual s(v) value. If the estimate is approximately correct, we
assign an ID to v; otherwise, we reinsert v into the queue with s̃(v)← s(v). See Appendix A.3 for
details.

4.2. Token-Based Compression
We now present a novel scheme to achieve even higher compression. It extends hub label compres-
sion (HLC) [14], which interprets each label as a tree and represents each unique subtree (which
may occur in many labels) only once. We explain HLC first, then our improvements.

HLC represents the hubs of a forward label Lf (u) as a tree rooted at u. For canonical hierarchical
labels, the parent of w ∈ Lf (u) \ {u} in the tree is the highest-ranked vertex v ∈ Lf (u) \ {w} that
hits [u,w] (the tree representing Lb(u) is defined analogously). The key insight is that the same
subtree often appears in the labels of several different vertices. HLC represents each unique subtree
as a token consisting of (1) a root vertex r; (2) the number k of child tokens; (3) a list of k pairs (i, di)
indicating that the root of the child token with ID i is within distance di from r. A token with no
children (k = 0) is a trivial token, and is represented implicitly. Each nontrivial unique token is
stored only once. The data structure also maintains an index mapping each vertex v to its two
anchor tokens, the roots of the trees representing Lf (v) and Lb(v).

An s–t query works in two phases. The first reconstructs the labels Lf (s) and Lb(t) by traversing
the corresponding trees in BFS order and aggregating distances appropriately. The second phase
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finds the vertex v ∈ Lf (s) ∩ Lb(t) that minimizes dist(s, v) + dist(v, t). Since the label entries
produced by the first phase are not sorted by hub ID, the second phase uses hashing rather than
merging [14].
Although HLC compresses road network labelings by an order of magnitude [14], it is much less

effective on small-diameter inputs: high-degree vertices are costlier to represent and there are fewer
exact matches between subtrees.

To make HLC effective on a wider range of inputs, we now propose mask tokens. A mask token t
represents a unique subtree, but not directly: it contains the ID of another token t′ (its reference
token), as well as an incidence vector (bitmask) indicating which children of t′ should be taken as
children of t. Note that both t and t′ must have the same root. This avoids the need to represent
the same children multiple times. To exploit this further, we use supertokens. A supertoken has the
same structure as a standard token (with a root and a list of children), but represents the union of
several tokens, defined as the union of their children. For each vertex v, we create a supertoken
representing the union of all standard tokens rooted at v. Subtrees that actually appear in the
labeling can be represented as mask tokens using the supertoken as reference.

Since a mask that refers to a supertoken with k children needs k bits, space usage can be large. But
most mask entries are zero (original tokens tend to have few children), motivating the use of mask
compression. We propose a two-level approach. Conceptually, we split a k-bit mask into b = dk/8e
buckets, each representing up to 8 consecutive bits. For example, a label with k = 45 has six 8-bit
buckets: bucket 0 refers to bits 0 to 7, bucket 1 to bits 8 to 15, and so on. Only nonempty buckets
are stored explicitly: an index array indicates which q buckets (with 1 ≤ q ≤ b) are nonempty, and is
followed by q 8-bit incidence arrays representing the nonempty buckets. The index takes ddk/8e/8e
bytes.

In general, there will be fewer nonempty buckets if the “1” entries in each bit mask are clustered.
Since correctness does not depend on the order in which children appear in a supertoken, we can
permute them to make the “1” entries more concentrated. Therefore, for each child x of v, we count
the number cv(x) of standard tokens rooted at v in which x appears, then sort the children of the
supertoken rooted at v in decreasing order of cv(x).
Token-based compression must transform labels into trees, which requires finding parents for

all vertices in the label. Delling et al. [14] compute such parents in O(nM3) time, where M is
the maximum label size. We use a much faster (and novel) O(nM2)-time algorithm tailored to
hierarchical labels. It augments PL to maintain tentative parent pointers as it goes, using the fact
that, by the time a hub is added to a label, its final children are already present. See Appendix A.4.

5. Experiments
We implemented all algorithms in C++ using Visual Studio 2013 with full optimization. All
experiments were conducted on a machine with two Intel Xeon E5-2690 CPUs and 384GiB of
DDR3-1066 RAM, running Windows 2008R2 Server. Each CPU has 8 cores (2.90GHz, 8× 64 kiB
L1, 8 × 256 kiB, and 20MiB L3 cache), but all runs are sequential. We use at most 32 bits for
distances.

