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General Terms
The growing accessibility of mobile devices has substantially re-
formed the way users access information. While the reactive search
by query remains as common as before, recent years have witnessed
the emergence of various proactive systems such as Google Now
and Microsoft Cortana. In these systems, relevant content is pre-
sented to users based on their context without a query. Interestingly,
despite the increasing popularity of such services, there is very little
known about how users interact with them.

In this paper, we present the first study on user interactions with
information cards. We demonstrate that the usage patterns of these
cards vary depending on time and location. We also show that while
overall different topics are clicked by users on proactive and reactive
platforms, the topics of the clicked documents by the same user
tend to be consistent cross-platform. Furthermore, we propose a
supervised framework for re-ranking proactive cards based on the
user’s context and past history. To train our models, we use the
viewport duration and clicks to infer pseudo-relevance labels for the
cards. Our results suggest that the quality of card ranking can be
significantly improved particularly when the user’s reactive search
history is matched against the proactive data about the cards.

Categories and Subject Descriptors
Information Systems [Information Retrieval]: Users and interac-
tive retrieval—Personalization

Keywords
Proactive ranking; zero query; Information cards

1. INTRODUCTION
Mobile devices account for a significant fraction of online search

and browsing traffic. The number of mobile queries has grown
fivefold in the past three years [6]. In fact, the number of mobile
queries has recently exceeded the number of those submitted from
desktop devices in the United States and many other countries [1].
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Figure 1: Examples of interfaces with proactive “cards” presented
respectively in Apple Siri, Google Now and Microsoft Cortana (top).
Examples of reactive search queries submitted to Google on mobile
and Bing on desktop (bottom) for query paris shooting.

Consequently, information retrieval systems are constantly evolving
into more contextual and mobile-friendly services.

Among recent enhancements, the introduction of zero-query sys-
tems [8] is arguably one of the most significant breakthroughs. In
2012 at a workshop, a group of 45 leading experts in the field ac-
knowledged zero-query search to be one of the six most interesting
research directions in information retrieval (IR).

“Future information retrieval systems must anticipate
user needs and respond with information appropriate to
the current context without the user having to enter a
query.” [8]

The major players in the search industry have embraced the new
trends by releasing systems such as Google Now [4], Apple Siri
[5] and Microsoft Cortana [2]. In all these systems, in addition to
the typical reactive search by a query, proactive information cards
are presented to users based on their context. Proactive systems are



typically implemented in form of apps that once triggered by the
user, present several information cards. Each card is particularly
designed to satisfy a domain-specific set of information needs. Many
of these apps can also run in the background and pop up certain cards
proactively depending on the user’s context. The top screenshots
in Figure 1 include a few examples of proactive cards from Apple
Siri (weather, stocks), Google Now (weather, news) and Microsoft
Cortana (stock, news) respectively from left to right. It is worth
pointing out that there are no explicit queries associated with these
cards. In comparison, the screenshots at the bottom of Figure 1
depict two typical reactive searches on – Google – mobile (left), and
– Bing – desktop (right) for query paris shooting.

Despite the growing importance and popularity of proactive sys-
tems, not much have been published on how users interact with
them. In this paper, we present the first study of such kind. We start
by investigating various aspects of user engagement with different
types of cards. For instance, we show that users are likely to interact
with different types of cards depending on the time of the day, and to
a lesser degree based on their location. In addition, we demonstrate
that while the overall topical distributions of clicked documents
differ in reactive and proactive logs, the topics of documents that
are clicked by the same user tend to be similar between proactive
and reactive interactions.

In the light of observations made in the first part of the paper, we
focus on improving the quality of proactive ranking in the second
part. We propose Carré, a card reranking model that deploys several
features based on the user’s context and history to improve the
ranking of proactive recommendations. Our experimental results
conducted over large-scale logs of a commercial search engine
confirm that the reactive search history of users – along with several
other contextual features – can be used to improve the ranking of
proactive recommendations.

