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Abstract
Current proposals for adding gradual typing to JavaScript, such

as Closure, TypeScript and Dart, forgo soundness to deal with
issues of scale, code reuse, and popular programming patterns.

We show how to address these issues in practice while retain-
ing soundness. We design and implement a new gradual type sys-
tem, prototyped for expediency as a ‘Safe’ compilation mode for
TypeScript.1Our compiler achieves soundness by enforcing stricter
static checks and embedding residual runtime checks in compiled
code. It emits plain JavaScript that runs on stock virtual machines.
Our main theorem is a simulation that ensures that the checks in-
troduced by Safe TypeScript (1) catch any dynamic type error, and
(2) do not alter the semantics of type-safe TypeScript code.

Safe TypeScript is carefully designed to minimize the perfor-
mance overhead of runtime checks. At its core, we rely on two new
ideas: differential subtyping, a new form of coercive subtyping that
computes the minimum amount of runtime type information that
must be added to each object; and an erasure modality, which we
use to safely and selectively erase type information. This allows
us to scale our design to full-fledged TypeScript, including arrays,
maps, classes, inheritance, overloading, and generic types.

We validate the usability and performance of Safe TypeScript
empirically by typechecking and compiling more than 100,000
lines of existing TypeScript source code. Although runtime checks
can be expensive, the end-to-end overhead is small for code bases
that already have type annotations. For instance, we bootstrap the
Safe TypeScript compiler (90,000 lines including the base Type-
Script compiler): we measure a 15% runtime overhead for type
safety, and also uncover programming errors as type-safety viola-
tions. We conclude that (1) large TypeScript projects can easily be
ported to Safe TypeScript, thereby increasing the benefits of exist-
ing type annotations, (2) Safe TypeScript can reveal programming
bugs both statically and dynamically, (3) statically type code incurs
negligible overhead, and (4) selective RTTI can ensure type safety
with modest overhead.

1. Introduction
Originally intended for casual scripting, JavaScript is now

widely used to develop large applications. Using JavaScript in
complex codebases is, however, not without difficulties: the lack
of robust language abstractions such as static types, classes, and
interfaces can hamper programmer productivity and undermine
tool support. Unfortunately, retrofitting abstraction into JavaScript
is difficult, as one must support awkward language features and
programming patterns in existing code and third-party libraries,

∗ This work was done at Microsoft Research.
1 Safe TypeScript can be downloaded from: http://research.microsoft.
com/en-us/downloads/b250c887-2b79-4413-9d7a-5a5a0c38cc57/

default.aspx. An online playground is available at: http://research.

microsoft.com/en-us/um/people/nswamy/Playground/TsSafe/.

without either rejecting most programs or requiring extensive an-
notations (perhaps using a PhD-level type system).

Gradual type systems set out to fix this problem in a principled
manner, and have led to popular proposals for JavaScript, notably
Closure, TypeScript and Dart (although the latter is strictly speak-
ing not JavaScript but a variant with some features of JavaScript re-
moved). These proposals bring substantial benefits to the working
programmer, usually taken for granted in typed languages, such as
a convenient notation for documenting code; API exploration; code
completion; refactoring; and diagnostics of basic type errors. Inter-
estingly, to be usable at scale, all these proposals are intentionally
unsound: typeful programs may be easier to write and maintain, but
their type annotations do not prevent runtime type errors.

Instead of giving up on soundness at the outset, we contend that
a sound gradual type system for JavaScript is practically feasible.
There are, undoubtedly, some significant challenges to overcome.
For starters, the language includes inherently type-unsafe features
such as eval and stack walks, some of JavaScript’s infamous “bad
parts”. However, recent work is encouraging: Swamy et al. (2014)
proposed TS? a sound type system for JavaScript to tame untyped
adversarial code, isolating it from a gradually typed core language.
Although the typed fragment of TS? is too limited for large-scale
JavaScript developments, its recipe of coping with the bad parts
using type-based memory isolation is promising.

In this work, we tackle the problem of developing a sound, yet
practical, gradual type system for a large fragment of JavaScript,
confining its most awkward features to untrusted code by relying
implicitly on memory isolation. Concretely, we take TypeScript as
our starting point. In brief, TypeScript is JavaScript with optional
type annotations: every valid JavaScript program is a valid Type-
Script program. TypeScript adds an object-oriented gradual type
system, while its compiler erases all traces of types and emits Java-
Script that can run on stock virtual machines. The emitted code is
syntactically close to the source (except for type erasure), hence
TypeScript and JavaScript interoperate with the same performance.

TypeScript’s type system is intentionally unsound; Bierman
et al. (2014) catalog some of its unsound features, including bi-
variant subtyping for functions and arrays, as well as in class and
interface extension. The lack of soundness limits the benefits of
writing type annotations in TypeScript, making abstractions hard
to enforce and leading to unconventional programming patterns,
even for programmers who steer clear of the bad parts. Consider
for instance the following snippet from TouchDevelop (Tillmann
et al. 2012), a mobile programming platform written in TypeScript:

private parseColorCode (c:string) f if (typeof c !== "string") return�1; . . . g

Despite annotating the formal parameter c as a string, the prudent
TypeScript programmer must still check that the argument received
is indeed a string using JavaScript reflection, and deal with errors.

Safe TypeScript. We present a new type-checker and code gener-
ator for a subset of TypeScript that guarantees type-safety through
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Figure 1: Architecture of Safe TypeScript

a combination of static and dynamic checks. Its implementation is
fully integrated as a branch of the TypeScript-0.9.5 compiler. Pro-
grammers can opt in to Safe TypeScript simply by providing a flag
to the compiler (similar in spirit to JavaScript’s strict mode, which
lets the programmer abjure some unsafe features). Like TypeScript,
the code generated by Safe TypeScript is standard JavaScript and
runs on stock virtual machines.

Figure 1 illustrates Safe TypeScript at work. A programmer
authors a TypeScript program, app.ts, and feeds it to the Type-
Script compiler, tsc, setting the --safe flag to enable our system.
The compiler initially processes app.ts using standard TypeScript
passes: the file is parsed and a type inference algorithm computes
(potentially unsound) types for all subterms. For the top-level func-
tion f in the figure, TypeScript infers the type (x:any)⇒number, us-
ing by default the dynamic type any for its formal parameter. (It
may infer more precise types in other cases.) The sub-term x.f is
inferred to have type any as well. In TypeScript, any-typed values
can be passed to a context expecting a more precise type, so Type-
Script silently accepts that x.f be returned at type number. Since
TypeScript erases all types, x.f need not be a number at runtime,
which may cause callers of f to fail later, despite f’s annotation.

In contrast, when using Safe TypeScript, a second phase of type-
checking is applied to the program, to confirm (soundly) the types
inferred by earlier phases. This second phase may produce various
static errors and warnings. Once all static errors have been fixed,
Safe TypeScript rewrites the program to instrument objects with
runtime type information (RTTI) and insert runtime checks based
on this RTTI. In the example, the rewriting involves instrumenting
x.f as RT.readField(x, "f"), a call into a runtime library RT used by
all Safe TypeScript programs. Although the static type of x is any,
the RTTI introduced by our compiler allows the runtime library
to determine whether it is safe to project x.f, and further (using
RT.check) to ensure that its contents is indeed a number. Finally,
the dynamically type-safe JavaScript code is emitted by a code
generator that strips out type annotations and desugars constructs
like classes, but otherwise leaves the program unchanged.

Underlying Safe TypeScript are two novel technical ideas:
(1) Partial erasure. Many prior gradual type systems require that a
single dynamic type (variously called dynamic, dyn, ∗, any, etc.) be
a universal super-type and, further, that any be related to all other
types by subtyping and coercion. We relax this requirement: in Safe
TypeScript, any characterizes only those values that are tagged with
RTTI. Separately, we have a modality for erased types, whose val-
ues need not be tagged with RTTI. Erased types are not subtypes
of any, nor can they be coerced to it, yielding four important capa-
bilities. First, information hiding: we show how to use erased types
to encode private fields in an object and prove a confidentiality the-
orem (Theorem 2). Second, user-controlled performance: through
careful erasure, the user can minimize the overhead of Safe Type-
Script’s RTTI operations. Third, modularity: erased-types allow us

to ensure that objects owned by external modules do not have RTTI.
And, fourth, long-term evolution, allowing us to scale Safe Type-
Script up to a language with a wide range of typing features.
(2) Differential subtyping. In addition, we rely on a form of coer-
cive subtyping (Luo 1999) that allows us to attach partial RTTI on
any-typed objects, and is vital for good runtime performance.

Main contributions. We present the first sound gradual type sys-
tem with a formal treatment of objects with mutable fields and
immutable methods, addition and deletion of computed properties
from objects, nominal class-based object types, interfaces, struc-
tural object types with width-subtyping, and partial type erasure.
Formal core (§3). We develop SafeTS: a core calculus for Safe
TypeScript. Our formalization includes the type system, compiler
and runtime for a subset of Safe TypeScript, and also provides a
dynamic semantics suitable for a core of both TypeScript and Safe
TypeScript. Its metatheory establishes that well-typed SafeTS pro-
grams (with embedded runtime checks) simulate programs running
under TypeScript’s semantics (without runtime checks), except for
the possibility of a failed runtime check that stops execution early
(Theorem 1). Pragmatically, this enables programmers to switch
between ‘safe’ and ‘unsafe’ mode while testing and debugging.
Full-fledged implementation for TypeScript. Relying on differ-
ential subtyping and erasure, we extend SafeTS to the full Safe
TypeScript language (§4), adding support for several forms of in-
heritance for classes and interfaces; structural interfaces with re-
cursion; support for JavaScript’s primitive objects; auto-boxing;
generic classes, interfaces and functions; arrays and dictionaries
with mutability controls; enumerated types; objects with optional
fields; variadic functions; and simple modules system. In all cases,
we make use of a combination of static checks and RTTI-based
runtime checks to ensure dynamic type safety.
Usability and Performance Evaluation (§5). We report on our ex-
perience using Safe TypeScript to type-check and safely compile
more than 100,000 lines of source code, including bootstrapping
the Safe TypeScript compiler itself. In doing so, we found and cor-
rected several errors that were manifested as type-safety violations
in the compiler and in a widely used benchmark. Quantitatively,
we evaluate Safe TypeScript’s tagging strategy against two alterna-
tives, and find that differential subtyping (and, of course, erasure)
offers significant performance benefits.

We conclude that large TypeScript projects can easily be ported
to Safe TypeScript, thereby increasing the benefits of existing type
annotations; that Safe TypeScript can reveal programming bugs
both statically and dynamically; that statically type code incurs
negligible overhead; and that selective RTTI can ensure type safety
with modest overhead.

Supplementary material associated with this submission in-
cludes the full formal development and proofs. We also provide
links to the source code of our compiler and benchmarks, as well
as an in-browser demo of Safe TypeScript in action.

2. An overview of Safe TypeScript
Being sound, Safe TypeScript endows types with many of the

properties that Java or C# programmers might expect but not find
in TypeScript. On the other hand, Safe TypeScript is also intended
to be compatible with JavaScript programmers. As a language user,
understanding what type-safety means is critical. As a language
designer, striking the right balance is tricky. We first summarize
some important consequences of type-safety in Safe TypeScript.
An object implements the methods in its type. Objects in Java-
Script are used in two complementary styles. First, as mutable
dictionaries, where the field-names are keys. Second, in a more
object-oriented style, objects expose methods that operate on their
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state. Safe TypeScript supports both styles. In less structured code,
dictionary-like objects may be used: the type system ensures that
fields have the expected type when defined. In more structured
code, objects may expose their functionality using methods: the
type system guarantees that an object always implement calls to the
methods declared in its type, i.e., methods are always defined and
immutable. The two styles can be freely mixed, i.e., a dictionary
may have both methods and fields with functional types.
Values can be undefined. Whereas languages like C# and Java
have one null-value included in all reference types, JavaScript has
two: null and undefined. Safe TypeScript rationalizes this aspect
of JavaScript’s design, in effect removing null from well-typed
programs while retaining only undefined. (Retaining only null is
possible too, but less idiomatic.) For existing programs that may
use null, our implementation provides an option to permit null to
also be a member of every reference type. Note that undefined is
also included in all native types, such as boolean and number. This
rationalizes e.g. the pervasive use of undefined for false.
Type-safety as a foundation for security. JavaScript provides a na-
tive notion of dynamic type-safety. Although relatively weak, it is
the basis of many dynamic security enforcement techniques, e.g.,
the inability to forge object references is the basis of capability-
based security techniques (Miller et al. 2007). By compiling to
JavaScript, Safe TypeScript (like TypeScript itself), enjoys these
properties too. Moreover, Safe TypeScript provides higher level ab-
stractions for encapsulation enforced with a combination of static
and dynamic checks. For example, TypeScript provides syntax for
classes with access qualifiers to mark certain fields as private,
but does not enforce them, even in well-typed code. In §2.4, we
show how encapsulations like private fields can be easily built (and
relied upon!) in Safe TypeScript. Looking forward, Safe Type-
Script’s type-safety should provide a useful basis for more ad-
vanced security-oriented program analyses.
Static safety and canonical forms. For well-typed program frag-
ments that do not make use of the any type, Safe TypeScript ensures
that no runtime checks are inserted in the code (although some
RTTI may still be added). For code that uses only erased types,
neither checks nor RTTI are added, ensuring that code runs at full
speed. When adding RTTI, we are careful not to break JavaScript’s
underlying semantics, e.g., we preserve object identity. Addition-
ally, programmers can rely on a canonical-forms property. For ex-
ample, if a value v is defined and has static type {ref:number}, then
the programmer can conclude that v.ref contains a number (if de-
fined) and that v.ref can be safely updated with a number. In con-
trast, approaches to gradual typing based on higher-order casts, do
not have this property. For example, in the system of Herman et al.
(2010), a value r with static type ref number may in fact be another
value wrapped with a runtime check—attempting to update r with
a number may cause a dynamic type error.

In the remainder of this section, we illustrate the main features
of Safe TypeScript using several small examples.

2.1 Nominal classes and structural interfaces. JavaScript widely
relies on encodings of class-based object-oriented idioms into
prototype-based objects. TypeScript provides syntactic support for
declaring classes with single inheritance and multiple interfaces
(resembling similar constructs in Java or C#), and its code gen-
erator desugars class declarations to prototypes using well-known
techniques. Safe TypeScript retains TypeScript’s classes and inter-
faces, with a few important differences illustrated below:

interface Point f x:number; y:number g
class MovablePoint implements Point f

constructor(public x:number, public y:number) fg
public move(dx:number, dy:number) f this.x += dx; this.y += dy; g
g
function mustBeTrue(x:MovablePoint) f

return !x jj x instanceof MovablePoint;
g

The code defines a Point to be a pair of numbers representing its
coordinates and a class MovablePoint with two public fields x and y
(initialized to the arguments of the constructor) and a public move
method. In TypeScript, all types are interpreted structurally: Point
and MovablePoint are aliases for tp ={x:number; y:number} and
to ={x:number; y:number; move(dx:number, dy:number): void}, re-
spectively. This structural treatment is pleasingly uniform, but it has
some drawbacks. First, a purely structural view of class-based ob-
ject types is incompatible with JavaScript’s semantics. One might
expect that every well-typed function call mustBeTrue(v) returns
true. However, in TypeScript, this need not be the case. Struc-
turally, taking v to be the object literal {x:0, y:0, move(dx:number,
dy:number){}}, mustBeTrue(v) is well-typed, but v is not an in-
stance of MovablePoint (which is decided by inspecting v’s proto-
type) and the function returns false.

To fix this discrepancy, Safe TypeScript treats class-types nom-
inally, but let them be viewed structurally. That is, MovablePoint is
a subtype of both tp and to; however, neither tp nor to are subtypes
of MovablePoint. Interfaces in Safe TypeScript remain, by default,
structural, i.e., Point is equivalent to tp. In §4, we show how the
programmer can override this default. Through the careful use of
nominal types, both with classes and interfaces, programmers can
build robust abstractions and, as we will see in later sections, mini-
mize the overhead of RTTI and runtime checks.

2.2 A new style of efficient, RTTI-based gradual typing. Fol-
lowing TypeScript, Safe TypeScript includes a dynamic type any,
which is a supertype of every non-erased type t. When a value of
type t is passed to a context expecting an any (or vice versa), Safe
TypeScript injects runtime checks on RTTI to ensure that all the t-
invariants are enforced. The particular style of RTTI-based gradual
typing developed for Safe TypeScript is reminiscent of prior pro-
posals by Swamy et al. (2014) and Siek et al. (2013), but makes
important improvements over both. Whereas prior approaches re-
quire all heap-allocated values to be instrumented with RTTI (lead-
ing to a significant performance overhead, as discussed in §5), in
Safe TypeScript RTTI is added to objects only as needed. Next, we
illustrate the way this works in a few common cases.

The source program shown to the left of Figure 2 defines two
types, Point and Circle, and three functions copy, f and g. The
function g passes its Circle-typed argument to function f at the type
any (recall that an object’s fields are mutable by default).

Clearly there is a latent type error in this code: line 10, the
function is expected to return a number, but circ.center is no longer a
Point (since the assignment at line 7 mutates the circle and changes
its type). Safe TypeScript cannot detect this error statically: the
formal parameter q has type any and all property access on any-
typed objects is permissible. However, Safe TypeScript does detect
this error at runtime; the result of compilation is the instrumented
code shown to the right of Figure 2.

As we aim for statically typed code to suffer no performance
penalty, it must remain uninstrumented. As such, the copy function
and the statically typed field accesses circ.center.x are compiled un-
changed. The freshly allocated object literal {x:0,y:0} is inferred to
have type Point and is also unchanged (in contrast to Swamy et al.
(2014) and Siek and Vitousek (2013), who instrument all objects
with RTTI). We insert checks only at the boundaries between static
and dynamically typed code and within dynamically typed code, as
detailed in the 4 steps below.