We test social networks (Epinions, Slashdot, Flickr, Hollywood, WikiTalk), computer networks (Gnu-
tella, Skitter, MetroSec), web graphs (NotreDame, Indo, Indochina, uk2002), road networks (ber-t, fla-t,
eur-t, eur-d), and 3D triangular meshes (buddha). The data is available from snap.stanford.edu,
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Table 1: Key values for inputs, ordering quality of degree and SamPG, and performance of RXL
and CRXL.

instance degree SamPG RXL CRXL

type name n m/n d w prep [s] lab prep [s] lab [MiB] [µs] [MiB] [µs]

sensor rgg20 1048576 13.1 ◦ ◦ 2804 1135.7 977 220.0 806.5 2.0 167.3 23.4
rgg20-w 1048576 13.1 ◦ • 52962 5502.7 3608 588.8 3154.3 4.9 436.4 76.1

roads fla-t 1070376 2.5 ◦ • 1321 791.8 103 41.4 260.9 0.5 55.0 3.4
eur-t 18010173 2.3 • • – – 8364 82.4 17202.8 0.8 1589.3 13.3
eur-d 18010173 2.3 • • – – 18664 163.1 33059.5 1.5 2184.2 32.1

grid alue7065 34046 3.2 ◦ ◦ 1 98.2 3 55.9 6.1 0.5 2.8 3.5
grid20 1048576 4.0 ◦ ◦ 92 144.8 364 126.6 526.5 1.3 127.0 14.8

triang buddha 543524 6.0 ◦ ◦ 119 289.5 122 91.5 179.8 0.9 62.6 9.0
buddha-w 543524 6.0 ◦ • 1424 1164.7 678 336.0 952.9 2.9 176.6 41.5
del20 1048576 6.0 ◦ ◦ 241 286.8 306 117.5 452.1 1.1 134.1 13.2
del20-w 1048576 6.0 ◦ • 4606 1598.9 2449 575.3 3077.1 4.8 426.6 115.6

game FrozenSea 754304 7.6 ◦ • 160 241.4 214 92.1 429.3 0.9 133.0 10.9
web NotreDame 325729 4.5 • ◦ 4 21.1 17 11.3 25.9 0.1 19.5 0.4

Indo 1382908 12.0 • ◦ 253 171.7 241 27.4 217.5 0.4 127.9 1.3
Indochina 7414866 25.8 • ◦ 12028 539.8 14824 65.5 3916.5 0.7 1322.9 3.2
uk2002 18520486 15.8 • ◦ – – 43090 278.5 34140.5 1.8 2533.1 25.2

comp Gnutella 62586 2.4 • ◦ 37 240.9 60 157.1 39.4 0.9 17.8 7.4
Skitter 1696415 13.1 ◦ ◦ 1905 456.5 2813 273.5 1074.6 2.3 316.7 20.6
MetrocSec 2250498 19.2 ◦ ◦ 356 132.0 2276 116.5 592.8 0.8 207.7 3.6

social Epinions 75888 6.7 • ◦ 12 94.2 50 91.3 29.2 0.6 13.3 3.6
Slashdot 82168 10.6 • ◦ 40 188.3 140 190.7 65.3 1.5 31.2 7.4
rws17 131072 6.0 ◦ ◦ 5827 4264.4 9224 3597.7 901.2 27.5 1102.9 327.8
rba20 1048576 12.0 ◦ ◦ 8006 1485.6 26238 1541.6 4918.0 11.0 2517.6 131.8
Hollywood 1139905 98.9 ◦ ◦ 38412 2921.3 61411 2114.3 5934.3 13.9 2050.0 204.0
Flickr 1861232 12.2 • ◦ 3353 423.3 10332 322.4 3093.8 2.5 603.8 17.2
WikiTalk 2394385 2.1 • ◦ 281 68.0 999 60.2 625.8 0.5 127.3 2.1

webgraph.di.unimi.it, www.dis.uniroma1.it/challenge9, and socialnetworks.mpi-sws.org/
datasets.html. We also test unweighted grid graphs with holes from VLSI applications (alue7065;
steinlib.zib.de) and grids with obstacles built from computer games (FrozenSea, AR0503SR;
movingai.com). For the latter we set edge lengths to 408 for axis-aligned moves and 577 for
diagonal moves. (Note that 577/408 ≈

