Modeling non-convex costs in an LP (for traffic engineering on WANs)

Srikanth Kandula, Brendan Lucier, Ishai Menache, Mohit Singh
Microsoft Research

February 19, 2015

1 Traffic Engineering

We describe a Traffic Engineering (TE) solution which can incorporate non-linear link costs. TE decides on the actual assignment of requests' flow to (time, path) pairs.
Formulation. A byte request, indexed by i, has a quantity of data d_{i} to be routed, and a value per byte v_{i}. The request indicates the source S_{i} and target T_{i}; data must be transmitted along a path from S_{i} to T_{i}. Write R_{i} for the set of admissible paths (or routes) for request i. Let $X_{i r t}$ denote the number of bytes from request i transmitted along route $r \in R_{i}$ at time t. The quantities $X=\left(X_{i r t}\right)$ fully describe a schedule of transfers. The objective of TE is to maximize welfare (values minus costs). Formally, the objective is

$$
\begin{align*}
& \text { maximize }-C(X)+\sum_{i} \sum_{t=1}^{T} \sum_{r \in R_{i}} X_{i r t} \cdot v_{i} \tag{1}\\
& \text { subject to } \sum_{t=1}^{T} \sum_{r \in R_{i}} X_{i r t} \leq d_{i} \quad \forall i \\
& \sum_{i} \sum_{e \in r, r \in R_{i}} X_{i r t} \leq c_{e, t} \quad \forall t, e,
\end{align*}
$$

where $c_{e, t}$ is the available capacity in link e at time t.
The term $C(X)$ is non-convex. It typically corresponds to the sum of all link costs, where a link's cost is linearly proportional to a high-percentile utilization

Figure 1: Scatter plot of $\mathbf{9 5}^{\text {th }}$ percentile and average of top $\mathbf{1 0 \%}$ utilization values. Each point corresponds to a link.
over time (we use the $95^{\text {th }}$ percentile ${ }^{1}$). This non-linear relation makes the optimization challenging. Formally,

Theorem 1. Maximizing (1), where $C(X)$ is linearly proportional to the sum of $95^{\text {th }}$-percentile utilization in each link, is an NP-hard optimization problem.

The proof follows by a reduction from the NP-had subset-sum problem [2].
Before describing our solution, we note that we use the above formulation as an exemplar setting for non-convex costs. That is, the techniques we develop here would be useful even for other objective functions/constraints.
Solution. We deal with the above challenge by using an alternative metric, which serves as a proxy for $95^{t h}$ percentile. We use the average of the top k utilization values; e.g., if costs are computed over a time horizon of $T=100$ time-steps, and we are interested in the $95^{\text {th }}$ percentile, then we choose $k=10$. Note that if utilization values are uniformly distributed, the two metrics coincide ${ }^{2}$. We have verified experimentally that the two metrics are highly correlated, see Figure 1 for scatter plots of several links.

In principle we can "code" the sum (hence, the average) of the top k by adding a linear term to (LP), and a new set of linear inequalities, which result in a new linear program. Formally, the objective is $\sum_{i} \sum_{t} \sum_{r \in R_{i}} X_{i r t} \cdot v_{i}-\sum_{e} C_{e} S_{e}$, where C_{e} is the per-unit cost, and S_{e} is an upper bound on the k largest utilization values

[^0](since we are minimizing $\sum_{e} C_{e} S_{e}$ the upper bound becomes tight at an optimal solution). The constraints are as follows:
\[

$$
\begin{equation*}
S_{e} \geq \sum_{t \in \mathcal{T}} f_{e, t} \quad \forall \mathcal{T} \subset\{1, \ldots, T\},|\mathcal{T}|=k \tag{2}
\end{equation*}
$$

\]

where $f_{e, t}=\sum_{i} \sum_{r \in R_{i}: e \in r} X_{i r t}$ is the flow on edge e at time t. A difficulty is that the number of constraints in (2) is exponential in T (more precisely, $\binom{T}{k}$ for each link). The resulting LP is then intractable. We address this by using sortingnetwork inequalities (see [1] and references therein), which reduces the number of constraints to $O(k T)$ per link, without any loss in accuracy. Formally,

Theorem 2. There exists a set of $O(k T)$ linear constraints which expresses an upper bound on sum of top k values from the set $f_{e, 1}, \ldots f_{e, T}$.