(1) Registering user-defined types with the runtime. The interface
definitions in the source program (lines 1–2) are translated to calls
to RT, the Safe TypeScript runtime library linked with every com-
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1 interface Point f x:number; y:number g
2 interface Circle f center:Point; radius:number g
3 function copy(p:Point, q:Point) f q.x=p.x; q.y=p.y; g
4 function f(q:any) f
5 var c = q.center;
6 copy(c, fx:0, y:0g);
7 q.center = fx:"bad"g; g
8 function g(circ:Circle) : number f
9 f(circ);

10 return circ.center.x; g

1 RT.reg("Point",f"x":RT.num,"y":RT.numg);
2 RT.reg("Circle",f"center":RT.mkRTTI("Point"), "radius":RT.numg);
3 function copy(p, q) f q.x=p.x; q.y=p.y; g
4 function f(q) f
5 var c = RT.readField(q,"center");
6 copy(RT.checkAndTag(c, RT.mkRTTI("Point")),fx:0,y:0g);
7 RT.writeField(q, "center", fx:"bad"g); g
8 function g(circ) f
9 f(RT.shallowTag(circ, RT.mkRTTI("Circle")));

10 return circ.center.x; g

Figure 2: Sample source TypeScript program (left) and JavaScript emitted by the Safe TypeScript compiler (right).

piled program. Each call to RT.reg registers the runtime represen-
tation of a user-defined type.
(2) Tagging objects with RTTI to lock invariants. Safe TypeScript
uses RTTI to express invariants that must be enforced at runtime. In
our example, g passes circ:Circle to f, which uses it at an imprecise
type (any); to express that circ must be treated as a Circle, even
in dynamically typed code, before calling f in the generated code
(line 9), circ is instrumented using the function RT.shallowTag
whose implementation is shown (partially) below.

function shallowTag(c, t) f
if (c!==undefined) f c.rtti = combine(c.rtti, t); g
return c; g

The RTTI of an object is maintained in an additional field (here
called rtti) of that object. An object’s RTTI may evolve at runtime—
Safe TypeScript guarantees that the RTTI decreases with respect to
the subtyping relation, never becoming less precise as the program
executes. At each call to shallowTag(c,t), Safe TypeScript ensures
that c has type t, while after the call (if c is defined) the old RTTI
of c is updated to also recall that c has type t (Circle, in our ex-
ample). Importantly for performance, shallowTag does not descend
into the structure of c tagging objects recursively—a single tag at
the outermost object suffices; nested objects need not be tagged
with RTTI (a vital difference from prior work).
(3) Propagating invariants in dynamically typed code. Going back
to our source program (line 5), the dynamically typed read of q.
center is rewritten to RT.readField(q,"center"), whose definition is
shown (partially) below.

function readField(o,f) f
if (f==="rtti") die("reserved name");
return shallowTag(o[f], fieldType(o.rtti, f)); g

Reading a field f out of an object requires tagging the value stored
in o.f with the invariants expected of that field by the enclosing
object. In our example, we tag the object stored in q.center with
RTTI indicating that it must remain a Point. The benefit we gain
by not descending into the structure of an object in shallowTag is
offset, in part, by the cost of propagating RTTI as the components
of an object are accessed in dynamically typed code—empirically,
we find that it is a good tradeoff (cf. §2.3 and §5).
(4) Establishing invariants by inspecting and updating RTTI.
When passing c to copy (line 6), we need to check that c is a Point,
as expected by copy. We do this by calling a runtime function RT
.checkAndTag that (unlike shallowTag) descends into the structure
of c (in our example), checks that c is structurally a Point and, if
it succeeds, tags c with RTTI recording that it is a Point (as shown
below, partially). In our example, where f is called only from g, the
check succeeds.

function checkAndTag(v, t) f
if (v === undefined) return v;
if (isPrimitive(t)) f

if (t === typeof v) return v;
else die("Expected a " + t);
g else if (isObject(t)) f

for (var f in fields(t)) f

checkAndTag(v[f.name], f.type);
g; return shallowTag(v, t);
g . . . g

Finally, we come to the type-altering assignment to q.center: it
is instrumented using the RT.writeField function (at line 7 in the
generated code, and partially implemented below).

function writeField(o, f, v) f
if (f==="rtti") die("reserved name");
return (o[f]=checkAndTag(v,fieldType(o.rtti,f))); g

The call writeField(o, f, v) ensures that the value v being written
into the f field of the object o is consistent with the typing invariants
expected of that field—these invariants are recorded in o’s RTTI,
specifically in fieldType(o.rtti, f). In our example, this call fails
since {x:"bad"} cannot be typed as a Point.

2.3 Differential subtyping. Tagging objects can be costly, espe-
cially with no native support from JavaScript virtual machines.
Prior work on RTTI-based gradual typing suggests tagging every
object, as soon as it is allocated (cf. Siek and Vitousek 2013 and
Swamy et al. 2014, the latter specifically for a subset of Type-
Script). Following their approach, our initial implementation of
Safe TypeScript ensured that every object carry a tag. We defer
a detailed quantitative comparison until §5.1 but, in summary, this
variant can be 3 times slower than the technique we describe below.

Underlying our efficient tagging scheme is a new form of co-
ercive subtyping, called differential subtyping. The main intuitions
are as follows: (1) tagging is unnecessary for an object as long as it
is used in compliance with the static type discipline; and (2) even
if an object is used dynamically, its RTTI need not record a full
description of the object’s typing invariants: only those parts used
outside of the static type discipline require tagging.

Armed with these intuitions, consider the program in Figure 3,
which illustrates width subtyping. The triple of numbers p in
toOrigin3d (a 3dPoint) is a subtype of the pair (a Point) expected
by toOrigin, so the program is accepted and compiled to the code at
the right of the figure. The only instrumentation occurs at the use
of subtyping on the argument to toOrigin: using shallowTag, we tag
p with RTTI that records just the z:number field—the RTTI need
not mention x or y, since the static type of toOrigin’s parameter
guarantees that it will respect the type invariants of those fields. Of
course, neglecting to tag the object with z:number would open the
door to dynamic type-safety violations, as in the previous section.
Differential width-subtyping. To decide what needs to be tagged
on each use of subtyping, we define a three-place subtyping relation
t1 <: t2  δ, which states that the type t1 is more precise than
t2, and that δ is (to a first approximation) the loss of precision
between t1 and t2; We let δ range over types, or ∅ when there
is no loss in precision. We speak of t1 as a δ-subtype of t2. For
width-subtyping on records, the relation includes the ‘splitting’ rule
{x : t; y : t

′} <: {x : t}  {y : t
′}, since the loss between the

two record types is precisely the omitted fields y : t
′. On the other

hand, for a record type t, we have t <: any  t, since in this
case the loss is total. At each use of subtyping, the Safe TypeScript
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1 function toOrigin(q:fx:number;y:numberg) f q.x=0;q.y=0; g
2 function toOrigin3d(p:fx:number;y:number;z:numberg) f
3 toOrigin(p); p.z=0; g
4 toOrigin3d(fx:17, y:0, z:42g);

1 function toOrigin(q) f q.x=0; q.y=0; g
2 function toOrigin3d(p) f
3 toOrigin(RT.shallowTag(p, f"z":RT.numg)); p.z=0; g
4 toOrigin3d(fx:17, y:0, z:42g);

Figure 3: Width-subtyping in a source TypeScript program (left) and after compilation to JavaScript (right).

compiler computes δ, and tags objects with RTTI that record just δ,
rather than the full type t1.
Taking advantage of primitive RTTI. Our definition of differential
subtyping is tailored specifically to the RTTI available in Safe
TypeScript and, more generally, in JavaScript—on other platforms,
the relation would likely be different. For primitive types such
as numbers, for instance, the JavaScript runtime already provides
primitive RTTI (typeof n evaluates to "number" for any number n)
so there is no need for additional tagging. Thus, although number
is more precise than any, we let number <: any ∅.

Similarly, for prototype-based objects, JavaScript provides an
instanceof operator to test whether an object is an instance of a
class (cf. §2.1); also a form of primitive RTTI. Hence, for a class-
based object type C, we have C <: any  ∅, meaning that
Safe TypeScript does not tag when subtyping is used on a class-
based object type. As such, our subtyping relation computes the
loss between two types that may not already be captured by RTTI,
hence subtyping is non-coercive on types with primitive RTTI.
Controlling differences to preserve object identity. Besides perfor-
mance, differential subtyping helps us ensure that our instrumenta-
tion does not alter the semantics of TypeScript. Consider subtyping
for function types. One might expect a value f:(x:Point)⇒3dPoint
to be usable at type (x:3dPoint)⇒Point via a standard lifting of the
width-subtyping relation to function types. Given that differential
subtyping is coercive (tags must be added), the only way to lift the
tagging coercions to functions is by inserting a wrapper. For exam-
ple, we might coerce f to the function g below, which tags the z field
of the argument and then tags that field again on the result.

function (y) f
var t = f"z":RT.Numg;
return shallowTag(f(shallowTag(y, t)),t); g

Unfortunately, for a language like TypeScript in which object iden-
tity is observable (functions are a special case of objects), coer-
cive wrappers like the one above are inadmissible—the function g
is not identical to f, the function it wraps. Our solution is to re-
quire that higher order subtyping only use ∅-subtypes for relating
function arguments, i.e., only non-coercive subtyping is fully struc-
tural. Thus, we exclude (x:Point)⇒3dPoint <: (x:3dPoint)⇒Point
from the subtyping relation. Conversely, given t = (x:t1) ⇒t2 and
t′ = (x:t′1) ⇒t′2, we have t <: t′  t, when t′1 <: t1  ∅ and
t2 <: t′2  ∅, since the ∅-difference ensures that no identity-
breaking wrappers need to be inserted. Subtyping on functions is
still coercive, however. In the relation above, notice that the differ-
ence is computed to be t the type of the left-hand side. Thus, we
coerce f : t to t′ using shallowTag(f,t), which sets t in the rtti field
of the function object f.

2.4 A modality for type erasure. Selective tagging and differen-
tial subtyping enable objects with partial RTTI. Going further, it
is useful to ensure that some objects never carry RTTI, both for
performance and for modularity. To this end, Safe TypeScript in-
troduces a new modality on types to account for RTTI-free objects.
User-controlled erasure. Consider a program that calls toOrigin3d
on a large array of 3dPoints: the use of width-subtyping in the body
of toOrigin3d causes every object in the array to get tagged with
RTTI recording a z number field. This is wasteful, inasmuch as the
usage of each 3dPoint is type-safe without any instrumentation. To
avoid unnecessary tagging, the programmer may write instead:

function toOrigin(q:�Point) f q.x=0;q.y=0; g

The type •Point is the type of erased Points, i.e., objects that have
number-typed fields x and y, but potentially no RTTI.2 Subtyp-
ing towards erased types is non-coercive; i.e, 3dPoint<:•Point ∅.
So, along one dimension, erased types provide greater flexibility,
since they enable more subtyping at higher-order. However, without
RTTI, the runtime system cannot enforce the typing invariants of •t
values; so, along another dimension, erased types are more restric-
tive, since they exclude dynamic programming idioms (like field
extension, reflection, or deletion) on values with erased types. In
particular, •t is not a subtype of any. Balancing these tradeoffs re-
quires some careful thinking from the programmer, but it can boost
performance and does not compromise safety.
Information hiding with erased types. Since values of erased types
respect a static type discipline, programmers can use erasure to
enforce deeper invariants through information hiding. JavaScript
provides just a single mechanism for information hiding: closures.
Through the use of erased types, Safe TypeScript provides another,
more idiomatic, form of hiding, illustrated below. Consider a mono-
tonic counter object with a private v field hidden from its clients,
and a public inc method for incrementing the counter.
var ctr: �finc():numberg = fv:0, inc()f return ++this.v;g g;

By introducing the newly allocated object ctr at an erased type,
its client code is checked (statically and dynamically) to ensure
comformance with its published API: only inc is accessible, not v.
Without the erasure modality, clients could mutate the v field using
statements like ctr["v"] = −17. We show an encoding of abstract
types using erased types in §3.4 (Theorem 2).
Erasure, modularity, and trust. TypeScript programs rarely run in
isolation; their environment include APIs provided by primitive
JavaScript arrays and strings, the web browser’s document object
model (DOM), JQuery, the file system for server-side JavaScript,
etc. The default library used for typing TypeScript programs in-
cludes about 14,000 lines of specifications providing types to these
external libraries, and even more comprehensive TypeScript library
specifications are available online.3 Recompiling all these libraries
with Safe TypeScript is not feasible; besides, sometimes these li-
braries are not even authored in JavaScript. Nevertheless, being
able to use these libraries according to their trusted specifications
from within Safe TypeScript is crucial in practice.

The erasure modality can help: we mark such external libraries
as providing objects with erased type, for two purposes: (1) since
these external objects carry no RTTI, this ensures that their use
within Safe TypeScript is statically checked for compliance with
their specification; (2) the erased types ensure that their objects
are never tagged—adding new fields to objects owned by external
libraries is liable to cause those libraries to break.

As such, the type-safety for typical Safe TypeScript programs
is guaranteed only modulo the compliance of external libraries to
their specifications. In scenarios where trust in external code poses
an unacceptable risk, or when parts of the program need to carefully
utilize features of JavaScript like eval that are outside our type-
safe language, one might instead resort to the type-based isolation

2 §4 discusses how we fit erased types into TypeScript without any modifi-
cations to its concrete syntax; until then, we use the • to mark erased types.
3 https://github.com/borisyankov/DefinitelyTyped
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mechanism of TS? (Swamy et al. 2014). Specifically, TS? proposes
the use of an abstract type Un to encapsulate untyped adversarial
code and a family of type-directed coercions to safely manipulate
Un-values. This mechanism is complementary to what Safe Type-
Script offers. In fact, as discussed in §3.4, Safe TypeScript’s erased
types generalize the Un type. In particular, from Theorem 2, we
have that the type •{} is the Safe TypeScript analog of Un.
Gradually evolving Safe TypeScript using erased types. Over the
course of last year, as we were developing Safe TypeScript, Type-
Script added several advanced features to its type system, notably
generic types. Keeping pace with TypeScript is a challenge made
easier through the use of erased types. Recall that values of erased
types must be programmed with statically, since erased types are
invisible to the runtime system. Adding TypeScript’s generic class
types to Safe TypeScript requires significant changes to the inter-
play between the Safe TypeScript compiler and its runtime. One
way to minimize this upheaval is to add generic types to Safe Type-
Script in two steps, first to the static type system only, where gener-
ics are well understood, and only thereafter to the runtime system, if
needed. §4 explains how we completed the first step by treating all
generic types as erased. This allows Safe TypeScript programmer
to use generic types statically, promoting code reuse and reducing
the need for (potentially expensive) subtyping. By restricting the
interaction between generic types and any, the system remains sim-
ple and sound. So far, preventing the use of polymorphic values in
dynamically typed code has not been a significant limitation.

3. SafeTS: the formal core of Safe TypeScript
SafeTS models a sizeable fragment of Safe TypeScript includ-

ing erased types, primitive types, structural objects, and nominal
classes and interfaces. In this section we define the SafeTS syntax,
a type system, and dynamic semantics. We model compilation as a
translation from SafeTS to itself that inserts dynamic type checks.
Due to space constraints, we cover only the subset of SafeTS with-
out classes and interfaces; the full paper gives full details. The fol-
lowing section (§4) outlines the parts of SafeTS omitted here, and
informally explains how our implementation extends SafeTS to all
of Safe TypeScript.

Our main results are expressed as a weak forward-simulation
(meaning that runtime checks do not alter the behavior of well-
typed programs, except when a dynamic type-safety violation is
detected) and an information-hiding theorem (letting programmers
build robust abstractions despite JavaScript dynamic features).

3.1 Syntax. The syntax for SafeTS is as follows.

Type τ ::= t | • t
Dynamic type t ::= c | any | {M ;F} | . . .

Primitive c ::= void | number | string | boolean
Method types M ::= · | m(τi) : τ |M1;M2

Field types F ::= · | f :τ | F1;F2

Expression e ::= v | {M̃, F̃} | e.f | e[e′]
| e.m(ei) | e[e′](ei) | 〈t〉e | RT(e | τ)

Value v ::= ` | x | ct
Method defns. M̃ ::= · | m(xi:τi) : τ {s; return e} | M̃1, M̃2

Field defns. F̃ ::= · | f :τ e | F̃1, F̃2

Statement s ::= e | skip | s1; s2 | var x:τ = e
| x = e | e.f = e′ | e[e′] = e′′

We stratify types into those that may be used dynamically
and those that may be erased. Dynamic types t include primitive
types c, any, and structural object types {M ;F} where F is a se-
quence of field names f and their types τ and M is a sequence of
method names m and their method types4 written (τi) : τ . (As ex-

4 Although TypeScript provides different notation for methods and fields,
it makes no semantic distinction between the two. In concrete syntax, the

pected in TypeScript, methods also take an implicit this argument
with the type of the enclosing object.)

Like JavaScript, SafeTS separates expressions from statements.
Expressions include values v, structural object literals, static and
dynamic field projections, static and dynamic method calls, and
type casts. The metavariable RT ranges over the functions (with
expression or type arguments) we use to instrument compiled pro-
grams, modeled as primitives in SafeTS. As such, the RT form is
excluded from source programs.

Values include memory locations `, variables x (including
the distinguished variable this), and literals, ranged over by the
metavariable ct. To reflect their primitive RTTI provided by
JavaScript (and returned by typeof), we may subscript literals
with their type, writing, e.g., undefinedvoid. Object literals are se-
quences of explicitly-typed method and field definitions. (In our
implementation, those types are first inferred by the TypeScript
compiler, as shown in Figure 1.) Method definitions are written
m(xi:τi) : τ {s; return e}. For simplicity, method bodies consist
of a statement s and a return expression e; void-returning methods
return undefined. Field definitions are written f :τ e where τ is the
type inferred by TypeScript and is not concrete syntax.

Statements include expressions, skip, sequences, typed variable
definitions, variable assignments, and static & dynamic field as-
signments. Conditional statements and loops are trivial, so we rel-
egate them to the supplement.

Like TypeScript, SafeTS models functions as objects with a sin-
gle method named call. Thus, functions in concrete syntax function
(xi : ti):t {s; return e} become {call(xi : ti):t {s; return e}} and

function calls e(ei) become e.call(ei).