√
2.) We also test synthetic inputs: square grids (gridi),

Delaunay triangulations of random points on the unit square (deli), random geometric graphs,
often used to model sensor networks (rggi) [21], random preferential attachment graphs (rbai), and
random small-world networks (rwsi) [20], with i = logn. Some instances are unweighted, while in
others (with suffix -w) edge lengths correspond to Euclidean distances (scaled appropriately and
rounded up). See Appendix B.1 for details.
Table 1 summarizes our main results. For each instance, we show its type, average number of

vertices (n), average out-degree (m/n), and whether it is directed (d) and weighted (w). We then
show the preprocessing time and average number of hubs per label if we run PL with vertices ordered
by degree (with ties in the order broken at random) or if we run SamPG, our new ordering algorithm.
We then show the space and average time for random queries for the two main label representations
we propose: RXL (Robust eXact Labeling) uses delta compression and CRXL (Compressed RXL)
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Figure 2: Label sizes of various orderings relative to SamPG.

uses two-level mask compression. Both use SamPG. The additional preprocessing time for RXL (over
SamPG) is very small (delta compression is fast), but CRXL increases the preprocessing times
by 20%–50% (due to parent pointer computation and token generation).

We confirm Akiba et al.’s observation that ordering by degree works well on some inputs. SamPG
is much more robust, however, often finding much smaller labels (as in Indo, rgg20-w, buddha-w, or
fla-t). Because both algorithms have superlinear dependence on label size, SamPG is much faster
when it finds better labels. However, since SamPG spends about two-thirds of its time maintaining
sampled trees, it is slower when label sizes are similar.

RXL can handle instances with up to tens of millions of arcs and supports queries in microseconds.
Compared to RXL, CRXL reduces space usage by up to an order of magnitude (as in eur-t and
uk2002). Query times increase mainly due to worse locality, but still take only microseconds. On
uk2002, with almost 300 million arcs, it uses only 2.5GiB and answers queries in 25µs.

Figure 2 shows, for the ordering algorithms discussed in Section 3, their average label sizes relative
to SamPG; shorter bars are better. As expected, degree is the least robust order. Differences between
the other approaches are much smaller, but still significant. When ties are numerous, OffLG [3], the
label-greedy algorithm that breaks ties in advance (off-line), is much worse than other methods.
HybLG, which uses the same order but breaks ties on-line with PL when building the labels, is much
better, as is its path-greedy variant (HybPG). Adding sampling to HybPG yields SamPG, with
almost no loss in quality. In fact, SamPG can be better (as in the game graph AR0503SR), since
tie-breaking is partially on-line, with new trees representing only uncovered pairs. Most importantly,
SamPG is asymptotically faster: even on such small instances, the median time (not shown) is less
than half a minute for SamPG, about half an hour for HybPG, HybLG, and OffLG, and days for
OnLG. The median time for the CH-based order (OnCH) is only a minute, and it is twice as fast as
SamPG on ber-t (Berlin). Although it is not robust, taking hours on Epinions and Gnutella, it finds
remarkably small labels, considering that it picks the order based only on local information.
Figure 3 (left) shows the asymptotic behavior of SamPG on road (square-shaped subgraphs of

eur-t) and various synthetic graph classes. Label sizes increase relatively fast for small-world (rws)
graphs, and less so for preferential attachment (rba) problems. Higher-diameter inputs have much
better behavior. The degree order is asymptotically worse than SamPG for Delaunay triangulations,
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Figure 3: Left: label sizes for SamPG. Right: space and time tradeoffs; from left to right, the curves
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random geometric graphs, and road networks (see Appendix B.4).
Figure 3 (right) analyzes the trade-off between space usage and query times for various compression

techniques (cf. Section 4). We consider five different representations of the same (SamPG) labels;
from left to right, these are CRXL, CRXL1, HLC, RXL, and plain. The plain method represents
all hub IDs as 32-bit integers and distances with as few bits as needed (8, 16, or 32) in each case.
By incorporating delta compression for hub IDs, RXL uses as little as half as much space as the
plain representation, and often has faster queries due to better locality. HLC is Delling et al.’s hub
label compression [14], but using as few bits as needed (8, 16, or 32) for all distances; it has good
compression ratio for road and other high-diameter networks, but is less effective for small-diameter
graphs (such as Skitter). CRXL1 and CRXL use supertokens and bitmasks; while CRXL1 uses only
one level, CRXL may use two. Both are most effective on small-diameter networks. The extra level
often helps, but not always (as in Indo). Queries take a few microseconds, fast enough for most
applications.