In a nutshell, the sorting network mimics the operation of the bubble sort algorithm: each iteration i of the algorithm is mapped to a set of equalities/inequalities which bubble up (an upper bound of) the sum of the largest i elements. See appendix for the construction and proof.

References

[1] H. H. Liu, S. Kandula, R. Mahajan, M. Zhang, and D. Gelernter. Traffic Engineering with Forward Fault Correction. In SIGCOMM, pages 527-538. ACM, 2014.
[2] R. G. Michael and S. J. David. Computers and Intractability: A Guide to the Theory of NP-completeness. WH Freeman \& Co., San Francisco, 1979.

A Constructing the Sorting Network

Inspired by the bubble sort algorithm, we construct a set of $O(k T)$ constraints and show that the construction results in an upper bound S_{e} on the sum of the k largest utilization levels in each link. Since we are maximizing $\sum_{i} \sum_{t} \sum_{r: r \in R_{i}} X_{i r t}$. $p_{i}-\sum_{e} c_{e} S_{e}$, we are minimizing each S_{e} and the upper bound becomes tight as required. We will omit subscript e from our notation. We proceed in k iterations:
in the first, we "bubble" the largest element, then the second largest, etc.. Our constraints mimic the bubbling operations - for each two numbers x, y to be compared, we have a linear comparator, which is manifested through the following inequalities: $x+y=m+M, m \leq x, m \leq y$. Note this implies $M \geq \max \{x, y\}$ and $m \leq \min \{x, y\}$.

Let f_{j}^{i} denote the minimum of the two outputs of the j-th comparator at the i-th iteration, and let F_{j}^{i} denote the maximum of the two values. We use the convention $f_{j}^{0}=f_{j}$ for all $j \in\{1,2, \ldots T\}$. Accordingly, our first comparator at the first iteration is given by $f_{1}^{0}+f_{2}^{0}=f_{1}^{1}+F_{1}^{1}$, $f_{1}^{1} \leq f_{1}^{0}$, $f_{1}^{1} \leq f_{2}^{0}$. As in bubble sort, the maximum output is pushed to the next comparator, i.e., the rest of the constraints for this iteration have following form: $f_{j}^{0}+F_{j-2}^{1}=f_{j-1}^{1}+F_{j-1}^{1}, f_{j-1}^{1} \leq f_{j}^{0}$, $f_{j-1}^{1} \leq F_{j-2}^{1}$, for every $j \in\{3,4, \ldots T\}$. Using all the above constraints, it can be easily shown that

$$
\begin{align*}
F_{T-1}^{1} & \geq \max \left\{f_{1}^{0}, f_{2}^{0} \ldots f_{T}^{0}\right\} \tag{3}\\
f_{1}^{0}+f_{2}^{0}+\cdots+f_{T}^{0} & =f_{1}^{1}+f_{2}^{1}+\ldots f_{T-1}^{1}+F_{T-1}^{1} \tag{4}
\end{align*}
$$

Indeed, (3) follows from a chain of inequalities $F_{j}^{1} \geq f_{j+1}^{0}, F_{j}^{1} \geq F_{j-1}^{1}$ for any $2 \leq j \leq T-1$ and $F_{1}^{1} \geq f_{1}^{0}, f_{2}^{0}$, whereas summing all the above equalities and canceling out equal terms leads to (4).

The next iteration proceeds with variables $f_{1}^{1}, f_{2}^{1}, \ldots f_{T-1}^{1}$ (one less comparator than previous iteration), which similarly leads to

$$
\begin{aligned}
F_{T-2}^{2} & \geq \max \left\{f_{1}^{1}, f_{2}^{1} \ldots f_{T-1}^{1}\right\} \\
f_{1}^{1}+f_{2}^{1}+\cdots+f_{T-1}^{1} & =f_{1}^{2}+f_{2}^{2}+\ldots f_{T-2}^{2}+F_{T-2}^{2}
\end{aligned}
$$

It follows from (4) and the last equality that $f_{1}^{0}+f_{2}^{0}+\cdots+f_{T}^{0}=f_{1}^{2}+f_{2}^{2}+$ $\ldots f_{T-2}^{2}+F_{T-2}^{2}+F_{T-1}^{1}$.