The key research contributions of this paper are fourfold,

• Present the first study of user engagement with proactive cards.
In particular, we explore how presentation position, local and
temporal aspects can affect the user engagement with cards
(Section 4).

• Characterize the cross-platform clicks of users and explore
the topical similarity of clicked documents across platforms
(Section 5).

• Propose Carré, a card reranking model based on context and
past history. Inspired by previous work on search personal-
ization [13, 22], we devise an offline optimization framework
for reranking proactive cards based on context (Section 6).

• Evaluate card reranking models by inferring pseudo-relevance
labels not only based on clicks, but also by viewport tracking
of their mobile screens (Section 7).

The remainder of this paper is structured as follows. We con-
tinue by summarizing the most related work in the next section. In
Section 3, we define our terminology and explain the user logs that
are used in our experiments. We study the card usage patterns with
respect to presentation position, time and location in Section 4. We
characterize the cross-platform clicks in Section 5 and show that the
topics of interest for a user are typically consistent across platforms.
We then introduce a supervised model for reranking cards based
on the user’s context and past history in Section 6, and evaluate its
performance in Section 7. We summarize our findings and discuss
their limitations in Section 8, and conclude in Section 9.

2. RELATED WORK
While the study of proactive systems, as introduced in this paper,

is a new research area, it has roots in earlier research. A proactive
system aggregates information from multiple sources (e.g., weather,
news, sports) as recommendations in the form of cards, according
to personal preferences. Hence, our work is related to the areas
of aggregated search, information cards, personalization, and rec-
ommendations. In this paper, we also focus on predicting future
interactions with the cards for this new modality, which is also re-
lated to prior work on click prediction. Next, we will discuss the
related research in each of the aforementioned areas.

Proactive information retrieval. Rhodes and Maes [37] in-
troduced just in-time information retrieval (JITIR) agents as soft-
wares that proactively retrieve and present relevant information
based on the user’s context. The context could be inferred based on
the content of documents viewed by the user, or physical attributes
such as time and location. As in earlier systems [14, 31], Rhodes and
Maes [37] focused on textual recommendations such as keywords,
emails and documents. However, the content presented in modern
information cards is substantially more heterogeneous. The authors
nonetheless listed three key features for JITIR namely, (1) proactive
(2) non-intrusive, and (3) contextual. that are all still critical in the
context of modern proactive systems.

Aggregated search. The proactive system is an aggregator of
various types of information that are valuable to the user, such as
calendar, weather, news, stocks, and places. Its counterpart for
the reactive scenario is the aggregated search, where contents from
specialized verticals are blended into organic web search results.
Diaz [21] studied the integration of news vertical into web search,
and proposed modeling the collection and query dynamics to detect
queries with the news intent. Arguello et al. [9] later extended this
line of research to integrate various types of verticals, such as news,
travel, images, and videos. Ponnuswami et al. [34] proposed a ran-
domized online audition framework for optimizing the aggregated
ranking based on clicks.

Information cards. The cards presented proactively do not al-
ways need to be clicked to be useful. Sometimes, the displayed
content of the card is sufficient to satisfy the user’s information need.
This is analogous to good abandonment [30] in aggregated search,
where the aggregated content from verticals do not always need
to be clicked to satisfy the user’s intent. Recent research by Guo
et al. [24] shed some light on this problem on mobile devices. The
authors modeled viewing behavior based on touch interactions, and
demonstrated the correlation of document relevance and viewport
changing patterns on touch-enabled mobile devices. Lagun et al.
[29] extended this line of research to model the viewports for in-
ferring user attention and satisfaction on the reactive search engine
result pages. In this paper, we incorporate the viewport-based dwell
time as card (pseudo) relevance labels to address this long-standing
challenge of “good abandonment”.