Table 2 compares RXL and CRXL to two state-of-the-art algorithms. PLL is a restricted variant of
PL by Akiba et al. [4] tailored to unweighted and undirected networks. This extended PL algorithm
joins each new hub v in the order with a small set S(v) of neighboring vertices, then adds all vertices
in the “superhub” {v} ∪ S(v) to all labels that would benefit from at least one vertex in the set. It
stores dist(u, v) explicitly, but for w ∈ S(v) it stores dist(u,w)− dist(u, v), which is in {−1, 0, 1} on
unweighted, undirected graphs. The resulting labeling is not hierarchical (any two vertices u, w
in S(v) will be in each other’s labels), but uses less space and has faster preprocessing (all |{v}∪S(v)|
searches run simultaneously). The second algorithm, Tree Decomposition [5] (Tree), is not label-
based. We report preprocessing time (including SamPG for our methods), space, and average
query time, as well as the average number of hubs for RXL and superhubs for PLL (×16 and ×64
indicate superhub sizes). Tree and PLL were run (sequentially) on a 2.93GHz Intel Xeon X5670 [4],
a machine similar to ours. For consistency with previous work [4, 5], all inputs in Table 2 are
undirected; those obtained from directed ones are marked by asterisks.

Superhubs are quite effective in accelerating PLL preprocessing, which is generally faster than for
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Table 2: Average label size (superhubs for PLL, hubs for RXL), preprocessing time, space, and
query times for various methods.

label size preprocessing [s] space [MiB] query [µs]

instance PLL RXL PLL Tree RXL CRXL PLL Tree RXL CRXL PLL Tree RXL CRXL

Gnutella∗ 644×16 791 54 209 307 451 209 68 95.7 49.1 5.2 19.0 7.1 45.9
Epinions∗ 33×16 118 2 128 31 39 32 42 19.1 7.7 0.5 11.0 1.1 4.1
Slashdot∗ 68×16 219 6 343 85 110 48 83 37.4 17.8 0.8 12.0 1.7 8.0
NotreDame∗ 34×16 25 5 243 18 22 138 120 22.9 11.9 0.5 39.0 0.2 1.0
WikiTalk∗ 34×16 113 61 2459 1076 1278 1000 416 560.8 86.5 0.6 1.8 1.0 3.4
Skitter 123×64 273 359 – 2862 3511 2700 – 1074.6 316.7 2.3 – 2.3 20.6
Indo∗ 133×64 43 173 – 173 201 2300 – 158.6 90.2 1.6 – 0.5 1.8
MetroSec 19×64 116 108 – 2300 2573 2500 – 592.8 207.7 0.7 – 0.8 3.6
Flickr∗ 247×64 360 866 – 5888 7110 4000 – 1794.6 345.9 2.6 – 2.8 19.9
Hollywood 2098×64 2114 15164 – 61736 75539 12000 – 5934.3 2050.0 15.6 – 13.9 204.0
Indochina∗ 415×64 91 6068 – 8390 8973 22000 – 1978.8 876.8 4.1 – 0.9 3.9

RXL (notably for MetroSec or WikiTalk). Even so, RXL (which does not use superhubs and is more
general) has comparable query times and uses less space, sometimes by a large margin, as in Indo
and Indochina. In fact, RXL often has fewer hubs than PLL has superhubs, indicating that SamPG
indeed finds good orders. Tree is slower than RXL and sometimes uses much more space. CRXL
requires less space than any other method.

We conclude that our approach is quite robust. By combining a new sampling-based order (lever-
aging both HHL [3] and PL [4]) and a novel label representation, RXL is competitive with any other
technique, each specialized in different graph classes (such as road networks or social graphs).

Acknowledgments. We thank Takuya Akiba, Alan Mislove, and Christian Schulz for making
benchmark instances available.
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APPENDIX
This appendix contains information omitted from the main text. It is structured as follows.
Appendix A contains algorithmic details: the label-greedy variant of the on-line algorithm, imple-
mentation details for SamPG, how to implement our advanced reordering routine efficiently for
RXL, and how to build trees from the labels. Appendix B explains our instances in more detail and
presents further experiments.

A. Detailed Algorithms
A.1. Label-Greedy Algorithm
This section presents details for OnLG, the label-greedy variant of the on-line algorithm for finding
orders introduced in Section 3. In each iteration, it picks the vertex v for which the ratio σv/(fv + bv)
is maximized. Here σv is defined as before (number of uncovered pairs hit by v), fv is the number
of forward labels v would be added to (if picked next), and bv is the number of backward labels v
would be added to.