3.2 Static semantics. Figure 4 presents a core of the static seman-
tics of SafeTS. The main judgments involve the typing/compilation
of expressions Γ ` e : τ ↪→ e′ and statements Γ ` s ↪→ s′ where
the source and target terms are both included in SafeTS. (The em-
bedding of compiled SafeTS to a formal semantics of JavaScript is
beyond the scope of this work.)

The type system of SafeTS has two fragments: a fairly standard
static type discipline that applies to most terms, and a more per-
missive discipline that applies to the more dynamic terms, such as
dynamic field projection. Figure 4 gives the more interesting rules
from both fragments; we discuss them in turn. (Due to space con-
straints, we omit routine rules, such as those for typing literals.)
Differential subtyping is a ternary relation τ1 <: τ2  δ. As a
shorthand, we write τ1 <: τ2 when δ = ∅. Subtyping is reflexive
(S-REFL) and is provably transitive. Via S-VOID, the undefined
value inhabits all types—in a stricter setting, one may choose to
omit this rule. The rules S-PANY, S-RANY and S-REC enforces
any as a supertype for all primitive and object types, as well as
subtyping on object types, as discussed in §2.3. Rule S-ERASED
stands for two rules: both t and •t are subtypes of •t′, so long as
t is a subtype of t′. Although there is a loss of precision (δ) when
using this rule, uses of •t′-terms have to be typed statically, so there
is no need to add RTTI—hence the ∅-difference in the conclusion.

As we will see shortly, the use of subtyping when typing expres-
sions and statements is carefully controlled—each use of subtyping
may introduce a loss in precision which gets reflected into the RTTI
of the compiled term by shallowTag(e, δ). Although not shown in
the rules, when δ = ∅ the call to shallowTag is optimized away.
Variables are typed and compiled to themselves using T-ENV.
Objects are typed using T-REC, by typing their method and field
definitions in turn. The auxiliary function sig({M̃, F̃}) computes
the type of the object itself for the this reference (discussed further

formal parameters in a method type must be named, although arguments are
still resolved by position.
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τ <: τ ′  δ, Γ ` e : τ ↪→ e′, Γ ` M̃ ↪→ M̃ ′, Γ ` F̃ ↪→ F̃ ′, Γ ` s ↪→ s′

S-REFL

τ <: τ

S-VOID

void <: τ

S-PANY

c <: any

S-RANY

{M ;F} <: any {M ;F}

S-REC {M ;F} 6= {M ′;F ′} F ′ ⊆ F
∀m(τi

′) : τ ′ ∈M ′.∃m(τi) : τ ∈M.τ <: τ ′ ∧ ∀i.τ ′i <: τi

{M ;F} <: {M ′;F ′} {M \M ′;F \ F ′}

S-ERASED
t <: t′  δ

[•]t <: •t′

x : τ ∈ Γ

Γ ` x : τ ↪→ x
T-ENV

τ = sig({M̃, F̃}) Γ, this:τ ` M̃ ↪→ M̃ ′ Γ ` F̃ ↪→ F̃ ′

Γ ` {M̃, F̃} : τ ↪→ {M̃ ′, F̃ ′}
T-REC

Γ ` e : τ ′ ↪→ e′ τ ′ <: τ  δ

Γ ` f :τ e ↪→ f :τ shallowTag(e′, δ)
T-FD

Γ′ = Γ, xi:τi, locals(s) Γ′ ` s ↪→ s′ Γ′ ` e : τ ′ ↪→ e′ τ ′ <: τ  δ

Γ ` m(xi:τi) : τ {s; return e} ↪→ m(xi:τi) : τ {s′; return shallowTag(e′, δ)}
T-MD

Γ ` e : τ ′ ↪→ e′ f :τ ∈ fields(τ ′)

Γ ` e.f : τ ↪→ e′.f
T-RD

Γ ` e : τ ↪→ e′ m(τi) : τr ∈ methods(τ) ∀i.Γ ` ei : τ ′i ↪→ e′i ∀i.τ ′i <: τi  δi

Γ ` e.m(ei) : τr ↪→ e′.m(shallowTag(ei
′, δi))

T-CALL
Γ ` e : τ ′ ↪→ e′ τ ′ <: Γ(x) δ

Γ ` x = e ↪→ x = shallowTag(e′, δ)
T-WRX

Γ ` e1 : τ1 ↪→ e′1 f :τ ∈ fields(τ1) Γ ` e2 : τ2 ↪→ e′2 τ2 <: τ  δ

Γ ` e1.f = e2 ↪→ e′1.f = shallowTag(e′2, δ)
T-WR

∀j ∈ {1, 2, 3}.Γ ` ej : tj ↪→ e′j

Γ ` e1[e2] = e3 ↪→ write(e′1, t1, e
′
2, e
′
3, t3)

T-DWR

∀j ∈ {1, 2}.Γ ` ej : tj ↪→ e′j

Γ ` e1[e2] : any ↪→ read(e′1, t1, e
′
2)

T-DRD
∀j ∈ {1, 2, i}.Γ ` ej : tj ↪→ e′j

Γ ` e1[e2](ei) : any ↪→ invoke(e′1, t1, e
′
2, ei

′, ti)
T-DCALL

Γ ` e : t′ ↪→ e′

Γ ` 〈t〉e : t ↪→ checkAndTag(e′, t′, t)
T-C

Figure 4: Typing and compiling a core of SafeTS, where δ ::= t | ∅ and Γ ::= · | x:τ | Γ,Γ′ and τ <: τ ′ , τ <: τ ′  ∅.

in the next paragraph). Fields are typed using T-FD: the initializer
must be a subtype of the field type. The loss in precision δ due to the
use of subtyping is reflected into the RTTI of e′ using shallowTag.
Methods are typed using T-MD. In the first premise, we extend Γ to
contain not only the parameter bindings, but also bindings for local
variables of the method body, denoted by locals(s). This models
JavaScript’s hoisting of local variables in method bodies. The rule
then types s and the return expression e. The use of subtyping for
the result is manifested in the compiled code by a call to shallowTag.
Restricting the use of this: Foreshadowing the dynamic seman-
tics, in a normal method call v.m(), the body of m executes with
the implicit parameter this bound to v. However, for a function
call g() JavaScript’s semantics for resolving the this-parameter is
much more subtle—broadly speaking, the body of g executes with
this bound to a global object. As such, relying on any properties of
this in g is unsafe. We preclude the use of this in a non-method func-
tion g = call(xi:τi):τ { s;return e } by typing it using this : •{},
the type of an abstract reference to an object (see Theorem 2).
Specifically, we define sig(g) = •{}, whereas for all other objects
sig({M̃, F̃}) = {M ;F}, the point-wise erasure of method- and
field-definitions to their types.
Field projections, method calls, local variable assignments, and
field assignments are statically typed by T-RD, T-CALL, T-WRX,
and T-WR, respectively. The rules are routine apart from their use
of shallowTag at each use of subtyping.
The dynamic fragment of SafeTS includes the rules T-DWR, T-
DRD, T-DCALL and T-C. In each case, we restrict the types of
each sub-term involved to dynamic types t—erased types •t must
respect the static discipline. When compiling the term, we generate
a runtime check that mediates the dynamic operation in question,
passing to the check the sub-terms and (some of) their static types
as RTTI. In the next subsection, we discuss how each check makes
use of RTTI to ensure dynamic type safety.

3.3 Dynamic semantics. Figure 5 presents selected rules from our
small-step operational semantics, of the form C −→ C′ where each
configuration C is a pair of a state C and a program statement s. Our
semantics models the execution of SafeTS programs both before
and after compilation—the former is intended as a model of the

dynamic semantics of a core of TypeScript, while the latter is a
model of Safe TypeScript.

A state C is a quadruple H;T ;X;L consisting of a heap H
mapping locations ` to mutable objects O and values v; a tag
heap T , mapping some of these locations to RTTI t (when execut-
ing source programs, the tag heap is always empty); a call stack X
where each element consists of a a local store L and an evaluation
context E; and a local store L that maps variables x to locations `
for the current statement. We use the notation C.H for the heap
component of C, C /H for C with updated heap H , and use similar
notations for the other components and also for C.

Our runtime representation of objects includes a prototype field,
a sequence of method definitions sharing a captured closure envi-
ronment L, and a sequence of field definitions. For simplicity, we
treat return e as a statement, although it can only occur at the end
of a method body. Finally, we define evaluation contexts, E, as fol-
lows for both statements and expressions, embodying a strict left-
to-right evaluation order.

E ::= 〈〉 | E.f | E[e] | v[E] | RT(v|t, E, e|t) | . . .
| E; s | var x : t = E | return E | . . .

Context rules. Figure 5 begins with E-DIE, where die is a distin-
guished literal that arises only from the failure of a runtime check;
the failure bubbles up and terminates the execution. We omit the
other, standard rules for evaluation contexts.
Field projection and update. Static field projection `.f (E-RD)
involves a prototype traversal using the lookup function, whose
definition we omit. Dynamic field reads split into two cases; we
show only the former: when an object reference `′ is used as a
key into the fields of ` (E-DRD), as in JavaScript, `′ is coerced
to a string by calling toString; when the key is a literal and H
maps ` to an object, we return either its corresponding field, if any,
or undefined. Dynamic fields writes also have two cases; we show
only the latter (E-DWR): we expect C.H(`) to contain an object,
and we update its field fc with v. (We write fc for JavaScript’s
primitive coercion of a literal c to a field name.)
The calling convention and closures. E-DCALL shows a dynamic
call of the method c in object `. In the first premise, we use the
auxiliary function lookup m this to traverse the prototype chain to
find the method m and to implement JavaScript’s semantics for re-
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C; s −→ C′; die

C;E〈s〉 −→ C′; die
E-DIE

lookupC.H(`, f) = v

C; `.f −→ C; v
E-RD

C; `[`′] −→ C; `[`′.toString()]
E-DRD

H′ = C.H[` 7→ C.H(`)[fc 7→ v]]

C; `[c] = v −→ C / H′; v
E-DWR

lookup m thisH(`, fc) = L′.m(xi : τi) : τ{s}, `′ locals(s) = yj `j , `i fresh H′ = H[`i 7→ vi, `j 7→ undefined]

H;T ;X;L;E〈`[c](vi)〉 −→ H′;T ; (X;L.E); (L′, this 7→ `′, xi 7→ `i, yj 7→ `j); s
E-DCALL

H′ = C.H[C.L(x) 7→ v]

C;x = v −→ C / H′; skip
E-WRX

C.X = X′;L.E

C; return v −→ C / X′;L;E〈v〉
E-RET

` fresh H′ = C.H[` 7→ {proto:ˆ̀, m: C.L .M̃, f:fi = vi}]
C; {M̃ ; fi = vi} −→ C / H′; `

E-OBJ

tf = fieldType(fc, combine(C.T [`], t)) tf <: any δ

C; read(`, t, c) −→ C; shallowTag(`[c], δ)
E-READ

tf = fieldType(fc, combine(C.T [`], t))

C; write(`, t, c, v, t′) −→ C; `[c] = checkAndTag(v, t′, tf )
E-WRITE

fc(t′i) : t′ ∈ methods(combine(C.T [`], t)) t′ <: any δ

C; invoke(`, t, c, vi, ti) −→ C; shallowTag(`[c](checkAndTag(vi, ti, t′i)), δ)
E-INVM T ′ = [[shallowTag(v, δ)]]C.T

C; shallowTag(v, δ) −→ C / T ′; v
E-ST

lookupC.H(`, fc) = `′ call(t′i) : t′ ∈ methods(C.T [`′]) t′ <: any δ

C; invoke(`, t, c, vi, ti) −→ C; shallowTag(`[c](checkAndTag(vi, ti, t′i)), δ)
E-INVF T ′, v′ = [[checkAndTag(v, t, t′)]]C.T,C.H

C; checkAndTag(v, t, t′) −→ C / T ′; v′
E-CT

combine(τ, c) = combine(τ, any) = τ combine(τ, {M ;F}) = {methods(τ) ∪ {m(τi) : τ ∈M | m /∈ methods(τ)}; fields(τ) ] F}
fieldType(f, t) = if f :t′ ∈ fields(t) then t′ else if f 6∈ methods(t) then any else ⊥

JshallowTag(v, ∅)KT = JshallowTag(c, δ)KT = T JshallowTag(`, {M ;F})KT = T [` 7→ combine(T [`], {M ;F})]
JcheckAndTag(v, t, t′)KT,H = ctaux(v, t, t′, T,H), v JcheckAndTag(v, t, t′)KT,H = T, die if ctaux(v, t, t′, T,H) is not defined
ctaux(undefined, t, t′, T,H) = ctaux(cc, t, c, T,H) = ctaux(v, t, any, T,H) = T ctaux(v, t, •t′, T,H) = ctaux(v, t, t′, T,H)
ctaux(`, t, {M ;F}, T,H) = let t′ = combine(T [l], t),M ′ = methods(t′), F ′ = fields(t′), Fcom = {f :t ∈ F | f ∈ dom(F ′)}, Fnew = F \ Fcom

let T0 = JshallowTag(`, δ)KT and ∀fi:ti ∈ Fnew.Ti = ctaux(H[`][fi], any, ti, Ti−1, H)
JshallowTag(`, {·;Fnew})KTn when {M ′;F ′} <: {M ;Fcom} δ

Figure 5: Selected rules from SafeTS’s dynamic semantics: C; s −→ C′; s

solving the implicit this argument to `′. Usually ` = `′, except
when m = call (i.e., a bare function call), when `′ defaults to a
global object—this is safe since the type system ensures that func-
tions do not use this in their bodies. Next, we gather all the local
variables yj from the method body s, and allocate slots for them
and the function’s parameters in the heap, Locals and parameters
are mutable (as shown in the next rule, E-WRX) and are shared
across all closures that capture them, so we use one indirection and
promote their contents to the heap. In the conclusion of E-DCALL,
we push one stack frame, set the current local store to the captured
closure environment (extended with the locals and parameters) and
proceed to the method body. Dually, E-RET pops the stack and re-
turns the value v to the suspended caller’s context. Rule E-OBJ
allocates objects: a fresh location in the heap is initialized with an
object O whose prototype is set to a distinguished location ˆ̀, repre-
senting, concretely, Object.prototype in JavaScript. Initializing the
methods involves capturing the current local store C.L as a closure
environment. Initializing the fields is straightforward.

Two sources of RTTI for enforcing dynamic type-safety. The main
novelty of our dynamic semantics is in the remaining six rules,
which enforce SafeTS’s notion of dynamic type safety using RTTI.
RTTI in SafeTS comes in two forms—there is persistent RTTI,
associated with objects in the tag heap or available primitively on
literals; and instantaneous RTTI, provided by the compiler among
the arguments to the RT functions. The most precise view of an
object’s invariants available to a runtime check is obtained by
combining both forms of RTTI, using the partial function combine.
An invariant of our system ensures that it is always possible to
combine the persistent and instantaneous RTTI consistently, e.g., it
is impossible for the tag heap to claim that an object has a field f :
number while the instantaneous RTTI claims f : any. Additionally,
our invariants ensure that the method types in the persistent RTTI
are never less precise than the instantaneous method types—recall

that any loss in precision due to subtyping on methods is recorded
in the RTTI using shallowTag.

Reads and writes. E-READ mediates reading fc from an object ref-
erence `:t; similarly, E-WRITE mediates writing v:t′ to fc of `:t.
In both cases, we combine any persistent RTTI stored at T [`]
(defined as T (`) when ` ∈ dom(T ) and {·; ·} otherwise) with t,
the instantaneous RTTI of ` provided by the compiler, and then use
the partial function fieldType to compute the type of fc. If the field
is present in the RTTI, we simply use its type tf ; unless the field
name clashes with a known method name, the field type defaults
to any; otherwise, fieldType is not defined, and both E-READ and
E-WRITE are stuck—in this case, the configuration steps to die (we
omit these routine rules). Given tf , in E-READ, we project the field
and then propagate tf into the persistent RTTI of the value that is
read before returning it. In E-WRITE, before updating fc, we check
that v:t′ is compatible with the expected type tf .

Method and function invocations. E-INVM and E-INVF mediate
these invocations. In E-INVM, the goal is to safely invoke method
fc on `:t with parameters vi:ti. If we find the method in `’s com-
bined RTTI, we invoke it after checking that the parameters have
the expected types, and then propagate the result type into the RTTI
of the result. In E-INVF, the goal is to call a function-typed field
of `:t. the handling is similar, except that instead of looking up a
method, we traverse the prototype chain, project the field, and in-
spect that field’s RTTI for a call signature. If we find the signature,
we call the function just as in E-INVM. In both rules, if the method
or function is not found, the configuration steps to die.

Propagating and checking tags. Finally we have two workhorses
for the semantics: shallowTag (E-ST) and checkAndTag (E-CT).
The semantics of the former is given by JshallowTag(v, δ)KT , an
interpretation function on tag heaps. When δ = ∅ or v = c, there
is no tag propagation and the function is the identity. On struc-
tural types, we use the combine function to update the tag heap—
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an invariant ensures that persistent RTTI evolves monotonically,
i.e., it never gets less precise. Whereas shallowTag never fails, the
interpretation JcheckAndTag(v, t, t′)KT,H is a pair consisting of a
new tag heap and a result (either a value or die). The interpreta-
tion is given by the function ctaux. The most interesting case in-
volves checking whether ` can be given the type {M ;F}. To do
this, we consult {M ′;F ′}, the combined view of `’s RTTI, and if
{M ′;F ′} <: {M ;Fcom}  δ where Fcom are the fields shared
between F and F ′, we tag ` with the loss in precision (if any); we
then recursively checkAndTag `’s fields for the each of fields in F ′

not in F (Fnew); and, if that succeeds, we finally propagate Fnew
to `’s RTTI. We prove that ctaux always terminates, even in the
presence of cycles in the object graph.