Personalization. Proactive recommendations are highly person-
alized based on the user interests and context, thus making per-
sonalization an integral part the system. In reactive web search,
personalization has been well studied for tailoring search results by
modeling individual user preferences from history interactions. One
of earlier works on leveraging user interaction to infer document
relevance is by Fox et al. [22], who showed that the user behavior
such as dwell time, has strong association with explicit judgments



of satisfaction and can be served as implicit feedback to improve the
search experience. Following this research, Xu et al. [48], proposed
a method to estimate personalized word-level dwell time from the
user’s search and browse history. The proposed model can be used
to estimate personalized dwell time on new documents to customize
search result ranking. More recently, White et al. [46] proposed to
model cohorts of users who conduct similar tasks to improve the
search personalization.

Recommender systems. The proactive system also shares many
properties of typical recommender systems [36]. Similar to such
systems, we aim to present the most relevant content to the user
in the absence of an explicit query. However, the recommenda-
tions in the proactive system are for a smaller set of items that are
highly repeatable and heterogeneous, and need to be personalized
and contextualized in its ranking. Furthermore, we do not compare
preferences across users and items as is common in collaborative
filtering systems [40].

Click prediction. Different models have been proposed in pre-
vious research to address various biases in presentation which affect
the prediction of future click-through. One example is by Chapelle
and Zhang [19], in which the authors proposed a Dynamic Bayesian
Network model, aiming to recover actual relevance from clicks by
separating the modeling of presentation bias in result attractiveness.
Our task are similar in that we aim to predict future interactions
with cards presented by the proactive system. However, the major
differences lie in the lack of explicit queries, leading to heavier
contextualized modeling of the user interests, and alleviating the
lack of clicks by utilizing viewport-based metrics.

We will revisit this list in the following sections and provide more
details about the most relevant studies when appropriate.

3. TERMINOLOGY & DATA
In this section, we introduce the data and the terminology that we

use in the rest of of this paper.

Terminology. We follow the common IR terminology when re-
ferring to reactive searches. Each reactive search impression consists
of a query submitted by a user at a given time and location, together
with all clicks and interaction signals that were collected on those
results. Clicks followed by a dwell time of 30 seconds or longer
are considered as satisfied (SAT) clicks.1 As in previous work
[17, 35, 45], a session is defined as a sequence of impressions with
no interval of inactivity longer than 30 minutes.

For proactive scenarios we borrow the same terminology and
apply similar constraints. A proactive impression consists of a
ranking of cards presented to the user together with corresponding
interaction logs recorded such as clicks, viewports and scrolling.
Viewport tracking is enabled through JavasScript embedded in the
proactive impressions, and the viewport data is buffered and then
sent back to the server through HTTP requests. We record the screen
size, the positions and sizes of the cards rendered on the proactive
impressions in pixels, as well as the viewport changing events with
timestamps, allowing us to reconstruct the viewing behavior of the
users and calculate the time users spent dwelling on each card.

While reactive impressions start with a query, a proactive im-
pression is triggered when the user launches the app (e.g. clicking
on Google Now, or Cortana icons). Consistent with the proactive
scenario, a session is comprised of all user interactions with the
1In this paper, clicks always mean SAT clicks regardless of whether
they are on card or on a document.
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Figure 2: The relative SAT-click and SAT-view frequency recorded
across different positions. The numbers are re-scaled with respect
to frequency at the first position.

cards with no interval of inactivity longer than half an hour. In our
cross-platform analysis, we monitor the behavior of the same users
in reactive and proactive sessions.

User logs. For our experiments we first sampled 365,612 unique
users randomly from the proactive logs of Microsoft Cortana [2].
We then collected all proactive history of these users between 08
Nov 2014 – 7 Dec 2014 (1 month). In total, there are 2,663,472
proactive impressions in our dataset. We use the first week of data
to study the general card usage patterns (Section 4). The remaining
impressions from the last three weeks (811,681 impressions in total
after removing impressions with no engagement2) are used to train
and evaluate our card reranking models (Section 6).