Our label-greedy algorithm uses all data structures from the path-greedy variant (OnPG) described
in Section 3, as well as new ones to keep track of label counts. We maintain n-sized arrays
representing fv and bv explicitly, as well as two n× n matrices, F and B. Entry F [v, u] indicates
how many uncovered pairs [u, ·] (i.e., starting at u) are hit by v, and B[v, w] represents how many
uncovered pairs [·, w] are hit by v. These matrices can be initialized in O(n3) total time. We start
with zero matrices and, for each pair [u,w], check every vertex v; if dist(u, v)+dist(v, w) = dist(u,w),
we increment both F [v, u] and B[v, w]. We can then initialize fv as the number of nonzero entries
matching F [v, ·]; similarly, bv is the number of nonzero entries matching B[v, ·].
The algorithm then proceeds as in the path-greedy version, but picking the vertex v that

maximizes σv/(fv + bv). Moreover, the third step of the main loop must update not only the σ
values, but also F , B, f , and b. If a vertex x ∈ V hits a pair [u,w] ∈ Q, we decrement both F [x, u]
and B[x,w]. If F [u, x] becomes zero, we decrement fx; if B[x,w] becomes zero, we decrement bx.
The total running time is still O(n3).

As described, both variants (path- and label-greedy) run in Θ(n3) time regardless of the graph
topology. Our actual implementation has several optimizations that make it faster on sparse
graphs (for example, the distance table can be built with n calls to Dijkstra’s algorithm rather than
Floyd-Warshall). Our implementation still runs in ω(n2) time in practice, however.

A.2. Implementation Details for SamPG
This section explains implementation details for SamPG that are crucial to achieve sub-quadratic
space and time.

Recall from Section 3 that we sample new trees as the algorithm progresses, and that trees created
later in the algorithm are born smaller, as we use PL-based pruning to build them. Thus, we
use different representations for large and small trees. A large tree (with at least n/8 vertices) is
represented as an n-sized array; the i-th position contains the parent of vertex i, or null if the
vertex is not in the tree. Each smaller tree is represented as a hash table that associates each vertex
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with its parent; vertices not in the tree do not appear in the table. Note that the same tree may
switch representations as it shrinks during the algorithm.

Also, recall that each iteration of our algorithm involves the following two steps. First, determine
the vertex v∗ to be selected as hub; then remove its descendants from all active trees. To support
these operations efficiently, we use the following hybrid approach. In the beginning, we linearly
scan over all vertices to determine v∗ and then iterate over all active trees Tu, removing v∗’s
descendants from Tu as we go. As soon as we reach an interation that picks a hub v∗ with fewer
than n/8 descendants in total (over all sampled trees), we start maintaining a reverse index that
stores with each vertex v pointers to the trees that contain it. From this point on, we use this reverse
index to access the relevant trees directly. At the same time, we build a max-heap of vertices (with
priorities as keys), which allows us to efficiently determine the next hub v∗ without looking at all n
vertices in subsequent iterations.

A.3. Implementation Details for Advanced Reordering
This section shows how the advanced reordering routine can be implemented efficiently. To do so,
we need some definitions. For every label L (forward or backward), let its horizon h(L) be the
maximum ID that a hub in L could be assigned and still be represented in 8 bits (this is the ID
of the last 8-bit entry already in L plus 256). We say that L is open if there exists at least one
free ID i such that i ≤ h(L), and closed otherwise. Note that s(v) is the number of open labels
that contain v. Let µ(v) be the minimum h(L) over all open labels that contain v. If v∗ has the
highest s(v∗) value, we assign to v∗ the maximum free ID i ≤ µ(v∗).
Assigning ID i to v∗ may increase h(L) for some of the labels that contain v∗. Moreover, it may

cause some open labels to become closed (even if they do not contain v∗). Although the first issue
is easy to handle (the h(L) values can be updated efficiently), the second is more challenging, since
it may affect the s(·) values of many other vertices.
To avoid recomputing s(·) values too often, we use a lazy version of this algorithm. Instead

of maintaining accurate s(v) values for all vertices, we keep upper bounds s̃(v) on their value in
a priority queue (max-heap). Each step of the algorithm removes the top element v from the
heap (with value s̃(v)), then explicitly computes s(v) by looking at the h(·) values of all labels
containing v. If s̃(v) is accurate enough, we assign v an ID. Otherwise, we set s̃(v) ← s(v) and
insert v back into the heap. One could guarantee that a vertex v is removed from the heap no more
than O(logn) times by “accepting” a vertex as long as s(v) ≥ (1− ε)s̃(v), for some constant ε > 0,
but we found that setting ε = 0 works well enough in practice.