Proceeding iteratively, we use $(T-i)$ comparators in the i-th iteration (all outputs of iteration i excluding F_{T-i}^{i}, are inputs for iteration $i+1$). Using (4) inductively, we have the following equality after k iterations

$$
\begin{equation*}
f_{1}^{0}+\cdots+f_{T}^{0}=f_{1}^{k}+\ldots f_{T-k}^{k}+F_{T-k}^{k}+F_{T-k+1}^{k-1}+\cdots+F_{T-1}^{1} \tag{5}
\end{equation*}
$$

Finally, we add the constraint $S \geq F_{T-k}^{k}+F_{T-k+1}^{k-1}+\cdots+F_{T-1}^{1}$. Note that we have a total of $O(k T)$ equalities/inequalities.

In order to formally prove that S is not smaller than sum of k largest elements we need the following lemma:

Lemma 1. For any i and any set of indices $Y_{i} \subsetneq\{1,2 \ldots T-i\}$ we can find a subset of indices $Y_{i+1} \subseteq\{1,2 \ldots T-i-1\}$ such that $\left|Y_{i}\right|=\left|Y_{i+1}\right|$ and $\sum_{j \in Y_{i}} f_{j}^{i} \geq$ $\sum_{j^{\prime} \in Y_{i+1}} f_{j^{\prime}}^{i+1}$.

Proof. The proof follows by a charging argument. Assume that $Y_{i}=\left\{a_{1}, a_{2}, \ldots, a_{q}\right\}$ and $a_{1}<a_{2}<\cdots<a_{q}$. Let p be a largest index such that Y_{i} can be represented as $\{1,2,3 \ldots p\} \cup\left\{a_{p+1}, \ldots a_{q}\right\}$. It follows that $a_{p+1}>p+1$. For Y_{i+1} we take $\{1,2 \ldots p\} \cup\left\{a_{p+1}-1, \ldots a_{q}-1\right\}$. Inequality $\sum_{j \in Y_{i}} f_{j}^{i} \geq \sum_{j^{\prime} \in Y_{i+1}} f_{j^{\prime}}^{i+1}$ follows from $f_{j}^{i} \geq f_{j-1}^{i+1}$ and $f_{1}^{i}+f_{2}^{i}+\cdots+f_{p}^{i}=f_{1}^{i+1}+f_{2}^{i+1}+\ldots f_{p-1}^{i+1}+F_{p-1}^{i+1}$, where $F_{p-1}^{i+1} \geq f_{1}^{i}, \ldots, f_{p}^{i}$.

We are now ready to prove the theorem. We let Y_{0} be the set of indices corresponding to the $T-k$ smallest elements among $f_{1}^{0}, f_{2}^{0}, \ldots f_{T}^{0}$. And then consequently construct $Y_{1}, Y_{2} \ldots Y_{k}$. We obtain that $Y_{k}=\{1,2, \ldots T-k\}$. It means that $f_{1}^{k}+f_{2}^{k}+\ldots f_{T-k}^{k}$ is not larger than the sum of $T-k$-smallest numbers from $f_{1}^{0}, f_{2}^{0}, \ldots f_{T}^{0}$. This together with (5) guarantees that $F_{T-k}^{k}+F_{T-k+1}^{k-1}+\cdots+F_{T-1}^{1}$ is greater or equal to sum of k largest elements from $f_{1}^{0}, f_{2}^{0}, \ldots f_{T}^{0}$.

[^0]: ${ }^{1} 95$-th percentile costs are often used nowadays by operators to lower burst usage.
 ${ }^{2}$ We may consider choosing different values of k for heavily-skewed distributions. We have not yet fully investigated this direction.