We also extracted the reactive history of this set of users from the
query logs of Bing search engine between 1 Sep 2014 – 31 Oct 2014.
We deliberately chose an earlier non-overlapping period to avoid
any potential patterns that might be caused by general temporal
trends rather than user related factors. Each user is distinguished
by a unique and anonymized identifier (based on Microsoft Live
ID) which is common across Bing and Cortana platforms. This
user-ID is persistent across both sets of logs and can be used to
join all related information about a user. Therefore, the reactive
search history of users can be easily compared against their proactive
activities. In total, there are 4,113,977 reactive (search) impressions
in our dataset.

4. PROACTIVE INTERACTIONS
In order to learn effective models for ranking cards, it is essential

to understand how users interact with them. While reactive query
logs have been extensively studied [10, 27, 28], to the best of our
knowledge, there is no previous published work on proactive cards.
This section aims to analyze the user interaction with proactive
cards and verify if similar patterns hold in general. We later use the
insights obtained from these analyses to generate effective features
for ranking cards.

For the experiments in this section, we only report the results
for seven types of cards namely: sports, places, calendar, finance,
news, traffic, and weather. These are the most popular cards in
terms of user interactions, and represent more than 80% of proactive
engagement (clicks, views) in our dataset. The sports card, shows
2SAT click or long dwell on viewport.
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Figure 3: The percentage of clicks on each card given the day of the week (left) and time of day (middle). The percentage of clicks on each
card given the location (home vs. office) of the user (right).

the latest scores and fixtures for the team(s) specified by the user.
The places card recommends restaurants and points of interests
nearby based on the user’s current location as identified by GPS. The
calendar card lists the upcoming events and appointments, while
the finance card tracks the latest stock values for the corporation(s)
pre-specified by the user. The news card presents the most recent
headlines, while the weather and traffic cards provide forecasts and
updates based on the user’s current location and most frequently
visited destinations (e.g. home and work).

The effect of card position. The click distributions on differ-
ent positions of search results have been well-studied in the past.
Agichtein et al. [7] showed that the click distribution on search
results is significantly top-heavy where the top-ranked documents
account for most of the clicks. Joachims et al. [28] explained the
skewed distribution by associating it to both relevance and position
bias. Similar trends have been reported on other ranking platforms
such as auto-completion [26] and mobile search results [29]. In the
latter case, it is worth pointing out that the authors mostly focused
on gaze and viewport rather than clicks. Interestingly, they reported
trends that, contrary to previous studies, were not monotonically
decreasing by position.

In Figure 2 we repeat a similar analysis on cards. For now, please
focus on the blue bars and ignore the red ones as we will come back
to them later. Here, the x-axis corresponds to the card position (in
the ranking of cards presented to the user), and the y-axis shows
the relative click frequency on that position. The frequencies are
normalized so that the click frequency at the top position is equal
to 1. The trends are consistent with those reported in the past for
search queries [7, 28]. Most of the clicks are recorded on the top
positions and cards presented at lower ranks get relatively little
engagement. However, further investigation would be needed to
distinguish the impact of position bias from relevance.

Temporal & local trends. The user interests and engagement
are affected by various factors. For instance, Beitzel et al. [10]
showed that users are likely to query for different topics depending
on the time of the day. Similarly, Halvey et al. [25] reported that
users web surfing patterns and browsed documents vary depending
on time. We verify if the same patterns exist for proactive cards.
Figure 3 (left) depicts the percentage of clicks on each card on dif-
ferent days of the week. The boxes in each column are color coded
according to the day of the week and their total value sums to one. It
is immediately apparent that the card usage varies depending on the
day. For example, the traffic card is used on weekdays most often,
while the sports card is more likely to be used during weekends. The
news and weather cards have roughly uniform usage throughout the
week, while the finance card has relatively little engagement during

the weekends. This is consistent with findings of Mei and Church
[32] on reactive logs that suggested users issue more entertainment-
related and fewer business-related queries during weekends.