3.4 Metatheory. Our main result is that compilation is a weak
forward-simulation, which also implies subject reduction for well-
typed programs. Our second theorem is an abstraction property for
values of erased types, rewarding careful programmers with robust
encapsulation. Our results applies to full SafeTS, including classes
and nominal interfaces. In full SafeTS, runtime states C are five-
tuples S;H;T ;X;L where the additional S is a signature that
contains all class and interface declarations. The runtime functions
like checkAndTag are parameterized by S as well, and use it to
implement dynamic type-safety for these constructs. Pragmatically,
some runtime checks on classes can be more efficient, since they
can be implemented primitively (e.g., using instanceof).
Compiling configurations. We extend the typing & compiling re-
lation of Figure 4 to runtime configurations, writing C : τ ↪→Σ C′
where Σ is a heap-typing and τ is the type of the result of the stack
of evaluation contexts. The main technicality is in the compilation
of statements that include free heap locations. In particular, when
compiling C; s to C′; s′, we relate the statements using a general-
ization of statement typing of the form S; Σ; C′.T ; Γ ` s ↪→ s′,
where Γ is derived from C.L and Σ. Intuitively, the heap typing Σ
records the static type of a location at the instant it was allocated,
while C′.T records the dynamic RTTI of a location, which evolves
according to Definition 2 below.

To translate heap locations, we introduce the following rule:

combineS(T [`],Σ(`)) = combineS(T [`], t)

S; Σ;T ; Γ ` ` : t ↪→ `
T-LOC

This rule captures the essence of differential subtyping. In tradi-
tional systems with subtyping, we would type a location ` using
any super-type of Σ(`). With differential subtyping, however, any
loss in precision due to subtyping must be reflected in the RTTI
of `, i.e., in T [`]. In T-LOC, we are trying to relate a source config-
uration C; ` to a given target configuration C′; ` (where T = C′.T ).
So, we must pick a type t, such that the loss in precision in t rel-
ative to Σ(l) is already captured in the persistent RTTI at T [`]. In
fact, t may be more precise or even unrelated to Σ(`), so long as,
taken together with T [l], there is no loss (or gain) in precision—the
premise of T-LOC makes this intuition precise. Since combine is
a partial function, the rule is applicable only when the persistent
RTTI of ` is consistent with its static type.

Definition 1 (Consistency of tag heap and heap typing). Heap
typing Σ is consistent with tag heap T , written Σ ∼ T , when
∀` ∈ dom(T ), either (1) T (`) = C,Σ(`) = C, or (2) T (`) =
{M ;F} and Σ(`) = {M ′;F ′} such that M ′ ⊇ M and ∀f :τ ∈
F ′.f :τ ∈ F ∨ f 6∈ F .

The following relation constrains how tag heaps evolve. In par-
ticular, the information about a location ` never grows less precise.
The auxiliary relation Σ ∼ T states that Σ(`) is consistent with
T (`) for each location ` in the domain of T , i.e., its static and dy-
namic types are never in contradiction.

Definition 2 (Tag heap evolution). Tag heap T1 evolves to T2 un-
der heap typing Σ, written Σ ` T1 B T2, when Σ ∼ T1; Σ ∼ T2;
and ∀` ∈ dom(T2), either (1) ` 6∈ dom(T1), or (2) T1(`) = T2(`),
or (3) T1(`) = {M1;F1} and T2(`) = {M2;F2} with M1 ⊆ M2

and F1 ⊆ F2.

Intuitively, our main theorem states that, if a source configura-
tion C is typed at τ and compiled to C1, then every step by C is
matched by one or more steps by C1, unless C1 detects a violation
of dynamic type-safety.

Theorem 1 (Forward Simulation). If we have C : τ ↪→Σ1 C1

then either both C and C1 are terminal; or, for some C′ and C′1, we
have C −→ C′, C1 −→+ C′1, and either C′1.s = die or for some
Σ′1 ⊇ Σ1 we have C′ : τ ↪→Σ′1

C′1 and Σ′1 ` C1.T B C′1.T .

An immediate corollary of the theorem is the canonical forms
property mentioned in §2. We can also read off the theorem a
type-safety property for target configurations, stated below, where
Σ ` C : τ abbreviates ∃C0.C0 : τ ↪→Σ C.

Corollary 1 (Type Safety). If Σ ` C : τ then either C is terminal
or for some Σ′ ⊇ Σ we have C −→+ C′ and Σ′ ` C′ : τ .

Information hiding. Our second theorem states that values with
type •{} are immutable and perfectly secret in well-typed contexts.
The theorem considers two well-typed configurations C1 and C2

that differ only in the contents of location `:•{} and shows that
their reductions proceed in lock-step. It provides a baseline prop-
erty on which to build more sophisticated, program-specific par-
tial abstractions. For example, the monotonic counter from §2.4
chooses to allow the context to mutate it in a controlled manner
and to reveal the result.

Theorem 2 (Abstraction of •{}). If Σ(l) = •{} and, for i ∈
{1, 2}, we have Σ ` C / H[` 7→ Oi] : τ ; then, for n ≥ 0,

C / H[` 7→ O1] −→n C′ / H ′[` 7→ O1] if and only if
C / H[` 7→ O2] −→n C′ / H ′[` 7→ O2].

4. Scaling to Safe TypeScript
TypeScript has a multitude of features for practical program-

ming and we adapt them all soundly for use in Safe TypeScript.
Of particular interest are the many forms of polymorphism: inheri-
tance for classes and interfaces, ad hoc subtyping with recursive in-
terfaces, prototype-based JavaScript primitive objects, implicit con-
versions, ad hoc overloading, and even parametric polymorphism.
Space constraints prevent a detailed treatment of all these features:
we select a few representatives and sketch how SafeTS can be ex-
tended gracefully to handle them.

Our approach rides on a simple encoding of type qualifiers in
TypeScript. We use it to encode three qualifiers: one for the erasure
modality; one to override the default, structural interpretation of
interfaces; and a mutability qualifier.

By restricting more advanced typing features (e.g., parametric
polymorphism) to erased types, we improve the expressiveness
of the static fragment of the language, while ensuring that these
features do not complicate the (delicate) runtime invariants of Safe
TypeScript and its interface with the type-checker. First, however,
we show how we shoehorn Safe TypeScript’s distinction between
methods and fields into TypeScript’s syntax.

4.1 Distinguishing methods from fields. TypeScript makes no
distinction between the methods and fields of an object. This is
unsound, as illustrated by the example below:

1 var ctr = finc() : f this.f++; g, f: 0g;
2 var i = ctr.inc; i();

Listing 1: Conflating methods and fields in TypeScript
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Here, inc is a method of ctr, but it is projecting into the variable
i and then called. Under JavaScript’s semantics, the call i() binds
the this reference not to ctr, as one might hope, but instead defaults
(depending on the context) to some other object, often the global
object. Thus, this program ends up incrementing the f field of
the global object—which could break its invariants. Safe Type-
Script, by distinguishing methods from fields, prevents method
projections, ensuring that the only way to call the method is via
the access path ctr.inc(), ensuring that the this reference is correctly
bound to ctr in the body of inc.

Thankfully, there is no need to extend the syntax of TypeScript
to support this feature. The type for ctr in TypeScript is {inc():
void; f:number}, the first component of which is Safe TypeScript’s
notation for a method type. Just for comparison, in the program
below (which is perfectly type safe), the type of ctrAlt is {inc: ()
⇒void; f:number}, the type of an object with two fields. Whereas
TypeScript identifies the types of ctr and ctrAlt, Safe TypeScript
distinguishes them.

1 var ctrAlt = {inc: function () { ctrAlt.f++; }, f: 0};
2 var i = ctrAlt.inc; i();

Listing 2: A counter object with two fields

4.2 Encoding type qualifiers. Since TypeScript does not syntacti-
cally support type qualifiers, we devised a simple (though limited)
encoding for the erasure modality. For instance, we give below the
concrete syntax for the function toOrigin with erased types of §2.4.

1 module STS f interface Erased fg . . . g // our RT library
2 // client code
3 interface ErasedPoint extends Point, STS.Erased fg
4 function toOrigin(q:ErasedPoint) f q.x=0;q.y=0; g
5 function toOrigin3d(p:3dPoint) f toOrigin(p); p.z = 0; g

To mark a type t as erased, we define a new interface I that
extends both t and STS.Erased, a distinguished empty interface
defined in the standard library. (We discuss inheritance of classes
and interfaces in more detail, shortly.) In TypeScript, the type I has
all the fields of t, and no others, so I is convertible to t. In Safe
TypeScript, however, we interpret I (and, transitively, any type that
explicitly extends STS.Erased) as an erased type. We use similar
encodings to mark types as being immutable or nominal. While
these encodings fit smoothly within TypeScript, they have obvious
limitations, e.g., only named types can be qualified.

4.3 Inheritance.
Class and interface extension. SafeTS provides a simple model of
classes and interfaces—in particular, it has no support for inheri-
tance. Adding inheritance is straightforward. As one would expect,
since fields are mutable, classes and interfaces are not permitted
to override inherited field types. Method overrides are permissible,
as long as they respect the subtyping relation.5 Specifically, when
class C1 extends C0, we require for every overriding method m in
C1 to be a ∅-subtype of the method that it overrides in C0. We refer
to this as the override-check; it is analogous to rule S-REC in §3.
Implements clauses. Class inheritance in TypeScript is desugared
directly to prototype-based inheritance in JavaScript. As an object
may have only one prototype, multiple inheritance for classes is
excluded. As in languages like Java or C#, a substitute for multi-
ple inheritance is ad hoc subtyping, using classes that implement
multiple interfaces. Unlike Java or C#, however, an instance of a
class C can implicitly be viewed as an instance of a structurally-
compatible interface I , even when C does not declare that it im-
plements I . Nevertheless, in TypeScript, class declarations may be

5 TypeScript, more liberally, permits inheritance that overrides both fields
and methods using an unsound assignability relation (Bierman et al. 2014).

augmented with implements clauses mentioning one or more inter-
faces. For each such declaration, Safe TypeScript checks that the
class provides every field and method declared in these interfaces,
using the override-check above.
Extending ∅-subtyping with nominal interfaces. ∅-subtyping on
the arguments and results of methods in the override-check can
sometimes be too restrictive. As explained in §2.4, using erased
types may help: their subtyping is non-coercive, since they need
not carry RTTI. Dually, subtyping towards class- or primitive-
types is also non-coercive, since their values always carry RTTI.
Safe TypeScript makes use of implements-clauses to also provide
non-coercive subtyping towards certain interfaces. By default, in-
terface types are structural, but some of them can be qualified
as nominal. Nominal interfaces are inhabited only by instances
of classes specifically declared to implement those interfaces (as
would be expected in Java or C#). More importantly, nominal in-
terfaces are inhabited only by class instances with primitive RTTI,
thereby enabling non-coercive subtyping and making S-REC and
the overrides-check more permissive.
JavaScript’s primitive object hierarchy. Aside from inheritance
via classes and interfaces, we also capture the inheritance provided
natively in JavaScript. Every object type (a subtype of {}) extends
the nominal interface Object, the base of the JavaScript prototype
chain that provides various methods (toString, hasOwnProperty,
. . . ). Likewise, every function (an object with a call method in Safe
TypeScript) extends the nominal interface Function. For instance,
our subtyping relation includes t <: •{toString() : string}  ∅.
Auto-boxing. JavaScript automatically lifts values of primitive
types to their object analogs, e.g., number is lifted to Number. Both
our type system and runtime account for these auto-boxing conver-
sions. For instance, the source program (17).toString() is statically
typeable at string, since 17 is auto-boxed to Number, which in turn
extends Object, which provides a toString method. On the other
hand, take var x:any = 17; x.toString(); we compute the type any
for the final expression, and at runtime, observing that x has type
number, the runtime function callMethod implicitly lifts the type
to Number (to match JavaScript auto-boxing) before checking the
toString method RTTI and applying it.
Arbitrary prototype chains. Finally, we discuss a feature excluded
from Safe TypeScript: programmers cannot build arbitrary proto-
type chains using JavaScript’s proto property, or using arbitrary
functions as object constructors. The former (forbidden in the Java-
Script standard, but implemented by several VMs) is prevented by
treating proto as a reserved property and forbidding its access
both statically (where detectable) and at runtime. The latter is pre-
vented by requiring that new be called only on objects with a con-
structor signature, only present on class types.

4.4 Generic interfaces, functions, and classes. The code below
illustrates several valid uses of generic types in Safe TypeScript.

1 interface PairhA,Bi f fst: A; snd: B g
2 function pairhA,Bi(a:A,b:B): PairhA,Bi freturn f fst: a, snd: b g; g
3 declare var Array:f newhAi(len:number):ArrayhAi; . . . g
4 interface ArrayhTi f
5 push(...items:T []) : number; . . .
6 [key:number] : T g
7 class MaphA,Bi f
8 private map: ArrayhPairhA, Bii;
9 constructor() f this.map = new Array(10); g

10 public insert(k:A,v:B) f this.map.push(pair(k,v)); g g

We have a declaration of a generic interface for pairs (line 1)
and a generic function for constructing pairs (line 2), showing
how types can be abstracted. Line 3 declares a external symbol
Array (provided by the JavaScript runtime) at an implicitly erased
type that includes a generic constructor—types can be abstracted
at method signatures too. The constructor in Array builds a value
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of type Array〈A〉, a interface (partially defined at lines 4–6) that
provides a push function, which receives a variable number of T-
typed arguments, adds them all to the end of the array, and returns
the new length of the array. The type Array〈T〉 also contains an
index signature (line 6), which states that each Array〈T〉 is a map
from number-typed keys to T-typed values, indicating that an array
as:Array〈T〉 can be subscripted using a[i], for i:number. Finally,
line 7 defines a generic class Map〈A,B〉.

Typing generics. Except for erasure (explained next), our static
treatment of generic types is fairly straightforward: we extend the
context with type variables, and allow type abstraction at interfaces,
classes, and method/function boundaries. To enable instantiations
of type variables at arbitrary types, including erased types, their
subtyping only includes reflexivity (since erased types may not
even be subtypes of any). In the future, we plan to support bounded
quantification to extend subtyping for type variables. Type instan-
tiations are inferred by TypeScript’s inference algorithm, e.g., at
line 9, TypeScript infers Pair〈A,B〉 for the arguments of new Array
and, at line 10, Pair〈A,B〉 and A, B for the arguments of push and
pair, respectively.

Erasing generic types. To keep the interface between our compiler
and runtime system simple, we erase all generic types, and we for-
bid subtyping from generic types to any. Take the pair function or
the Array value, for example. Were we to allow it to be used at type
any, several tricky issues arise. For instance, how to compute type
instantiations when these values are used at type any? Conversely,
should any be coercible to the type of pair? Ahmed et al. (2011) pro-
pose a solution based on dynamic seals, but it is not suitable here
since dynamic seals would break object identity. Erasing generics
types and forbidding their use in dynamically typed contexts side-
steps these issues. On the other hand, instances of generic interfaces
need not always be erased. For example, Pair〈number, string〉 is a
subtype of {fst:number; snd:string}, and vice versa. The latter type
can be viewed structurally, and safely handled at type any, with the
difference computed as usual. Thus, the erasure modality safely al-
lows us to extend SafeTS with generics.

4.5 Arrays. TypeScript types arrays using the generic Array〈T〉 in-
terface (written T[] in concrete syntax) outlined in §4.4. Given their
pervasive use, Safe TypeScript extends SafeTS with the type t[]. Ar-
rays in JavaScript are instances of a primitive object called Array.
However, all instances of arrays, regardless of their generic instan-
tiation, share the same prototype Array.prototype. Thus, in contrast
with Object and Function, we do not treat Array as nominal inter-
face type. Instead, we have t[] <: any  t[], meaning that array in-
stances are tagged with RTTI as required by subtyping. Addition-
ally, we have t[] <: •Array〈t〉  ∅, meaning that generic functions
(push, shift,. . . ) are available on all arrays, but only under the era-
sure modality.

Arrays in TypeScript are an instance of types with index signa-
tures. Any record type can contain an index signature of the form
{[key:string] : T}, meaning that it is a maps all its string-typed fields
to T-typed values. Safe TypeScript supports index signatures also,
although special care needs to be taken to ensure that every prop-
erty in the object indeed has type T, including the default properties
(like toString) that every object contains. Since the only enumerable
properties available by default in every object (via Object.prototype
) are methods rather than fields, Safe TypeScript protections en-
sure that no default properties are ever unsafely accessed. Addi-
tionally, the Safe TypeScript runtime library provides a function
to efficiently construct objects with null-prototypes—an alternative
way of safely supporting index signatures.

Further complications arise from subtyping. In TypeScript, ar-
ray subtyping is both covariant (as in Java and C#) and contravari-
ant, allowing for instance number[] <: any[] <: string[]. More con-

servatively, Safe TypeScript supports sound covariant subtyping
for immutable arrays, based on a type CheckedArray in the stan-
dard library and a type qualifier for tracking immutability. Specif-
ically, we have t[] <: CheckedArray〈s〉 t[] as long as t <: s  ∅.
The type CheckedArray includes only a subset of the methods of
Array, for instance keeping map but excluding push. Additionally,
the compiler inserts checks to prevent assignments on instances of
CheckedArray. Finally, the runtime provides a function mutateArray
〈S,T〉(a:CheckedArray〈S〉): T[], which allows an immutable array a
to be coerced back to an array with a different element type, after
checking the RTTI of a for safety.

4.6 Overloading.

4.7 A catalog of Safe TypeScript’s static and dynamic checks.

5. Experimental evaluation
We summarize below the experiments we conducted to measure

the performance implications of our design choices, and to gain
insight into how Safe TypeScript fares when used in practice.
1. We compared differential subtyping to a variant of Safe Type-
Script that tags objects with RTTI as they are created. We find that
RTTI-on-creation incurs a slow down by a factor of 1.4–3x.
2. We compared two implementation strategies for the tag heap:
one using JavaScript’s weak maps to maintain a global RTTI table
“off to the side”; the other uses an additional field in tagged objects.
We find the latter to be faster by a factor of 2.
3. To gain experience migrating from JavaScript, we ported six
benchmarks from the Octane suite (http://octane-benchmark.
googlecode.com/) to Safe TypeScript. We observe that, at least
for these examples, migration is straightforward by initially typing
the whole program using any. Even so, Safe TypeScript’s variable
scoping rules statically discovered a semantic bug in one of the
benchmarks (navier-stokes), which has subsequently been fixed
independently. For more static checking, we gradually added types
to the ported benchmarks, and doing so also restored performance
of the Safe TypeScript version to parity with the original JavaScript.