We keep an n-sized boolean array that indicates if each ID (from 0 to n− 1) is still available. To
check if a label L is still open (while computing s(v)), we traverse this array backwards starting
at position h(L) until we find an available ID (or hit the beginning). To speed this process up,
each used ID i keeps a predecessor ID pred[i] < i with the following property: all IDs j such
that pred[i] < j < i are used. Note that pred[i] itself may or may not be used. When looking for an
empty position in the array, we can use the pred pointers to skip over blocks of used IDs. When we
finally reach an unused ID j, we use path compression [39] to accelerate future searches: we traverse
the same path again and set to j the pred pointers of all entries visited.

16



A.4. Parents
An important step of token-based compression (with or without masks) is transforming labels
into trees, which in turn requires finding the parents of all vertices in the label. Consider the
forward label Lf (u) (backward labels can be processed similarly). Recall that the parent p(w)
of w ∈ Lf (u) \ {u} is the highest-ranked vertex v ∈ Lf (u) \ {w} that covers [u,w]. Delling et
al. [14] compute such parents in O(nM3) time, where M is the maximum label size. While this is
acceptable when labels are small (as in road networks), it can be prohibitive when labels are bigger,
as in some social and communication networks.
We propose a more sophisticated approach that is faster on hierarchical labelings. It works

by augmenting PL to maintain tentative parent pointers. Recall that PL adds hubs to labels in
decreasing order of rank (importance). As the algorithm progresses, we ensure that all vertices w in
a (partial) label Lf (u) obey the following parent condition: p(w) is the highest-ranked vertex v ∈
Lf (u) \ {w} that hits [u,w]; if no such vertex v exists, p(w) is null (undefined). (For simplicity, we
focus on forward labels, but backward labels can be dealt with similarly.) Note that some vertices
may not have parents, since vertex u itself may not be in Lf (u) yet. The partial label can thus be
seen as a forest of rooted trees. As more vertices are added to the label, this forest may change,
with new vertices being added and existing vertices acquiring parents. Once a vertex has a parent,
however, it is final.

Lemma A.1. Consider any vertex w in a partial label Lf (u). If p(w) is defined, then it will remain
the same even after other hubs are added to the label.

Proof. Let v be the original p(w); it hits [u,w]. Although a new vertex v′ may also hit [u,w], it will
have rank(v′) < rank(v), since vertices are added to labels in decreasing order of rank. So v will
remain the parent.

Accordingly, a newly-added hub v may become the parent only of the current roots in the forest
representing Lf (u). For each root w ∈ Lf (u), we must test if dist(u, v) + dist(v, w) = dist(u,w). We
know dist(u,w) (from Lf (u)) and dist(u, v) (the test happens during a backward Dijkstra search
from v). To get dist(v, w), we need the following lemma.

Lemma A.2. If v becomes the new parent of a vertex w in Lf (u), then w ∈ Lf (v).

Proof. Assume by contradiction that w 6∈ Lf (v). Note that rank(w) > rank(v), since PL processes
vertices in decreasing order of rank. In particular, this means that w has been considered for
insertion into Lf (v). Since it was not inserted (by assumption), there must exist a vertex x
with rank(x) > rank(w) that hits [v, w]. Vertex x has been considered for insertion into Lf (u)
before w was. Regardless of whether x was actually inserted into Lf (u) or not, the pair [u,w] must
already be covered (either by x itself or by the vertex that covered [u, x] and prevented the insertion
of x). In either case, w should not belong to Lf (u), a contradiction.

The algorithm to find the parents is as follows. We add hubs to labels in decreasing order of rank.
Consider the PL iteration that processes hub v. We first add v itself to Lf (v). We then fill an O(n)-
sized array vdist, with vdist[x] = dist(v, x) if x ∈ Lf (v) and∞ otherwise. This array can be initialized
once with ∞ and updated in O(|Lf (v)|) time for each new hub v. Then we run a pruned (reverse)
Dijkstra search from v. Before scanning a vertex u, we traverse Lf (u). For every hub w ∈ Lf (u)
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whose parent is undefined, we set p(w)← v if and only if dist(u, v) + dist(v, w) = dist(u,w). The
first term comes from Dijkstra’s algorithm, the second is vdist[w], and the third comes from Lf (u).
The algorithm takes O(nM2) time in total, which is a factor of O(M) faster than the original

approach of Delling et al. [14]. Moreover, it only adds a small constant overhead to the original PL
algorithm, since every label it traverses is first traversed by PL. Since finding parent pointers is
only necessary if we do advanced token-based compression, in our experiments we actually compute
parents separately, after the labels are computed in full (using a similar procedure).