The middle plot in Figure 3 provides a similar breakdown but
for time of the day. We divide the day into four parts based on
the time as follows: Morning (6-12], Afternoon (12-18], Evening
(18-24], and Night (24-6]. It turns out that users are more likely
to click on traffic and finance cards in the morning. The latter is
consistent with the observations of Beitzel et al. [10] on search logs,
that suggested users are more likely to issue finance-related queries
in the morning. Among the cards, news and sports have highest
engagement during evening hours whereas the calendar and traffic
cards are used more often in the afternoon. Note that the ranking of
cards presented to each user does not vary significantly over time in
our datasets. On average, more than 82% of cards presented in two
consecutive impressions are the same (usually with updated content).
The position of a card in the ranking is also fairly stable. On average,
the rank of a card changes by half a position in two consecutive
proactive impressions. The overall trends do not substantially vary
either. For instance, the finance and sport cards respectively appear
in 2.5%–2.6% and 2.5%–4.9% of daily impressions, although as we
observed, their click likelihood could be very different on each day.
Therefore, we are confident that the trends observed here are mostly
due to temporal factors.

Similar to time, the impact of user location on search behavior
has been the subject of extensive research [12, 38, 44]. Cho et al.
[20] reported that the mobility of users is mostly centered around
two locations: home and work. Therefore, we devote our focus to
card usage patterns at work and at home. We infer the centroid of the
GPS data from the user in the evening as home, and the centroid of
the GPS data during the day as office. Further details of our location
inference models are beyond the scope of this paper, but similar
approaches can be found elsewhere [20]. We consider the area
within 1km radius of the user’s home location as home area. The
office area is defined similarly based on the inferred work location
of the user. The right plot in Figure 3 illustrates the percentage
of card usage split between home and work. The results suggest
that – ignoring clicks from miscellaneous locations – two-third of
card clicks take place at home and one-third at the office. Overall,
there seems to be very little difference between cards in terms of
their usage patterns with respect to the user’s location. The only
exceptions are the finance and traffic cards, that are split roughly
50-50 between home and office.

The left and middle plots in Figure 3 reveal strong temporal
changes in card usage. However, they provide no details about
temporal dynamics of engagement by the same user. In Figure 4
we investigate the distribution of temporal gaps between two con-
secutive clicked proactive impressions from the same user. On the
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Figure 4: The temporal gap between the last click and the next click
on cards. The x-axis is in hours and the y-axis shows the density of
clicks that fall in hourly interval.

x-axis we have the temporal gap (in hours), and on the y-axis we
show the density of consecutive impressions that fall in that bucket.
The results show that once the user clicks on a card, the next clicked
impression is most likely to appear within an hour. It is also interest-
ing to note the spikes around 24, 48, and 72 hours, suggesting that
many users engage with the cards at the same time of the day.3

Overall, the results summarized in this section suggest that the
dynamics of user interactions with the cards, follow similar patterns
to those observed previously in reactive search logs.

5. CROSS-PLATFORM CLICKS
Thus far we have shown that the user engagement with the cards

varies depending on the time and to a less extent based on location.
Next, we investigate the topics of documents that users click on in
their proactive impressions and compare them against their reactive
history. It is important to note that not all the cards direct the
user to a document. For instance, the traffic and finance cards
direct the user to an app. Therefore, for this part of study, we limit
ourselves to clicks from sports, news and places cards. We use
the top level categories from the Open Directory Project (ODP) [3]
to represent the document topics. To train topic classifiers, we
followed the approach suggested by Bennett et al. [11] and used a
2008 crawl of ODP that was split into a 70%–30% train/validation
set. We too discarded the Regional class as it is not topical which
leaves us with 14 categories overall. For each topic, we train a
logistic regression classifier with L2 regularization. We then run
each clicked document in proactive and reactive impressions against
all these classifiers and assign it to the topic that receives the highest
score.