For the same reason, we ported part the Microsoft Research
JavaScript Cryptography Library6 to Safe TypeScript. For this
benchmark migration required rewriting the code in a class-based
structure, due to the use of non-void returning functions as con-
structors (this behavior is not allowed by the TypeScript compiler).
This conversion, however, was still straightward. The original code
was commented with suggested types for function signatures that,
despite being relatively imprecise (e.g., Array instead of Array〈
number〉), were still of use in producing reasonable TypeScript
signatures. Information regarding optional arguments, which is
necessary to typecheck functions that expect a varying number
of arguments, was also part of these annotations.
4. Finally, we gained significant experience with moving a large
TypeScript codebase to Safe TypeScript. In particular, we migrated
the 90KLOC Safe TypeScript compiler (including about 80KLOC
from TypeScript-0.9.5) originally written in TypeScript. While do-
ing so, Safe TypeScript reported 478 static type errors and 26 dy-
namic type errors. Once fixed, we were able to safely bootstrap
Safe TypeScript—the cost of dynamic type-safety is a performance
slowdown of 15%.

5.1 Exploring the design space of tagging.
Differential subtyping vs. RTTI-on-creation. Prior proposals for
RTTI-based gradual typing suggest tagging every object (e.g.
Swamy et al. 2014). We adapted this strategy to Safe TypeScript
and implemented a version of the compiler, called STS?, that tags

6 http://research.microsoft.com/en-us/downloads/
29f9385d-da4c-479a-b2ea-2a7bb335d727/
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every object, array and function that has a non-erased type with
RTTI upon creation. Thus STS? also benefits from the use of erased
types, one of the main innovations of Safe TypeScript. In code that
makes heavy use of class-based objects, Safe TypeScript and STS?

have essentially the same characteristics—in both strategies, all
class-based objects have RTTI (via their prototype chain) as soon
as they are allocated. Finally, STS? has a few limitations, particu-
larly when used with generic interfaces. Consider the function pair
from §4.4. In Safe TypeScript, the function call pair(0,1) (correctly)
allocates a pair v with no tags. Later, if we were to use subtyping
and view v at type any, Safe TypeScript (again, correctly) tags v
with the type {fst:number; snd:number}. In contrast, STS? fails to
allocate the correct RTTI for v, since doing so would require pass-
ing explicit type parameters to pair so as to tag it with the correct
type at the allocation site. Thus, STS? is not suitable for deploy-
ment, but it provides a conservative basis against which to measure
the performance benefit of differential subtyping.

Object instrumentation vs. weak maps. Our default implementa-
tion strategy is to add a field to every object that carries RTTI. This
strategy has some advantages as well as some drawbacks. On the
plus side, accessing RTTI is fast since it is co-located with the ob-
ject. However, we must ensure that well-typed code never accesses
this additional field. To this end, we use a hard-to-guess, reserved
field name, and we instrument the read, write, and invoke functions,
as well as property enumerations, to exclude this reserved name.
However, this strategy is brittle when objects with RTTI are passed
to external, untrusted code. An alternative strategy to sidestep these
problems makes use of WeakMap, a new primitive in the forthcom-
ing ES6 standard for JavaScript already available in some (exper-
imental) JavaScript environments: WeakMap provides a mapping
from objects to values in which the keys are weakly held (i.e., they
do not impede garbage collection). This allows us to associate RTTI
with a object in state that is private to the Safe TypeScript runtime
library. For class instances, we retain a field in the object’s proto-
type. We refer to our implementation that use WeakMap as STS†.

The performance evaluation in the remainder of this section
compares Safe TypeScript with its variants, STS? and STS†, on
Node.js-0.10.17, Windows 8.1, and an HP z-820 workstation.

5.2 Octane benchmarks. Octane is an open JavaScript bench-
mark suite. It contains 14 JavaScript programs, ranging from simple
data structures and algorithms (like splay trees and ray-tracers) im-
plemented in a few hundred lines, to large pieces of JavaScript code
automatically generated by compilers, and even compilers imple-
mented in JavaScript for compiling other languages to JavaScript.

The table alongside lists 6 programs we picked from the Octane
benchmark, each a human-authored program a few hundred lines
long which we could port to TypeScript with reasonable effort.
All these programs use a JavaScript encoding of classes using
prototypes. In porting them to Safe TypeScript, we reverted these

Name LOC classes types
splay 394 2 15
navier-stokes 409 1(1) 41
richards 539 7(1) 30
deltablue 883 12 61
raytrace 904 14(1) 48
crypto 1531 8(1) 142

encodings and used classes
instead (since direct manip-
ulation of prototype chains
cannot be proven type-safe
in Safe TypeScript); the
‘classes’ column indicates
the number of classes we re-
verted; the number in paren-

theses indicates the number of abstract classes added while type-
checking the program. We then added type annotations, primarily
to establish type-safety and recover good performance; the ‘types’
column indicates their number.

Without any type annotations, we pay a high cost for enforcing
dynamic type safety. For the six unannotated Octane benchmarks,
the slowdown spans a broad range from a factor of 2.4x (splay) to

72x (crypto), with an average of 22x. However, with the addition
of types, we recover the lost performance—the slowdown for the
typed versions is, on average only 6.5%. On benchmarks that make
almost exclusive use of classes (e.g., raytrace and crypto) the per-
formance of Safe TypeScript and STS? is, as expected, the same.

In untyped code, the cost of additional tagging in STS? is
dwarfed by the large overhead of checks. However, in typed code,
STS? incurs an average slowdown of 66%, and sometimes as much
as 3.6x. Finally, in dynamically typed code (involving many RTTI
operations), STS† is significantly slower than Safe TypeScript: 2x
on average, parity in the best case, and 3.2x in the worst case. We
have spent some effort on simple optimizations, mainly inlining
runtime checks: this had a measurable impact on dynamically typed
code, improving performance by 16% on average. However, there
is still substantial room for applying many optimizations targeted
towards detecting and erasing redundant checks.

We draw a few conclusions from our performance evalua-
tion. First, differential subtyping is clearly preferable to RTTI-
on-creation when trying to ensure good performance for statically
typed code. Second, better type inference would significantly im-
prove the experience of migrating from JavaScript to Safe Type-
Script. Currently, we rely solely on TypeScript’s support for local
type inference within method bodies. Most of the annotations we
added manually were for top-level functions and for uninitialized
variables (where TypeScript defaults to inferring any). Inferring
better types for these based on usage sites is left as future work.
Whilst weak maps are an attractive implementation choice in prin-
ciple, their performance overhead of in STS† is still too substantial
for practical use, although as ES6 is more widely implemented, this
option may become viable.

5.3 Bootstrapping Safe TypeScript. Our most substantial experi-
ence with Safe TypeScript to date has been with the Safe TypeScript
compiler itself, which contains about 80 KLOC of code authored
by the developers of TypeScript, and about 10 KLOC written by us.
TypeScript supports an option (--noImplicitAny) that causes the
compiler to report a warning if the type of any variable was inferred
to be any without an explicit user annotation, and their compiler
was developed with this option enabled. Thus, much of the code is
carefully annotated with types.
Static error detection Bootstrapping the Safe TypeScript code base
resulted in 478 static type errors. It took one author about 8 hours
to diagnose and fix all these static errors, summarized below.

We detected 98 uses of bivariant subtyping of arrays: we fixed
the covariant cases through the use of the immutable CheckedArray
type (§4.5), and the contravariant cases by local code rewriting.

Covariant subtyping of method arguments was observed 130 times,
mostly in a single file that implemented a visitor pattern over an
AST and due to binary methods in class inheritance. We fixed them
all through the use of a runtime check. Variable scoping issues
came up 128 times, which we fixed by manually hoisting variable
declarations, and in 3 cases uncovering almost certain bugs on hard-
to-reach code paths. Programmers confused methods and functions
52 times, e.g., projecting a method when passing a parameter to a
higher-order function; which we fixed by local code rewriting. We
lack the space to discuss the long tail of remaining error classes.
Dynamic type-safety violations were detected 26 times, each a
failed checkAndTag operation while running the compiler test suite.
Five of these were due to attempted dynamic uses of covariant
subtyping of mutable fields, primarily in code that was written by
us—even when experts write code with type-safety in mind, it is
easy to make mistakes! Many failed downcasts (erased by Type-
Script) were found in the existing code of TypeScript-0.9.5, which
we fixed by rewriting the code slightly. Interestingly, two classes of
dynamic type errors we discovered were in the new code we added.
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In order to implement Safe TypeScript, we had to reverse engineer
some of the invariants of the TypeScript compiler. In some cases,
we got this slightly wrong, expecting some values to be instances of
a particular class, when they were not—the failed checks pointed
directly to our mistakes. Another class of errors was related to a
bug in the subtyping hierarchy we introduced while evolving the
system with generic types, and which had not manifested itself
earlier because of the lack of checked casts.
The performance overhead of safely bootstrapping the compiler
(relative to bootstrapping the same code base with all runtime
checks disabled) was a slowdown of only 15%. The added cost
of runtime checks was easily paid for by the dozens of bugs found
in heavily tested production code. We also bootstrapped the com-
piler using STS† and STS?, observing a further slowdown of 14%
and 40%, respectively—the compiler makes heavy use of classes,
for which we do not use weak maps or RTTI-on-creation, so the
difference is noticeable, but not enormous.

We conclude that, at least during development and testing, opt-
ing in to Safe TypeScript’s sound gradual type system can signifi-
cantly improve code quality. For a code base that is already anno-
tated with types (as most TypeScript developments are), the cost
of migrating even a large codebase to Safe TypeScript can be rea-
sonable: a day or two’s worth of static error diagnosis followed
by dynamic error detection with only slightly slower runtimes. On
the other hand, to be fair, understanding the root cause of errors
requires some familiarity with our type system, i.e., a developer in-
terested in using Safe TypeScript effectively would probably have
to understand (at least the informal parts of) this paper.

6. Related work
There has been considerable work on providing some form

of type system for JavaScript and a comprehensive survey is be-
yond the scope of this paper. Early proposals were made by Thie-
mann (2005) who uses singleton types and first-class record labels,
and Anderson et al. (2005) who focused on type inference. A num-
ber of others have proposed systems of increasing complexity to
deal with the highly dynamic programming patterns found in Java-
Script code; for example, Chugh et al. (2012) used both nested re-
finements and heap types; Swamy et al. (2013) used monadic re-
finement types to verify JavaScript safety; and Guha et al. (2011)
proposed combining a type system and a flow analysis.

Other work has also considered the issues arising from ensuring
type soundness at scale. TypeScript supports a gradual type sys-
tem reminiscent of the original (theoretical) proposal of Siek and
Taha (2007) but both adds a number of unsound typing rules to
support particular programming patterns, and removes all traces of
the type system in compilation, so no dynamic type checks are pos-
sible (Bierman et al. 2014). Dart is a new language that similarly
relaxes soundness and can also compile directly to JavaScript in
such a way that all traces of the type system are removed. Richards
et al. (2014) recently proposed using like types, a different form of
gradual type system, for JavaScript.

Swamy et al. (2014) also propose a gradual type system for
JavaScript and utilise RTTI as a mechanism for ensuring safety.
However, there are considerable differences in detail: our focus
on scale means that our type system is more permissive and our
runtime overhead is much lower. As discussed in §1 and §2.4, we
view the two systems as somewhat complementary, particularly to
isolate untrusted code, or to safely interoperate with code outside
the fragment covered by Safe TypeScript. As an alternative to
isolation, or in concert with it, one may also reduce trust in external
code by resorting to the techniques of Feldthaus and Møller (2014),
who develop tools to specifically check the correctness of a large
TypeScript type definition repository.

Very recently, Allende et al. (2014) present Confined Gradual
Typing (CGT), an extension of a gradual type system with type
qualifiers to track the flow of values between typed and untyped
worlds. One of these qualifiers, in particular, is reminiscent of the
erasure modality in Safe TypeScript, in that both exclude subtyping
to any. However, CGT uses higher-order casts so object identities
are not preserved.

Other dynamic languages have been extended with (gradual)
type systems, including Scheme (Tobin-Hochstadt and Felleisen
2008), PHP (Facebook’s Hack) and Python (Vitousek et al. 2014).

7. Conclusions
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Primitive type c ::= number | string | bool | void

Dynamic type t ::= c | {M ;F} | any | I | C

Type τ ::= t | •t

Subtyping difference δ ::= ∅ | τ

Method type µ ::= ( τi ) : τ

Method decl M ::= · |m : µ |M1,M2

Field decl F ::= · | f : τ | F1,F2

Statement s ::= e | skip | s1; s2 | var x : τ := e | x := e | e1.f := e2 | e1[e2] := e3 | if (e){s1} else {s2}

Expression e ::= v | x | {M̃ ; F̃} | newC ( ei ) | e.m( ei ) | e1[e2]( ei ) | e.f | e1[e2] | 〈τ〉e | RT (t | e)

Value v ::= ` | cv c

Literal cv ::= true | false | n | str | undefined

Method defn M̃ ::= · |m : ( xi : τi ) : τ{s; ret e} | M̃1, M̃2

Field defn F̃ ::= · | f : τ := e | F̃1, F̃2

Program P ::= S ; s

Interface defn Ĩ ::= interface I extends Ii {M ;F}

Class defn C̃ ::= classC extendsC ′ implements Ii {M̃ ;F}

Signature S ::= · | Ĩ | C̃ | S1,S2

Type environment Γ ::= · | x : τ | Γ1,Γ2

Store typing Σ ::= · | ` : τ | Σ1,Σ2

Typing context T ::= S ; Σ;T ; Γ

Runtime typing context R ::= S ; Σ;T

Figure 6: SafeTS syntax

τ1 <:S τ2  δ (τ1 is a subtype of τ2, δ is the loss in precision that must be captured in the RTTI tag)

S-REFL

τ <:S τ  ∅

S-NOMANY
t = c ∨ t = C ∨ t = I

t <:S any ∅

S-VOID

void <:S τ  ∅

S-STANY

{M ;F} <:S any {M ;F}

S-NSTRUCT
t = C ∨ t = I

to structS (t) <:S {M ;F} δ

t <:S {M ;F} ∅

S-NOM
t2 ∈ {hierarchyS (t1)}

t1 <:S t2  ∅

S-REC
{M1;F1} 6= {M2;F2} F2 ⊆ F1

∀m : ( τ ′i ) : τ ′ ∈ M2.∃m : ( τi ) : τ ∈ M1.τ <:S τ
′  ∅ ∧ ∀i .τ ′i <:S τi  ∅

{M1;F1} <:S {M2;F2} {M1 \M2;F1 \ F2}

S-DOT
t <:S t

′  

[•]t <:S •t′  ∅

Figure 7: SafeTS subtyping judgment
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T ` s1 ↪→ s2 (Statement typing under typing context T )

T-EXP
T ` e : τ ↪→ e′

T ` e ↪→ e′

T-SKIP

T ` skip ↪→ skip

T-VDEF
T ` e : τ ′ ↪→ e′ τ ′ <:S τ  δ

T ` var x : τ := e ↪→ var x : τ := shallowTag(e′, δ)

T-VASSGN
T ` x : τ ↪→ x

T ` e : τ ′ ↪→ e′ τ ′ <:S τ  δ

T ` x := e ↪→ x := shallowTag(e′, δ)

T-SFASSGN
T ` e1 : τ1 ↪→ e′1 f : τ ∈ fieldsS (τ1)
T ` e2 : τ2 ↪→ e′2 τ2 <:S τ  δ

T ` e1.f := e2 ↪→ e′1.f := shallowTag(e′2, δ)

T-DFASSGN
T ` ei : ti ↪→ e′i

T ` e1[e2] := e3 ↪→ write(e′1, t1, e
′
2, e
′
3, t3)

T-IF
T ` e : τ ↪→ e′ T ` si ↪→ s′i

T ` if (e){s1} else {s2} ↪→ if (e′){s′1} else {s′2}

T-SEQ
T ` si ↪→ s′i

T ` s1; s2 ↪→ s′1; s′2

T ` e : τ ↪→ e′ (Expression typing under typing context T )

T-ENV

T ` x : Γ(x) ↪→ x

T-CONST
c <:S τ  ∅

T ` cv c : τ ↪→ cv c

T-REC
T , this : this type(sig({M̃ ; F̃})) ` M̃ ↪→ M̃ ′

T ` F̃ ↪→ F̃ ′

T ` {M̃ ; F̃} : sig({M̃ ; F̃}) ↪→ {M̃ ′; F̃ ′}

T-NEW
to structS (C ) = { ; fi : τi}

T ` ei : τ ′i ↪→ e′i τ ′i <:S τi  δi

T ` newC ( ei ) : C ↪→ newC ( shallowTag(e′i , δi ) )

T-SMCALL
T ` e : τ ′ ↪→ e′

m : ( τi ) : τ ∈ methodsS (τ ′)
T ` ei : τ ′i ↪→ e′i τ ′i <:S τi  δi

T ` e.m( ei ) : τ ↪→ e′.m( shallowTag(e′i , δi ) )

T-DMCALL
T ` ej : tj ↪→ e′j

T ` e1[e2]( ei ) : any ↪→ callMethod(e′1, t1, e
′
2, e
′
i , ti )

T-FLDRD
T ` e : τ ′ ↪→ e′ f : τ ∈ fieldsS (τ ′)

T ` e.f : τ ↪→ e′.f

T-DFLDRD
T ` ei : ti ↪→ e′i

T ` e1[e2] : any ↪→ read(e′1, t1, e
′
2)

T-TAG
T ` e : t′ ↪→ e′

T ` 〈τ〉e : τ ↪→ checkAndTag(e′, t′, τ)

T-LOC1
combS (tagT (`),Σ(`)) = combS (tagT (`), t)

T ` ` : t ↪→ `

T-LOC2
combS (tagT (`),Σ(`)) <:S •t ∅

T ` ` : •t ↪→ `

T-LOC3
Σ(`) = •t •t <:S •t′  ∅

T ` ` : •t′ ↪→ `

T ` MF ↪→ MF ′ (Method and field definition typing under typing context T )

T-MEMP

T ` · ↪→ ·

T-M
T ′ = T , xi : τi , locals(s)