B. Additional Experiments
In this section we describe our instances in more detail and present further experiments that were
omitted from the main part of the paper.

B.1. Instances
In the following we give more detail on the inputs we use in our experiments. Figures for the
number of vertices and arcs of each instances are given in Table 1 (Section 5), or are mentioned
here explicitly, otherwise.

Social Networks

• Epinions is a who-trusts-whom social network from the general consumer review website
epinions.com. Vertices represent users and (directed) arcs represent trust relationships [25,34].

• Slashdot is a social network of the user community from the technology-related news website
Slashdot. Vertices represent Slashdot users and a directed arc from u to v indicates that
user u tagged user v as friend or foe [25,29].

• Flickr is a social network based on a photo sharing website. Vertices represent users and a
directed arc from u to v indicates that user u is linked to (follows) user v [32].

• Hollywood is an undirected social graph of movie actors. Vertices represent actors, and two
actors are joined by an edge whenever they appear in the same movie [9, 10].

• WikiTalk is a discussion network obtained from Wikipedia’s talk pages from its inception until
2008. Vertices represent Wikipedia users, and a directed arc from u to v indicates that user u
posted on the talk page of user v [25–27].

Computer Networks

• Gnutella is a snapshot of a peer-to-peer file sharing network. Vertices represent hosts in the
Gnutella network topology, and directed arcs represent connections between hosts [25,31].

• Skitter is an undirected Internet topology network. Vertices represent entities in the Internet
and edges communication between them [25,28].
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• MetroSec is an undirected Internet IP traffic graph. Vertices represent hosts and an edge
between u and v indicates that the hosts u and v appeared as sender/receiver in an IP
packet [30].

Web Graphs

• NotreDame is a web graph of the University of Notre Dame (domain nd.edu) from 1999.
Vertices represent web pages and (directed) arcs hyperlinks between them [6,25].

• Indo is a small crawl of the .in domain. Vertices represent web pages and (directed) arcs
hyperlinks between them [9,10].

• Indochina is a fairly large crawl of the country domains of Indochina. Vertices represent web
pages and (directed) arcs hyperlinks between them [9,10].

• uk2002 is a web graph obtained from a crawl of the .uk domain in 2002 performed by
UbiCrawler [8]. Again, vertices represent web pages and (directed) arcs hyperlinks between
them [9,10].

Game Maps. These undirected graphs represent computer game maps where agents can move
horizontally, vertically, and diagonally in a grid-like game world with obstacles. The graphs are
available from movingai.com, and we weight the edges by 408 for axis-aligned moves and by 577
for diagonal moves.

• AR0503SR is a smaller map from the game Baldur’s Gate II [38]. The graph is undirected,
and it has 38 215 vertices and 296 348 arcs.

• FrozenSea, a map from the game Starcraft [38], is the largest available instance.

VLSI Instances and 3D Meshes

• alue7065 represents a circuit from VLSI applications [24].

• buddha is a fairly detailed 3D computer graphics surface mesh obtained from a scan of a small
Buddha statue [35].

Road Networks. These graphs represent simple road networks. Vertices depict intersections and
arcs represent street segments in direction of traffic flow. Arcs are weighted either according to
travel time (-t) or geographic distance (-d).

• bay-t is a medium-sized road network of the San Francisco Bay Area in California, USA [15].
The graph is undirected, and it has 321 270 vertices and 794 830 arcs.

• fla-t is a larger road network of the state of Florida, USA [15].

• eur-t and eur-d represent the continental road network of Western Europe [15].

• ber-t is a small road network of Berlin (Germany) extracted from eur-t. The graph has
32 413 vertices and 80 845 directed arcs.
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Figure 4: Stacked running times for various instances. We show the running time for adding trees,
vertex selection, pruned labeling, and updating trees.

Generated Networks. For the following graph classes (available upon request) we vary the number n
of vertices by setting n = 2i.

• roadi are square-shaped subgraphs of the Western European road network (eur-t), centered at
a random (but fixed for varying i) location.

• deli are Delaunay triangulations over random points in the unit square [21], with unit edge
lengths. The deli-w instances have the same topology, but lengths represent Euclidean
distances (scaled so that the average length is 1000, then rounded up).