To distinguish between patterns that can be attributed to using
different devices (Mobile vs. Desktop), rather than different plat-
forms (reactive vs. proactive), we further divide the reactive user
history based on the device on which the document was clicked.
We respectively use DesktopR and MobileR to refer to documents
that were clicked on desktop and mobile devices in reactive im-
pressions. Figure 5 compares the topical categories of documents

3The data gets sparser and skewed towards ‘heavy’ users for longer
periods. Therefore, we left the study of longer intervals (e.g.
weekly/monthly) for future work.
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Figure 5: The distribution of ODP categories for documents clicked
across different platforms.

clicked on different platforms. It is evident that the overall dis-
tribution is different across platforms, although it is more similar
between reactive impressions from mobile and desktop. There are
certain categories such as Health and News that appear relatively
more often among the documents clicked in proactive impressions.
In contrast, categories such as Art, Games and Sports are rel-
atively under-represented. The comparison between MobileR and
DesktopR impressions confirm that users click on different types
of documents on different devices. Similar argument can be made
about the proactive-reactive differences although it should be noted
that distribution of proactive clicks is also affected by what was
presented to users in the cards.

Figure 5 illustrates the overall topical distribution of clicked doc-
uments aggregated over all users. However, it does not inform us
about how the same user accesses information on different devices
and platforms. Wang et al. [43] and Montanez et al. [33] studied
the topics of documents that users click on cross-device. Here,
we perform the same comparison cross-platform; that is, between
proactive and reactive impressions. On each platform we discard
all but the strongest ODP category associated with each user. For
each pair (Mp,Mq) of the three modalities, (Proactive, MobileR
and DesktopR), we calculate the Normalized Point-wise Mutual
Information (NPMI), to measure the association of a pair of ODP
categories (oi, oj) conditioned on the pair of modalities. The NPMI
value is denoted as the output of function N , using the following
formula:

N(oi, oj |Mp,Mq) =
log

P (oi,oj |Mp,Mq)

P (oi |Mp,Mq)P (oj |Mp,Mq)

− logP (oi, oj |Mp,Mq)
(1)

The value ofN ranges between−1 and 1, where 1 indicates that the
two categories completely co-occur given the two modalities, −1
indicates that the two categories occur separately but not together,
and 0 indicates that the two categories are independent. We visualize
the cross-platform NPMI values for each pair of platforms and across
all topics as heatmaps in Figure 6. The right diagonals of the three
heatmaps have the darkest colors, indicating that, overall, the same
category is clicked by the user across all pairs of modalities.

The consistency of the topics viewed cross-platform by the user
suggests that the users’ reactive history might provide useful signals
for ranking their proactive recommendations. In the next sections,
we put this assumption to the test.
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Figure 6: The ODP categories of documents clicked by the same user across different platforms. The colors in the heatmaps represent the
normalized point-wise mutual information (NPMI) gains, where darker means higher.

Table 1: Offline labeling of proactive cards based on clicks (left).
The ranking produced by Carré for the same impression (right). The
reciprocal rank of each ranking is computed based on clicks and
presented in the last row.

Position Baseline (π) Clicked Carré (π∗)
1 Weather (7) Weather
2 Finance (7) News
3 News (X) Calendar
4 Calendar (7) Finance
5 Places (7) Places
RR (E) 0.33 0.5

6. RERANKING PROACTIVE CARDS
The results described so far suggest that the user’s engagement

with the cards is subject to various factors such as time, location, and
position. They also reveal that the documents that are clicked by a
user across proactive and reactive platforms tend to be consistent in
terms of topicality. In this section, we use these insights to develop
features that can be used to train a supervised model for reranking
cards. We will refer to our trained model for card reranking as Carré.

Formal definition. Given a set of proactive cards C, and the
ranking produced over them by a default ranker π(C), our task is to
learn a reranking model F (a.k.a. Carré) that reorders this list – if
necessary – based on available features Θ. The reranker is optimized
towards a pre-defined metric E, so that its produced ranking π?(C)
outperforms the original order with respect to that metric. That is,

π?(C) = F (π(C),Θ) where, E(π?(C)) > E(π(C)) (2)

Therefore, to optimize Carré (F ), the first question that needs to
be addressed is the choice of optimization metric E and labels.