T ′ ` s ↪→ s′ T ′ ` e : τ ↪→ e′

T ` m : ( xi : τi ) : τ{s; ret e} ↪→ m : ( xi : τi ) : τ{s′; ret e′}

T-F
T ` e : τ ′ ↪→ e′ τ ′ <:S τ  δ

T ` f : τ := e ↪→ f : τ := shallowTag(e′, δ)

T-MSEQ
T ` MFi ↪→ MF ′i

T ` MF1,MF2 ↪→ MF ′1,MF ′2

S ` S1 ↪→ S2 (Signature typing)

T-IFACE
Ĩ = interface I extends Ii {M ;F}

Ii ∈ S

S ` Ĩ ↪→ S , Ĩ

T-CLS
C̃ = classC extendsC ′ implements Ii {M̃ ;F}

C ′ ∈ S S ; ·; ·; this : C ` M̃ ↪→ M̃ ′

C̃′ = classC extendsC ′ implements Ii {M̃ ′;F}
S ` C̃ ↪→ S , C̃′

T-SSEQ
S ` S1 ↪→ S ′1 S ′1 ` S2 ↪→ S ′2

S ` S1,S2 ↪→ S ′2

Figure 8: SafeTS typing judgments.
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Object representation O ::= { name : C , proto : `, m : M̃, f : F} | { proto : `, m : M̃, f : F̃}

Heap H ::= · | ` 7→ O | ` 7→ v | H1,H2

Tag heap T ::= · | ` : τ | T1,T2

Local store L ::= · | x 7→ ` | L1,L2

Stack X ::= · | X ;L.E

Statement s ::= . . . | ret e

State C ::= S ;H ;T ;X ;L

Evaluation context E ::= 〈〉 | E ; s | var x = E | x := E | E.f := e | v.f := E | E[e1] := e2 | v[E] := e | v1[v2] := E

| returnE | if (E){s1} else {s2} | {M̃ ; fi := vi , f := E , fj := ej } | newC ( vi ,E , ej )
| E .m( ei ) | v .m( vi ,E , ej ) | E [e]( ei ) | v [E ]( ei ) | v1[v2]( vi ,E , ej ) | E .f | E [e] | v [E ]

Figure 9: Runtime configuration syntax

C; s −→ C′; s′ (Configuration reduction for statements)

E-VAL
v 6= die

C; v −→ C; skip

E-SEQ

C; skip; s −→ C; s

E-VARDEF
H ′ = C.H [C.L(x) 7→ v ]

C; var x := v −→ C /H ′; skip

E-VARUPD
H ′ = C.H [C.L(x) 7→ v ]

C; x := v −→ C /H ′; v

E-SFLDUPD
H ′ = C.H [` 7→ C.H (`)[f 7→ v ]]

C; `.f := v −→ C /H ′; v

E-DFLDUPDLIT
f = toString(cv)

H ′ = C.H [` 7→ C.H (`)[f 7→ v ]]

C; `[cv ] := v −→ C /H ′; v

E-DFLDUPDLOC

C; `[`′] := v −→ C; `[`′.toString()] := v

E-IF
toBool(v) = true⇒ i = 1

toBool(v) = false⇒ i = 2

C; if (v){s1} else {s2} −→ C; si

E-SCXT
S ;H ;T ; ·;L; s −→ S ′;H ′;T ′; ·;L; s′

s′ 6= die

S ;H ;T ;X ;L;E〈s〉 −→ S ′;H ′;T ′;X ;L;E〈s′〉

E-SDIE
S ;H ;T ; ·;L; s −→ S ′;H ′;T ′; ·;L; die

S ;H ;T ;X ;L;E〈s〉 −→ S ′;H ′;T ′;X ;L; die

C; e → C′; e′ (Configuration reduction for expressions)

E-ECXT
S ;H ;T ; ·;L; e → S ′;H ′;T ′; ·;L′; e′

e′ 6= die

S ;H ;T ;X ;L;E〈e〉 → S ′;H ′;T ′;X ;L′;E〈e′〉

E-EDIE
S ;H ;T ; ·;L; e → S ′;H ′;T ′; ·;L′; die

S ;H ;T ;X ;L;E〈e〉 → S ′;H ′;T ′;X ;L′; die

E-OBJLIT
O = { proto : ˆ̀, m : C.L.M̃ , f : F̃}

` fresh

C; {M̃ ; F̃} → C / C.H [` 7→ O ]; `

E-NEW
C.H (`1) = { name : C}

fieldsC.S (C ) = fi : τi ` fresh
O = { proto : `1, m : ·, f : fi = vi}
C; newC ( vi )→ C / C.H [` 7→ O ]; `

E-SPROJ
C.H (`) = { f : f = v ′, } ∨ v ′ = undefined

C; `.f → C; v ′

E-DPROJLIT
f = toString(cv)

C.H (`) = { f : f = v ′, } ∨ v ′ = undefined

C; `[cv ]→ C; v ′

E-DPROJLOC

C; `[`′]→ C; `[`′.toString()]

E-VAR

C; x → C; C.H (C.L(x))

C; s → C′; s′ (Configuration reduction for calls)

E-SMCALL
resolve m thisH (`,m) = (L′.m : ( xj ){s; ret e′}, `′)

locals(s) = yi `i fresh `′j fresh
L′′ = L′, this 7→ `′, xj 7→ `j , yi 7→ `′i
H ′ = H [ `j 7→ vj ][ `′i 7→ undefined ]

S ;H ;T ;X ;L;E〈`.m( vj )〉 → S ;H ′;T ; (X ;L.E);L′; s; ret e′

E-DMCALLLIT
m = toString(cv)

resolve m thisH (`,m) = (L′.m : ( xj ){s; ret e′}, `′)
locals(s) = yi `i fresh `′j fresh
L′′ = L′, this 7→ `′, xj 7→ `j , yi 7→ `′i
H ′ = H [ `j 7→ vj ][ `′i 7→ undefined ]

S ;H ;T ;X ;L;E〈`[cv ]( vj )〉 → S ;H ′;T ; (X ;L.E);L′; s; ret e′

E-DMCALLLOC

C;E〈`[`′]( vj )〉 → C;E〈`[`′.toString()]( vj )〉

E-RET
C.X = X ′;L.E

C; ret v → C /X ′;L;E〈v〉

Figure 10: Small step semantics for statements.
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C-PRIM combS (t, c) = t (t <:S c  ∅)
C-ANY combS (t, any) = t
C-CLS combS (t,C ) = t (t = C ′ ∧ C ′ <:S C  ∅)

C-IFACE combS (t, I ) = t (t = C ∧ C <:S I  ∅)
C-CREC combS (C , {M ;F}) = C (C <:S {M ;F} ∅)
C-RREC combS ({M ′;F ′}, {M ;F}) = let M0 = {m : µ | m : µ ∈ M ∧m : 6∈ M ′} in (∀f : τ ∈ F .f : τ ∈ F ′ ∨ f : 6∈ F ′)

{M ′,M0;F ′,F \ F ′} ({M ′; ·} <:S {M \M0; ·} )
C-IMP combS ( , ) = Impossible

tagT (v) = c if v = cv c
tagT (v) = T (v) else if v ∈ dom(T )
tagT (v) = {·; ·} otherwise

ST-UNDEF JshallowTagS (undefined, τ)KT = T
ST-ZERO JshallowTagS (v , ∅)KT = T
ST-PRIM JshallowTagS (v , c)KT = T (v = cv c)
ST-ANY JshallowTagS (v , any)KT = T
ST-CLS JshallowTagS (v ,C )KT = T (tagT (v) = C ′ ∧ C ′ <:S C  ∅)

ST-IFACE JshallowTagS (v , I )KT = T (tagT (v) = C ∧ C <:S I  ∅)
ST-REC JshallowTagS (v , {M ;F})KT = T [v 7→ combS (tagT (v), {M ;F})]
ST-IMP JshallowTagS ( , )KT = Impossible

CT-UNDEF JcheckAndTagS (undefined, t, τ)KT ,H = T , undefined
CT-PRIM JcheckAndTagS (v , t, c)KT ,H = check (v = cv c)

T , v
CT-ANY JcheckAndTagS (v , t, any)KT ,H = check (τ <:S any δ)

let JshallowTagS (v , δ)KT = T ′ in
T ′, v

CT-CLS JcheckAndTagS (v , t,C )KT ,H = check (tagT (v) <:S C  ∅)
T , v

CT-IFACE JcheckAndTagS (v , t, I )KT ,H = check (tagT (v) <:S I  ∅)
T , v

CT-SREC JcheckAndTagS (v , t, {M ;F})KT ,H = check (combS (tagT (v), t) <:S {M ;F} δ)
let JshallowTagS (v , δ)KT = T ′ in
T ′, v

CT-RREC JcheckAndTagS (v , t, {M ;F})KT ,H = check (tagT (v) 6= C ∧ t 6= C )
check (to structS (combS (tagT (v), t)) = {M ′;F ′})
let F1 = F ∩ F ′ in let F2 = {f : τ | f : τ ∈ F ∧ f 6∈ F ′} in
check (F = F1 ∪ F2)
check ({M ′;F ′} <:S {M ;F1} δ)
let JshallowTagS (v , δ)KT = T0 in
∀fi : τi ∈ F2.JcheckAndTagS (v [fi ], any, τi )KTi−1,H = Ti ,
Tn [v 7→ combS (tagTn (v), {·;F2})], v

CT-DOT JcheckAndTagS (v , t, •t′)KT ,H = JcheckAndTagS (v , t, t′)KT ,H
CT-DIE JcheckAndTagS ( , , )KT ,H = T , die

C; s −→ C′; s′ (Auxiliary functions in translation)

A-CALLMLOC
e′ = callMethod(`, t1, `

′.toString(), v3, t3)

C; callMethod(`, t1, `
′, v3, t3) −→ C; e′

A-READLOC
e′ = read(`, t, `′.toString())

C; read(`, t, `′) −→ C; e′

A-WRITELOC
e′ = write(`, t, `′.toString(), v3, t3)

C; write(`, t, `′, v3, t3) −→ C; e′

A-CALLMLIT
m = toString(cv)

τ ′′ = combC.S (tagC.T (`), t1)
m : (τ) : τ ′ ∈ methodsS (τ ′′) ∨m : (τ) : τ ′ ∈ fieldsS (τ ′′) ∨ (m ∈ dom(C.H (`)) ∧ tagC.T (`[m]) = {call : (τ) : τ ′; ·})

τ ′ <:C.S any δ

C; callMethod(`, t1, cv , v3, t3) −→ C; shallowTag(`[cv ](checkAndTag(v3, t3, τ)), δ)

A-READLIT
f = toString(cv)

τ ′′ = combC.S (tagC.T (`), t)
f : τ ′ ∈ fieldsS (τ ′′) ∨ (f 6∈ methodsS (τ ′′) ∧ τ ′ = any)

τ ′ <:C.S any δ

C; read(`, t, cv) −→ C; shallowTag(`[cv ], δ)

A-WRITELIT
f = toString(cv)

τ ′′ = combC.S (tagC.T (`), t)
f : τ ′ ∈ fieldsS (τ ′′) ∨ (f 6∈ methodsS (τ ′′) ∧ τ ′ = any)

C; write(`, t, cv , v3, t3) −→ C; `[v2] := checkAndTag(v3, t3, τ
′)

A-STAG
JshallowTagC.S (v , δ)KC.T = T ′

C; shallowTag(v , δ) −→ C / T ′; v

A-CTAG
JcheckAndTagC.S (v , t, τ)KC.T ,C.H = T ′, v ′

C; checkAndTag(v , t, τ) −→ C / T ′; v ′
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T ` E : τ ′〈τ〉 ↪→ E ′ (Evaluation context typing, τ is the hole type, τ ′ is the type of E (selected rules))

ET-HOLE

T ` 〈〉 : τ〈τ〉 ↪→ 〈〉

ET-DRD
T ` E : τ ′〈τ〉 ↪→ E ′

T ` e : τ ′′ ↪→ e′

T ` E [e] : any〈τ〉 ↪→ read(E ′, τ ′, e′)

ET-SRD
T ` E : τ ′′〈τ〉 ↪→ E ′

f : τ ′ ∈ fieldsS (τ ′′)

T ` E .f : τ ′〈τ〉 ↪→ E ′.f

ET-SUBTYP
T ` E : τ〈τ2〉 ↪→ E1 τ1 <:S τ2  δ

T ` E : τ〈τ1〉 ↪→ E1〈shallowTag(〈〉, δ)〉

X : τ〈τ ′〉 ↪→R X ′ (Stack typing)

STK-EMP

· : τ〈τ〉 ↪→R ·

STK-FRAME
L R Γ R; Γ ` E : τ ′〈τ〉 ↪→ E ′

X : τ ′′〈τ ′〉 ↪→R X ′

X ;L.E : τ ′′〈τ〉 ↪→R X ′;L.E ′

H ↪→R H ′ (Heap typing (empty and sequence cases are excluded))

HT-ST
O = { proto : ˆ̀, m : L.M̃ , f : fi = vi}

Σ(`) = sig({M̃ ; }) L R Γ

R; Γ, this : this type(Σ(`)) ` M̃ ↪→ M̃ ′

∀i .fi : τi ∈ fieldsS (combS (tagT (`),Σ(`))) ∨ τi = any
∀i .R; · ` vi : τi ↪→ vi

O ′ = { proto : ˆ̀, m : L.M̃ ′, f : fi = vi}
` 7→ O ↪→R ` 7→ O ′

HT-INST
O = { proto : `′, m : ·, f : fi = vi}

H ′(`) = { name : C}
∀i .fi : τi ∈ fieldsS (C ) ∨ τi = any

∀i .R; · ` vi : τi ↪→ vi

` 7→ O ↪→R ` 7→ O

HT-CLS
O = { name : C , proto : `′, m : ·.M̃ , f : F}

R; this : C ` M̃ ↪→ M̃ ′

O ′ = { name : C , proto : `′, m : ·.M̃ ′, f : F}
` 7→ O ↪→R ` 7→ O ′

HT-VAL
R; · ` v : Σ(`) ↪→ v

` 7→ v ↪→R ` 7→ v

T ∼ Σ (Tag heap consistency with store typing)

TPS-EMP

· ∼ Σ

TPS-CLS
Σ(`) = C T ∼ Σ

` : C ,T ∼ Σ

TPS-REC
Σ(`) = {M ′;F ′} M ⊆ M ′

∀f : τ ∈ F .f : τ ∈ F ′ ∨ f : 6∈ F ′

` : {M ;F},T ∼ Σ

L R Γ (Local store typing)

L-EMP

· R ·

L-BND
L R Γ

L, x 7→ ` R Γ, x : Σ(`)

C; s : τ ↪→Σ C1; s1 (Configuration typing)

CT-CONF1
· ` C.S ↪→ C1.S

R = C1.S ; Σ1; C1.T C.H ↪→R C1.H
C1.T ∼ Σ1 C.L R Γ

C1.L = C.L R; Γ ` e : τ1 ↪→ e1

C.X : τ〈τ1〉 ↪→R C1.X
C; e : τ ↪→Σ1

C1; e1

CT-CONF2
· ` C.S ↪→ C1.S R = C1.S ; Σ1; C1.T
C.H ↪→R C1.H C1.T ∼ Σ1

C.L R Γ C1.L = C.L
R; Γ ` s ↪→ s1 R; Γ ` e : τ1 ↪→ e1

C.X : τ〈τ1〉 ↪→R C1.X
C; [s]; ret e : τ ↪→Σ1

C1; [s1]; ret e1

CT-CONF3
· ` C.S ↪→ C1.S R = C1.S ; Σ1; C1.T
C.H ↪→R C1.H C1.T ∼ Σ1

C.L R Γ C1.L = C.L
R; Γ ` s ↪→ s1 C.X = · C1.X = ·

C; s : void ↪→Σ1
C1; s1

Figure 11: Typing for runtime configuration.

18 2014/8/13



B. Proofs
Index for key definitions and lemmas:

Invariants of tag heap evolution Definition 1
Tag heap evolution in subtyping hierarchy Lemma 13
Tag heap evolution maintains value typings Lemma 19
Soundess of shallowTag Lemma 24
Soundess of checkAndTag Lemma 26
Progress and preservation Theorem 1
Abstraction of •{} Corollary 4

Lemma 1 (Subtyping inversion any)
If any <:S τ  δ, then one of the following holds:

1. τ = any and δ = ∅.
2. τ = •any and δ = ∅.

Lemma 2 (Subtyping inversion prim)
If number <:S τ  δ, then one of the following holds:

1. τ = number and δ = ∅.
2. τ = any and δ = ∅.
3. τ = •number and δ = ∅.
4. τ = •any and δ = ∅.

Lemma 3 (Subtyping inversion class/interface)
If t <:S τ  δ, where t = C or t = I , then one of the following
holds:

1. τ = t′, t′ ∈ {hierarchyS (t)}, and δ = ∅.
2. τ = any, and δ = ∅.
3. τ = {M ;F}, and to structS (t) <:S {M ;F} and δ = ∅.
4. τ = •t′ s.t. t <:S t

′  and δ = ∅.
Lemma 4 (Subtyping inversion struct)
If {M ;F} <:S τ  δ, then one of the following holds:

1. τ = {M ;F}, and δ = ∅.
2. τ = any, and δ = {M ;F}.
3. τ = {M ′;F ′}, and F ′ ∈ F , ∀m : ( τ ′i ) : τ ′ ∈ M ′.∃m :

( τi ) : τ ∈ M .τ <:S τ ′  ∅ ∧ ∀i .τ ′i <:S τi  ∅, and
δ = {M \M ′;F \ F ′}.

4. τ = •t, and {M ;F} <:S t and δ = ∅.

Lemma 5 (Subtyping inversion dot)
If •t <:S τ  δ, then τ = •t′ s.t. t <:S t

′  , and δ = ∅.

Lemma 6 (Subtyping to dot types is zero delta)
If τ <:S •t′  δ, then δ = ∅.

Lemma 7 (Stripping dot from target type)
If [•]t <:S •t′  , then t <:S t

′  .