• rggi are geometric graphs modeling sensor networks: vertices represent random points in
the unit square, with two vertices connected by an (unweighted) edge if the corresponding
Euclidean distance is at most 0.55

√
(lnn)/n; these graphs are almost connected with high

probability [21]. We use our own generator for these instances. The rggi-w graphs have the
same topology, but edge lengths represent Euclidean distances (scaled so that the maximum
length is 1000, then rounded up).

• rbai are random preferential attachment graphs based on the Barabási-Albert model [7,20]:
Vertices are added one at a time, thereby connecting each newly-added vertex to k existing
vertices with probability proportional to their (current) degrees. We set k = 6 in our
experiments.

• rwsi are random small-world graphs based on the Watts-Strogatz model [20,40]. It first creates
a ring of n vertices and connects each vertex with its k closest neighbors of the ring. With
probability p, each edge {u, v} is then rewired to {u,w}, with w chosen uniformly at random.
We set k = 6 and p = 0.2 in our experiments.

B.2. Preprocessing Time
Figure 4 presents a detailed analysis of the running time of SamPG for some instances. It shows how
the total running time is split among the main subroutines: generating new sample trees (add trees),
choosing the best vertex (vertex selection), adding hubs to the labels with a PL step (labeling), and
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Figure 5: Effect of balancing on label quality.

updating sample trees (update trees). The plots show that picking the best vertex takes negligible
time. The time to generate trees is not much greater than the time to update trees. The time spent
adding hubs to labels varies from 1/5 (for del20) to 1/3 of the total time (for Gnutella).

B.3. Parameters
We now evaluate our choice of parameters for SamPG, starting with balancing the work of maintaining
trees and adding new hubs to labels. Recall from Section 3 that we keep two counters (ct and cl)
that account for the number of operations in these respective parts of the algorithm. To control
balance, we introduce a parameter β: new trees are generated until ct exceeds βcl. (We still stop
growing trees if the total number of vertices in existing trees exceeds 10kn; cf. Section 3.) Figure 5
shows that RXL behaves poorly when β is very small, and improves as β increases. On all instances
tested, most gains are obtained before β reaches 1, justifying our choice of 1 as default balancing
parameter.

Figure 6 analyzes the choice of priority function we use to select the best vertex in each iteration
of SamPG. For each instance and each function, it shows how the average label size evolves during
the execution of the algorithm. Let λ(F, i) be the average label size after the i-th iteration of the
algorithm (i.e., after i hubs are selected) with priority function F . For clarity, we do not plot this
value directly; instead, for each method P we plot λ(F, i) − λ(deg, i), i.e., the difference to the
baseline degree-based method. Negative values favor F over deg. Besides deg, we consider three
functions F . Function avg simply picks the vertex with the most descendants in the sampled trees.
The other two functions use 16 counters (as described in Section 3): cnt16-med picks their median
value, while cnt16-2max discards the two highest counters and takes the average of the remaining
ones.
As expected, deg works well on some small-diameter networks (such as Epinions), but is worse

than counter-based methods for high-diameter inputs. Moreover, avg is much less robust than the
counter-based approaches, since it is heavily biased towards the roots of the trees in the sample.
Picking the median (as in cnt16-med) helps eliminate such outliers, generally leading to smaller
labels. In some cases, however, completely discarding non-median buckets may be too extreme. The
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Figure 6: Average label size difference from degree (deg) for different priority functions.

most robust method is cnt16-2max, which discards only 1/8 of the buckets and makes effective use
of the remaining ones.

B.4. More Asymptotics
Figure 7 shows further details regarding the asymptotic behavior of our algorithm on several graph
classes. We evaluate performance by plotting the ratio of the degree-based method over SamPG
for label size (left) and preprocessing time (right). We observe that on road networks (road),
geometric graphs (rgg), and (somewhat less obviously) on triangulations (del), SamPG performs
asymptotically better than degree, producing smaller labels in less preprocessing time. For the
remaining instances degree and SamPG exhibit the same asymptotic behavior. This is even the case
for regular grids (grid), where degree essentially corresponds to a random ordering (most vertices
have degree 4). Here the algorithm benefits from on-line tie-breaking; ties are numerous, with most
paths hit by a large number of vertices. Note that while the preprocessing for SamPG can be
slower than degree for some graph classes, it is never off by more than a constant factor, indicating
that SamPG is indeed robust to the input.
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Figure 7: Asymptotic behavior of SamPG compared to degree (DEG) on several graph classes. The
left plot shows the label size ratio of DEG over SamPG, while the right plot shows the
same ratio for preprocessing time. The legend of the right plot also applies to the left one.
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