Lemma 8 (Transitivity of subtyping)
If τ1 <:S τ2  δ1 and τ2 <:S τ3  δ2 then τ1 <:S τ3  δ3.
Moreover, if δ1 = ∅ and δ2 = ∅, then δ3 = ∅.
Lemma 9 (Combine of class type with a supertype)
If C <:S t ∅, then combS (C , t) = C .

Lemma 10 (Invariants of combine function for records)
If combS ({M1;F1}, {M2;F2}) = {M ;F}, then:

1. M2 = M21,M22

2. {M1; ·} <:S {M21; ·} 
3. M22 = {m : µ | m : 6∈ M1}
4. M = M1,M22

5. F1 = F11,F12, F2 = F21,F22, F21 = F11, and disjoint F12 F22

6. F = F1,F22

Lemma 11 (Invariants of tag heap and store typing)
If T ∼ Σ, then T (`) = C ⇔ Σ(`) = C and tagT (`) =
{M ;F} ⇔ Σ(`) = [•]{M ′;F ′} where M ⊆ M ′ and ∀f : τ ∈
F .f : τ ∈ F ′ ∨ f : 6∈ F ′.

Definition 1 (Tag heap evolution)
Σ1;T1 B Σ2;T2 is defined as:

1. Σ2 ⊇ Σ1, T1 ∼ Σ1, T2 ∼ Σ2, and ∀ ` ∈ dom(T2):
2. ` 6∈ dom(T1) or
3. tagT1(`) = C and tagT2(`) = C or
4. tagT1(`) = {M1;F1} and tagT2(`) = {M2;F2} s.t. M1 ⊆

M2 and F1 ⊆ F2

Σ ` T1 B T2 is defined as Σ;T1 B Σ;T2.

Lemma 12 (Reflexivity and transtivity of tag heap evolution)
1. Σ;T B Σ;T
2. If Σ1;T1BΣ2;T2 and Σ2;T2BΣ3;T3, then Σ1;T1BΣ3;T3

Lemma 13 (Tag heap evolves subtyping hierarchy)
If Σ1;T1 B Σ2;T2, then for all v , tagT2(v) <:S tagT1(v) .

Proof. Follows from Definition 1.

�

Lemma 14 (Structural tag shape)
Let T ∼ Σ. Then, for all ` s.t. Σ(`) = [•]{ ; }, Σ(`) =
{M1,M2;F1,F2}, tagT (`) = {M1;F1,F3}where disjoint F2 F3.

Lemma 15 (Structural tag evolution shape)
If Σ1;T1 B Σ2;T2, then for all ` s.t. Σ1(`) = [•]{ ; }, Σ1(`) =
{M1,M2,M3;F1,F2,F3}, tagT1(`) = {M1;F1,F4}, and tagT2(`) =
{M1,M2;F1,F2,F4,F5} where disjoint F2 F4, disjoint F3 F4,
and disjoint F3 F5.

Lemma 16 (Combine evolves in subtyping hierarchy)
If Σ1;T1BΣ2;T2, then for all ` ∈ dom(Σ1) s.t. undotted Σ1(`),
combS (tagT2(`),Σ2(`)) <:S combS (tagT1(`),Σ1(`))  .
(Σ2(`) = Σ1(`))

Lemma 17 (Structural subtyping shape)
If {M1;F1} <:S {M2;F2} {M ;F}, then:

1. F1 = F2,F3

2. F = F3

3. M1 = M11,M12,M13, M2 = M21,M22

4. M11 = M21

5. {M12; ·} <:S {M22; ·} {M12; ·}
6. M = M12,M13

Lemma 18 (Tag heap evolution maintains combine)
If Σ1;T1 B Σ2;T2, and for some ` ∈ dom(Σ1) and t,

combS (tagT1(`),Σ1(`)) = combS (tagT1(`), t), then
combS (tagT2(`),Σ2(`)) = combS (tagT2(`), t).

Proof. We consider two cases: Σ1(`) = C or Σ1(`) = { ; } (note
that Σ2(`) = Σ1(`)). dotted Σ1(`) is not possible since comb is
defined in the premise.

Case Σ1(`) = C . Using Lemma 11 and Definition 1, we get
tagT1(`) = C and tagT2(`) = C . Since tagT1(`) = tagT2(`),
we have the proof.

Case Σ1(`) = { ; }. Using Lemma 15,
(1.) Σ1(`) = {M1,M2,M3;F1,F2,F3}
(2.) tagT1(`) = {M1;F1,F4}
(3.) tagT2(`) = {M1,M2;F1,F2,F4,F5}
(4.) disjoint F2 F4, disjoint F3 F4, disjoint F3 F5

(5.) {M1,M2,M3;F1,F2,F3,F4} = combS ({M1;F1,F4}, t).
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Inverting comb, we have two cases C-ANY and C-RREC.
Subcase C-ANY, τ = any: From (5):

(6.) M2 = ·, M3 = ·, F2 = ·, F3 = ·
(7.) combS (tagT2(`), t) = {M1;F1,F4,F5}
(8.) combS (tagT2(`),Σ2(`)) = {M1;F1,F4,F5}
Proof follows from (7) and (8).

Subcase C-RREC, τ = { ; }: Using Lemma 10:
(6.) τ = {M ′,M2,M3;F ′,F2,F3}
(7.) {M1; ·} <:S {M ′; ·} 
(8.) F ′ ⊆ F1,F4

Using (3) and (6):
(9.) combS (tagT2(`), τ) = {M1,M2,M3;F1,F2,F3,F4,F5}
which is same as combS (tagT2(`),Σ2(`)).

�

Lemma 19 (Tag heap evolution maintains value typing)
Let:

1. Σ1;T1 B Σ2;T2

2. R1 = S ; Σ1;T1,R2 = S ; Σ2;T2

3. R1; · ` v : τ ↪→ v

Then,R2; · ` v : τ ↪→ v .

Proof. Proof by case analysis on v . We consider v = `, proof for
literals is simple as their typing doesn’t depend on tag heap and
store typing.

Case v = `. Induction on derivation of R1; · ` v : τ ↪→ v , case
analysis on the last rule.
Subcase rule T-LOC1. We have:

(4.) combS (tagT1(`),Σ1(`)) = combS (tagT1(`), t)
Using Lemma 18,
(5.) combS (tagT2(`),Σ2(`)) = combS (tagT2(`), t)
Proof follows using rule T-LOC1.

Subcase rule T-LOC2. We have:
(4.) combS (tagT1(`),Σ1(`)) <:S •t ∅
Using Lemma 16,
(5.) combS (tagT2(`),Σ2(`)) <:S combS (tagT1(`),Σ1(`))  

Using Lemma 8 with (4) and (5):
(6.) combS (tagT2(`),Σ2(`)) <:S •t δ
Using Lemma 6,
(7.) δ = ∅
Proof follows using rule T-LOC2 with (6) and (7).

Subcase rule T-LOC3. Proof follows since typing is independent
of tag heap.

�

.

Lemma 20 (Combine result subtyping)
If combS (t1, t2) = t, then t <:S ti  .

Lemma 21 (Soundness of shallowTag for class and interface)
Let:

1. R1 = S ; Σ;T1, T1 ∼ Σ
2. R1; · ` ` : t ↪→ `, Σ(`) = C ′

3. t <:S τ  δ

Then:

(a) JshallowTagS (v , δ)KT1 = T2

(b) Σ ` T1 B T2

(c) R2 = S ; Σ;T2,R2; · ` ` : τ ↪→ `

Proof. Inverting rule T-LOC1 on (2):
(4.) combS (tagT1(`),Σ(`)) = combS (tagT1(`), t)
Using Lemma 11:
(5.) tagT1(`) = C ′

Substituting in (4):
(6.) combS (C ′, t) = C ′

Case analysis on comb rules.

Case C-IFACE or C-CLS, t = C or t = I , C ′ <:S t ∅.
Inverting rule S-NOM:
(7.) t ∈ {hierarchyS (C ′)}
Consider cases from Lemma 3 on (3).

Subcase τ = t′, t′ ∈ {hierarchyS (t)}, δ = ∅
From (7):
(8.) t′ ∈ {hierarchyS (C ′)}
and using rule S-NOM on (8):
(9.) C ′ <:S t

′  ∅
We can now derive combS (C ′, t′) = C ′ using either C-CLS

or C-IFACE, which with an application of rule T-LOC1 gives us the
proof for (c). (a) follows from ST-ZERO. (b) follows from T2 = T1.
Subcase τ = any, δ = ∅ Use rule T-LOC1 to derive the proof for

(c). (a) and (b) as above.
Subcase τ = {M ;F}, δ = ∅

From C ′ <:S t ∅ and (3), and Lemma 8:
(8.) C ′ <:S {M ;F} δ
Inverting rule S-NSTRUCT:
(9.) δ = ∅
Using C-CREC:
(10.) combS (C ′, {M ;F}) = C ′

Proof of (c) now follows from rule T-LOC1. (a) and (b) as above.
Subcase τ = •t′, δ = ∅. Proof follows using rule T-LOC2.

Case C-CREC, τ = {M ;F}, C ′ <:S {M ;F} ∅.

Case C-CANY, τ = {M ;F}, C ′ <:S {M ;F}  ∅. Similar to
previous case.

�

Lemma 22 (Soundness of shallowTag for structs)
Let:

1. R1 = S ; Σ;T1, T1 ∼ Σ
2. R1; · ` ` : t ↪→ `, Σ(`) = { ; }
3. t <:S τ  δ

Then:

(a) JshallowTagS (`, δ)KT1 = T2

(b) Σ ` T1 B T2

(c) R2 = S ; Σ;T2,R2; · ` ` : τ ↪→ `

Proof. Using Lemma 14 on T1 ∼ Σ:
(4.) Σ(`) = {M1,M2;F1,F2}
(5.) tagT1(`) = {M1;F1,F3}
(6.) disjoint F2 F3

Inverting rule T-LOC1 on (2):
(7.) {M1,M2;F1,F2,F3} = combS ({M1;F1,F3}, t)
Inverting on comb rules, we have two cases, C-ANY and C-

RREC.

Case C-ANY, t = any
From (7):
(8.) M2 = ·, F2 = ·
Using Lemma 1 on (3):
(9.) τ = any or τ = •any
(10.) δ = ∅
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(a) follows from ST-ZERO. (b) follows from T2 = T1. (c)
follows from rule T-LOC1 or rule T-LOC2.

Case C-RREC, t = { ; }. Using Lemma 10 on (7.):
(8.) t = {M ′1,M2;F ′1,F2}
(9.) {M1; ·} <:S {M ′1; ·} 
(10.) F ′1 ⊆ F1,F3

We consider cases from inversion on (3) using Lemma 4.
Subcase τ = t. Proof follows.
Subcase τ = any, δ = t.

(a) follows from ST-REC and (7).
Also from (7):
(11.) tagT2(`) = {M1,M2;F1,F2,F3}
(b) follows from rule TPS-REC and Definition 1.
(c) follows from rule T-LOC1.

Subcase τ = { ; }. Using Lemma 17 on (3):
(11.) τ = {M ′11,M

′′
12,M21,M

′
22;F ′11,F21}

(12.) M ′1 = M ′11,M
′
12, {M ′12; ·} <:S {M ′′12; ·} {M ′12; ·}

(13.) M2 = M21,M22, {M22; ·} <:S {M ′22; ·} {M22; ·}
(14.) F ′1 = F ′11,F

′
12

(15.) F2 = F21,F22

(16.) δ = {M ′12,M22;F ′12,F22}
(Recall tagT1(`) = {M1;F1,F3}).
Consider combS ({M1;F1,F3}, {M ′12,M22;F ′12,F22}).
From (9.) and (12.) we have {M1; ·} <:S {M ′12; ·}  .

From (10.) and (14.) we have F ′12 ⊆ F1,F3. Using C-RREC it’s:
{M1,M22;F1,F22,F3}.

(a) follows using ST-REC with tagT2(`) = {M1,M22;F1,F22,F3}.
(b) follows from rule TPS-REC and Definition 1.
For (c), consider combS (tagT2(`), τ), we have:
(17.) {M1; ·} <:S {M ′11,M

′′
12; ·}  from (9), (12) and

Lemma 8.
(18.) {M22; ·} <:S {M ′22; ·} from (13.)
(19.) F ′11 ⊆ F1,F3 from (10) and (14)
Thus, combS (tagT2(`), τ) = {M1,M21,M22;F1,F21,F22,F3}.
Also, combS (tagT2(`),Σ(`)) = {M1,M2;F1,F2,F3}. Thus,

(c) follows from rule T-LOC1.
Subcase τ = •t′, δ = ∅. (a) and (b) follow from ST-ZERO and
T2 = T1, (c) from rule T-LOC2.

�

Lemma 23 (Soundness of shallowTag for dot types)
Let:

1. R1 = S ; Σ;T1, T1 ∼ Σ
2. R1; · ` ` : •t ↪→ `
3. •t <:S τ  δ

Then:

(a) JshallowTagS (`, δ)KT1 = T2

(b) Σ ` T1 B T2

(c) R2 = S ; Σ;T2,R2; · ` ` : τ ↪→ `

Lemma 24 (Soundness of shallowTag)
Let:

1. R1 = S ; Σ;T1, T1 ∼ Σ
2. R1; · ` v : τ1 ↪→ v
3. τ1 <:S τ2  δ

Then:

(a) JshallowTagS (v , δ)KT1 = T2

(b) Σ ` T1 B T2

(c) R2 = S ; Σ;T2,R2; · ` v : τ2 ↪→ v

Proof. Case analysis on v .

Case v = n . We have:
(4.)R1; · ` n : τ1 ↪→ n
Inverting rule T-CONST:
(5.) number <:S τ1  
Using Lemma 8 with (5.) and (3.),
(6.) number <:S τ2  δ
Using Lemma 2:
(7.) δ = ∅
(a) follows from ST-ZERO. Also, T2 = T1.
(b) follows from Lemma 12.
To prove (c), use rule T-CONST with (6).

Case v = `. We consider three subcases depending on whether
Σ(`) = C , Σ(`) = {M ;F}, or dotted Σ(`).
Subcase Σ(`) = C . Proof follows from Lemma 21 and Lemma 23.
Subcase Σ(`) = {M ;F}. Proof follows from Lemma 22 and

Lemma 23.
Subcase dotted Σ(`). Proof follows from Lemma 23.

�

Lemma 25 (Value typing comb of tag and static type)
Let R = S ; Σ;T s.t. T ∼ Σ. If R; · ` v : t ↪→ v , then
R; · ` v : combS (tagT (v), t) ↪→ v (assume v 6= undefined).

Proof. Proof by case analysis on v .

Case v = n . Inverting rule T-CONST,
(1.) number <:S t ∅
Using Lemma 2, t = number or t = any. In both cases,

combS (number, t) = number.
We need to proveR; · ` n : number ↪→ n , which follows from

rule T-CONST using rule S-REFL in premise.

Case v = `. We have two cases now Σ(`) = C or Σ(`) = { ; }
(dotted Σ(`) is not possible).
Subcase Σ(`) = C . Using Lemma 11:

(1.) tagT (`) = C
Inverting rule T-LOC1 on typing derivation in premise:
(2.) C = combS (C , τ)
Thus, we need to proveR; · ` v : C ↪→ v , which follows from

rule T-LOC1.
Subcase Σ(`) = { ; }. Using Lemma 14:

(1.) Σ(`) = {M1,M2;F1,F2}
(2.) tagT (`) = {M1;F1,F3}
(3.) disjoint F2 F3

Inverting rule T-LOC1 on premise:
(4.) {M1,M2;F1,F2,F3} = combS ({M1;F1,F3}, t)
We have two cases now: t = any. In this case, M2 = ·, F2 = ·,

combS (tagT (`),Σ(`)) = {M1;F1,F3}, combS (tagT (`), τ) =
{M1;F1,F3}. Applying rule T-LOC1,R; · ` v : combS (tagT (v), τ) ↪→
v .

In second case:
(5.) t = {M ′1,M2;F ′1,F2}
(6.) {M1; ·} <:S {M ′1; ·} 
(7.) F ′1 ⊆ F1,F3

Consider combS (tagT (`), t).
From (2.) and (5.), it is {M1,M2;F1,F2,F3}.
Also combS (tagT (`),Σ(`)) = {M1,M2;F1,F2,F3}.
Applying rule T-LOC1, we have the proof.

�

Lemma 26 (Soundness of checkAndTag)
Let:

1. R1 = S ; Σ;T1, T1 ∼ Σ.
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2. R1; · ` v : t ↪→ v .
3. H ↪→R1 H1

If JcheckAndTagS (v , t, τ)KT1,H1 = T2, v
′, s.t. v ′ = v , then:

(a) Σ ` T1 B T2.
(b) R2 = S ; Σ;T2,R2; · ` v : τ ↪→ v .

Proof. Proof by induction on derivation of JcheckAndTagS (v , t, τ)KT1,H1 .

Case CT-UNDEF. In this case, T2 = T1. (a) follows. (b) follows
from rule T-CONST with rule S-VOID in the premise.

Case CT-PRIM. In this case, T2 = T1, hence (a) follows. For (b),
from checkAndTag body, v = cv c. Use rule T-CONST to prove
R2; · ` cv c : c ↪→ cv c.

Case CT-ANY. Follows from Lemma 24.

Case CT-CLS. In this case, T2 = T1, hence (a) follows. To prove
R1; · ` v : C ↪→ v , we need to prove combS (tagT1(v),Σ(`)) =
combS (tagT1(v),C ).

From the rule body:
(4.) tagT1(v) <:S C  ∅
This means tagT1(v) = C ′ s.t. C ∈ {hierarchyS (C ′)}. By

Lemma 11, Σ(`) = C ′. We can now see that combS (tagT1(v),Σ(`)) =
combS (tagT1(v),C ), both same as C ′.

Case CT-IFACE. Similar to above.

Case CT-SREC. Using Lemma 25, we have:
(4.)R1; · ` v : combS (tagT1(v), t) ↪→ v
From the function body:
(5.) combS (tagT1(v), t) <:S {M ;F} δ
Proof now follows from Lemma 24.

Case CT-RREC. From the function body:
(4.) combS (tagT1(v), t) = {M ′;F ′}
Inverting comb:
(5.) tagT1(v) = { ; }
Also, using Lemma 25:
(6.)R1; · ` v : {M ′;F ′} ↪→ v
Using Lemma 24, forR0 = S ; Σ;T0:
(7.)R0; · ` v : {M ;F1} ↪→ v
(8.) Σ ` T1 B T0

Also,
(10.) ∀fi : τi ∈ F2.fi 6∈ fieldsS (tagT1(`)), fi 6∈ fieldsS (τ),

fi 6∈ fieldsS (tagT0(`))
(11.) ∀fi : τi ∈ F2.fi 6∈ F1

Now, fi in v is either vi where fi : vi ∈ H [v ] or vi =
undefined. In either case:

(12.) R0; · ` vi : any ↪→ vi (rule T-UNDEFINED or rule A-
HTST).

By I.H. on checkAndTag calls:
(13.)Ri ; · ` vi : τi ↪→
(14.) Σ ` Ti−1 B Ti

Using Lemma 12, and Lemma 19:
(15.)Rn ; · ` vi : τi ↪→
(16.)Rn ; · ` v : {M ;F1} ↪→ v (from (7.))
(17.) Σ ` T1 B Tn

Finally, from the function body:
(18.) T2 = Tn [v 7→ combS (tagTn (v), {·;F2})]
where T2 is the final tag heap.
First note that tagTn (v) = tagT0(v), and hence F2 6∈ tagTn (v).

Thus, using (5.), (18.) is well-defined.
Next, we can also see that:
(19.) Σ ` Tn B T2

Now, inverting rule T-LOC1 on (7.):
(20.) combS (tagT0(v),Σ(`)) = combS (tagT0(v), {M ;F1}).

Using (18.):
(21.) combS (tagT2(v),Σ(`)) = combS (tagT2(v), {M ;F1,F2}).
Using rule T-LOC1 on (21.)
(22.)R′; · ` v : {M ;F1,F2} ↪→ v
(a) follows from Lemma 12 on (17.) and (19.)
(b) follows from (22.).

Case CT-DOT. In this case:
(a) follows using I.H.
(b) follows by Lemma 24 using t′ <:S •t′  ∅.

�

Lemma 27 (Field in static type)
LetR; · ` ` : t ↪→ ` and f : τ ∈ combS (tagT (`), τ). Then, either
f : τ ∈ tagT (`) or f : τ ∈ Σ(`).

Lemma 28 (Field not in static type)
Let R; · ` ` : t ↪→ ` and f 6∈ combS (tagT (`), t). Then,
f 6∈ tagT (`) and f 6∈ Σ(`).

Lemma 29 (Method in static type))
LetR; · ` ` : t ↪→ ` and m : µ ∈ combS (tagT (`), τ). Then, either
m : µ ∈ tagT (`) or m : µ ∈ t.

Lemma 30 (Substituion lemma for evaluation contexts)
If T ` E : τ〈τ1〉 ↪→ E1 and T ` v : τ1 ↪→ v , then
T ` E〈v〉 : τ ↪→ E1〈v〉.

Lemma 31 (Location typing at •{·; ·})
IfR; · ` ` : τ ↪→ `, thenR; · ` ` : •{·; ·} ↪→ `.

Lemma 32 (Resolution of this)
Let

1. H ↪→R H1,R; · ` ` : τ ′ ↪→ `
2. resolve m thisH (`,m) = (L.m : ( xj : τj ) : τ{s; ret e}, `′)

Then

(a) resolve m thisH1(`,m) = (L.m : ( xj : τj ) : τ{s1; ret e1}, `′)
(b) R; · ` `′ : this type(Σ(`)) ↪→ `′

(c) L R Γ
(d) R; Γ, this : this type(Σ(`)), xj : τj , locals(s) ` s ↪→ s1

(e) R; Γ, this : this type(Σ(`)), xj : τj , locals(s) ` e : τ ↪→ e1

Theorem 1 (Progress and preservation))
Let

1. C; s −→ C′; s ′
2. ∃ Σ1, C1 s.t. C; s : τ ↪→Σ1 C1; s1

Then, either C1; s1 →+ die, or

(a) C1 ; s1 −→+ C′1 ; s ′1 and
(b) ∃ Σ′1 ⊇ Σ1 s.t. C′; s ′ : τ ↪→Σ′1

C′1; s ′1 and
(c) Σ1; C1.T B Σ′1; C′1.T ′1

Proof. Proof by induction on C; s −→ C′; s ′, case analysis on the
last rule used. We first consider configurations that are translated
using rule CT-CONF1. Inverting on (2), forR = C1.S ; Σ1; C1.T :

(3.) C.H ↪→R C1.H
(4.) C1.T ∼ Σ1

(5.) C.L R Γ
(6.)R; Γ ` e : τ1 ↪→ e1

(7.) C.X : τ〈τ1〉 ↪→R C1.X
(8.) C1.L = C.L
Similarly, expanding on (b), we need to prove for R′ =

C′1.S ; Σ′1; C′1.T :
(d.) C′.H ↪→R′ C′1.H
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(e.) C′1.T ∼ Σ′1
(f.) C′.L R′ Γ
(g.)R′; Γ ` e ′ : τ1 ↪→ e ′1
(h.) C′.X : τ〈τ1〉 ↪→R′ C′1.X
(i.) C′1.L = C′.L

Case rule E-DPROJLIT We have:
(9.) e = `[cv ]
(10.) f = toString(cv)

Subcase C.H (`) = { f : f = v ′, }
(11.) e ′ = v ′

(12.) C′ = C
(13.) e1 = read(`, t, cv)
(14.)R; Γ ` ` : t ↪→ `
(15.) τ1 = any
Consider rule A-READLIT, we have two cases:
Subsubcase f : τ ′ ∈ combC1.S (tagT (`), t).
Using Lemma 27, we have
(16.) f : τ ′ ∈ fieldsC1.S (tagC1.T (`)) or f : τ ′ ∈ fieldsC1.S (Σ1(`))
Using rule HT-ST or rule HT-INST:
(17.)R; · ` v ′ : τ ′ ↪→ v ′

Further, from rule A-READLIT:
(18.) τ ′ <:C1.S any δ
Using rule A-READLIT:
(19.) C1; read(`, t, cv) −→ C1; shallowTag(`[cv ], δ)
Using rule E-DPROJLIT:
(20.) C1; shallowTag(`[cv ], δ) −→ C1; shallowTag(v ′, δ)
Using Lemma 24 on (17.), (18.) we get:
(21.) JshallowTagS (v ′, δ)KC1.T = T ′1
(22.)R′; · ` v ′ : any ↪→ v ′ (whereR′ = C1.S ; Σ1;T ′1)
(23.) Σ1 ` C1.T B T ′1
Thus, using rule A-STAG:
(24.) C1; shallowTag(v ′, δ) −→ C1 / T ′1; v ′

Using (19), (20), and (24), (a) holds.
Also:
(25.) C′1.H = C1.H , C′1.X = C1.X , e ′1 = v ′, C′1.L = C1.L
Choosing Σ′1 = Σ1:
(d) follows from (12), (3), and (25).
(e) follows from (23) with Definition 1.
(f) follows from (12) and (5).
(g) follows from (15), (25), and (22) (with weakening of Γ).
(h) follows from (12), (25), and (7).
(i) follows from (12), (8), and (25).
Finally, (c) follows from (23).
Subsubcase f 6∈ fieldsC1.S (combC1.S (tagC1.T (`), t)), f 6∈

methodsC1.S (combC1.S (tagC1.T (`), t)), δ = ∅.
Using Lemma 28, f 6∈ tagC1.T (`) and f 6∈ Σ1(`). Thus, using

rule HT-ST or rule HT-INST:
(16.)R; · ` v ′ : any ↪→ v ′

Proof now follows as above with C′1 = C1.
Subcase v ′ = undefined. Proof for this case similar to proof

for previous subcases with v ′ replaced by undefined. In either
case C′1 = C1 and using rule T-CONST and rule S-VOID, type
undefined at any type.

Case rule E-ECXT We have:
(9.) s = E〈e〉
(10.) S ;H ;T ; ·;L; e −→ S ′;H ′;T ′; ·;L′; e ′
(11.) s ′ = E〈e ′〉
(12.) C′ = S ′;H ′;T ′;X ;L′

From typing of (9):
(13.)R; Γ ` e : τ1 ↪→ e1

(14.)R; Γ ` E : τ2〈τ1〉 ↪→ E1

(15.) X : τ〈τ2〉 ↪→R X1

(16.) s1 = E1〈e1〉

Consider S ;H ;T ; ·;L; e . We have:
(17.) S ;H ;T ; ·;L; e : τ1 ↪→Σ1 S1;H1;T1; ·;L1; e1

Using I.H. on (10.) and (17.), we have exists Σ′1 s.t.
(18.) S1;H1;T1; ·;L1 ; e1 −→+ S ′1;H ′1;T ′1; ·;L′1 ; e ′1 (note that

final stack has to be empty for (21) below to hold)
(19.) S ′;H ′;T ′; ·;L′; e ′ : τ1 ↪→Σ′1

S ′1;H ′1;T ′1; ·;L′1; e ′1
(20.) Σ1;T1 B Σ′1;T ′1
For (a), use rule E-ECXT multiple times with (18.) to get:
(21.) C1 ; E1〈e1〉 −→+ C′1; E1〈e ′1〉
To prove C′; s ′ : τ ↪→Σ′1

C′1; s ′1, note that from (19.) :
(22.)R′; Γ ` e ′ : τ1 ↪→ e ′1
Rest of the typings follow.

Case rule E-DFLDUPDLIT. We have:
(9.) s = `[cv ] := v
(10.) f = toString(cv)
(11.) C′.H = C.H [` 7→ C.H (`)[f 7→ v ]]
(12.) s ′ = v
(13.) C′.X = C.X , C′.L = C.L
(14.) s1 = write(`, t1, cv , v , t2)
(15).R; Γ ` ` : t1 ↪→ `
(16.)R; Γ ` v : t2 ↪→ v
Consider rule A-WRITELIT, we have two cases:

Subcase f : τ ′ ∈ fieldsC1.S (combC1.S (tagC1.T (`), t1))
Using Lemma 27, we have
(17.) f : τ ′ ∈ fieldsC1.S (tagC1.T (`)) or f : τ ′ ∈ fieldsC1.S (Σ1(`))
Further:
(18.) C1; s1 −→ C1; `[cv ] := checkAndTag(v , t2, τ

′)
(19.) JcheckAndTagC1.S (v , t2, τ

′)KC1.T ,C1.H = T ′1, v (or
die)

Using Lemma 26:
(20.) Σ1 ` C1.T B T ′1
(21.)R′; · ` v : τ ′ ↪→ v
Using rule A-CTAG:
(22.) C1; `[cv ] := checkAndTag(v , t2, τ

′) −→ C1/T ′1; `[cv ] :=
v

Using rule E-DFLDUPDLIT:
(23.) C′1 = (C1 / T ′1) / C1.H [` 7→ C1.H (`)[f 7→ v ]]
(24.) s ′1 = v
(25.) C′1.X = C1.X , C′1.L = C1.L
Choosing Σ′1 = Σ1:
(a) follows from (18), (19), (22), and (23)
(d) follows from (21) and (17) (with all other typings derived

from Lemma 19).
(e) follows from (20) with Definition 1.
(f) follows from (25) and (5).
(g) follows from (21) with weakening of type environment.
(h) follows from (25), (13), and (7).
(i) follows from (25), (13), and (8).
Finally, (c) follows from (20).

Subcase f 6∈ fieldsC1.S (combC1.S (tagC1.T (`), t1)),
f 6∈ methodsC1.S (combC1.S (tagC1.T (`), t1)).
Proof similar to above with τ ′ = any.

Case rule E-RET. We have
(9.) s = ret v
(10.) s ′ = E ′〈v〉
(11.) C.X = X ′;L′.E ′

(12.) C′.L = L′

(13.) C′.X = X ′

(14.) C′.H = C.H
(15.) L R Γ
(16.)R; Γ ` v : τ1 ↪→ v
(17.) C.X : τ〈τ1〉 ↪→R C1.X
(18.) s1 = ret v
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Inverting rule STK-FRAME on (17):
(19.) L′  R Γ′

(20.)R; Γ ` E ′ : τ ′〈τ1〉 ↪→ E ′1
(21.) X ′ : τ〈τ ′〉 ↪→R X ′1
Thus, using rule E-RET on C1; s1:
(22.) s ′1 = E ′1〈v〉
(23.) C′1.L = L′

(24.) C′1.H = C1.H
(25.) C′1.X = X ′1
Therefore (a) follows.
To prove typing, choose Σ′1 = Σ1, use Lemma 30 with (20) and

(16). Rest of the typings follow from (21), (19), and (24).
(c) also follows since tag heap remains unchanged.

Case rule E-DMCALLLIT. Proof uses Lemma 32 and rule ET-
SUBTYP for context typing.

Case Other cases follow similarly.

�

Definition 2 (Terminal configuration)
S ;H ;T ;X ;L;s is terminal if and only if X = · and s is a value,
or s = die.

Lemma 33 (Source always takes a step)
If C; s : τ ↪→Σ1 C1; s1, then either C;s terminal or ∃ C′, s ′ s.t.
C; s −→ C′; s ′.

Corollary 1 (Forward simulation for well-typed configs)
If C; s : τ ↪→Σ1 C1; s1, then either both C;s and C1;s1 are terminal
or for some C′, C′1, s ′, s ′1, we have C; s −→ C′; s ′ and C1 ; s1 −→+

C′1 ; s ′1 s.t. s ′1 = die or ∃ Σ′1 ⊇ Σ1. C′; s ′ : τ ↪→Σ′1
C′1; s ′1 and

Σ′1; C′1.T B Σ1; C1.T .

Proof. Follows from Theorem 1 and Lemma 33.

�

Definition 3 (Well typed target configuration)
Σ ` C; s : τ is defined as: ∃ C′ and s ′ s.t. C′; s ′ : τ ↪→Σ C; s .

Corollary 2 (Stepping of well typed target configurations)
If Σ ` C; s : τ , then either C;s terminal or ∃n.C ; s −→n C′ ; s ′

s.t. for some Σ′ ⊇ Σ. Σ′ ` C′; s ′ : τ .

Proof. Follows from Definition 3 and Corollary 1.

�

Lemma 34 (Locations with dot static type)
If R; · ` ` : τ ↪→ ` and Σ(`) = •t, then τ = •t′ for some t′ s.t.
τ <:S τ

′  .

Proof. Only rule T-LOC3 applies (comb is not defined for dot
types). Proof follows from conclusion of rule T-LOC3.

�

Corollary 3 (Subtyping inversion empty structure)
If {·; ·} <:S t , then t = {·; ·} or t = any.

Proof. Immediate from Lemma 4.

�

Theorem 2 (Abstraction of •{})
For all i ∈ {1, 2}, if Σ(`) = •{·; ·} and Σ ` C /H [` 7→ Oi ]; s : τ

then, ∃n. ∀j ≤ n, C / H [` 7→ O1];s −→j C′j / H ′j [` 7→ O1];s ′j
if and only if C / H [` 7→ O2];s −→j C′j / H ′j [` 7→ O2];s ′j and ∃
Σ′ ⊇ Σ.Σ′ ` C′n /H ′n [` 7→ Oi ]; s

′
n : τ .

Proof. From premise we have:
(1.) C′′ /H [` 7→ O ′′i ]; s ′′ : τ ↪→Σ C /H [` 7→ Oi ]; s

Also, letR = C.S ; Σ; C.T , C.L R Γ.
We now do a structural induction on s ′′.

Case s ′′ = `′.f . We have:
(2.) s = `′.f
Inverting rule T-FLDRD:
(3.)R; Γ ` `′ : τ1 ↪→ `′

(4.) f : τ2 ∈ fieldsC.S (τ2)
Using Lemma 34 and Corollary 3, (4) implies:
(5) `′ 6= `
Using rule E-SPROJ, we get same v ′ in two configurations.
The final typing of configurations follows from Theorem 1.

Case s ′′ = `′[cv ]. We have:
(2.) s = read(`′, t, cv)
Inverting rule T-DFLDRD:
(3.)R; Γ ` `′ : t ↪→ `′

Using Lemma 34:
(4.) `′ 6= `
The two target configurations then take same steps using rule A-

READLIT, rule E-DPROJLIT, and rule A-STAG after which they both
die or succeed.

The final typing of configurations follows from Theorem 1.

Case s ′′ = `′[`′′]. We have:
(2.) s = read(`′, t, `′′)
Inverting rule T-DFLDRD:
(3.)R; Γ ` `′ : t ↪→ `′

(4.)R; Γ ` `′′ : t′′ ↪→ `′′

Using Lemma 34:
(5.) `′ 6= ` and `′′ 6= `
The two target configurations then take same steps using rule A-

READLOC. Final typing follows as above.

Case s ′′ = E ′′〈e ′′〉, e ′′ 6= `[v1](v2). We have:
(2.) s = E〈e〉
We have:
(3.) Σ ` C.S ;H [` 7→ Oi ]; C.T ; ·; C.L; e : τ ′ for some τ ′

Using I.H., ∃n s.t. ∀j ≤ n:
(4a.) C.S ;H [` 7→ O1]; C.T ; ·; C.L;e −→j S ′j ;H

′
j [` 7→ O1];T ′j ; ·;L′j ;e ′j

if and only if
(4b.) C.S ;H [` 7→ O2]; C.T ; ·; C.L;e −→j S ′j ;H

′
j [` 7→ O2];T ′j ; ·;L′j ;e ′j

(Note that final stack is empty because e ′′ takes a step using
empty stack rules).

and
(5.) Σ′ ` C′n /H ′n [` 7→ Oi ]; e

′
n : τ

Choose same n and stack in each configuration to be C.X .

Case Other cases follow similarly.

�

Corollary 4 (Abstraction of •{})
For all i ∈ {1, 2}, if Σ(`) = •{·; ·} and Σ ` C /H [` 7→ Oi ]; s : τ
then, ∀n ≥ 0. C / H [` 7→ O1];s −→n C′ / H ′[` 7→ O1];s ′ if and
only if C /H [` 7→ O2];s −→n C′ /H ′[` 7→ O2];s ′.

Proof. Repeated applications of Theorem 2.

�
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