Pseudo-relevance labels. Collecting context sensitive labels
for training personalized rankers is not trivial. Different users in
similar context (or even the same user in different contexts) may
prefer different cards. The previous work in reactive search person-
alization addresses this problem by relying on clicks and inferring
pseudo-relevance labels [12, 13, 38, 42]. Fox et al. [22] showed if a

user dwells on a clicked document for longer than 30(s), that docu-
ment is likely to be relevant. Inferring implicit labels for proactive
cards is an open question. We apply the following three strategies
in our experiments:

• SAT-Clicks (Rc): We adopt the common click-based strategy
for labeling cards. For each proactive impression in our logs,
we consider clicked cards with≥ 30(s) dwell time as relevant
and others as non-relevant.

• SAT-Views (Rv): The main problem with SAT-clicks is that
there are many type of cards that do not require a click to
satisfy the user’s information need. For instance, although
clicking on the weather card provides more details about the
upcoming forecast, the current temperature is often what the
user is looking for and it is always available on the card. This
is analogous to the good abandonment phenomenon [30] in
aggregated search, where the results of some verticals may
not require a click to satisfy users. To remedy this issue, we
rely on the viewport information to measure how long the
user had the card visible on the screen during a proactive
impression. Lagun et al. [29] demonstrated that viewport
duration and gaze duration are highly correlated. While the
authors did not specify a particular threshold for mapping
viewport duration to relevance, previous work suggests that
for short text segments – roughly the size of a paragraph
– display time of ≥ 30(s) is a good indicator of relevance
and is potentially more accurate than gaze for that purpose
[16]. Therefore, we generate a second set of labels based
on the viewport time. Cards with viewport duration ≥ 30(s)
are considered as (pseudo) relevant and the others as non-
relevant.4 The red bars in Figure 2 depict the distributions
of SAT-Views generated from viewport duration for cards
presented at different positions. The trends are similar to what
we observed for SAT-Clicks (blue bars) although the drop at
position two is more substantial.

• SAT-Hybrid (Rh): This approach combines the two options
above and considers all cards with a SAT-Click or a SAT-view
as (pseudo) relevant.

4Experiments using a tighter threshold (≥ 15 seconds) produced
similar results, and hence are excluded.



Table 2: The features used for reranking cards by Carré. The suits in brackets specify the experimental group that each feature belongs to.
Note that the textual and topical features are only available to cards that recommend web documents and are left blank otherwise.

Feature Group Description
ReactiveImpressionCount (♣) No. previous reactive search impressions by the user.
DesktiopImpressionCount (♣) No. previous reactive search impressions by the user issued from desktop.
MobileImpressionCount (♣) No. previous reactive search impressions by the user issued from a mobile device.
ReactiveDomainMatches (♣) No. domains (e.g. cnn.com) that appear in the card and have been clicked by the user in reactive logs.
PrevCardClicks (♠) Number of previous clicks by the user on this type of card.
ProactiveImpressionCount (♠) No. previous proactive impressions by the user.
ProactiveDomainMatches (♠) No. domains (e.g. cnn.com) that appear in the card and have been clicked by the user in proactive logs.
HuDist (♥) 2 features indicating the distance from the user’s home, and office (in kilometers).
IsTimeOfDay (♥) 4 binary features indicating the time of day ∈{morning, afternoon, evening, night}.
IsDayOfWeek (♥) 7 binary features indicating the day of week ∈{Sat, Sun, · · · , Fri}.
TemporalGap (♥) Time elapsed since the last proactive impression by the user (in hours).
Position (�) The position of card in the impression presented to the user.
CardCount (�) The number of cards presented to the user in the proactive impression.
IsCardType (�) 12 binary features generated for the most popular cards (e.g. IsSports).
IsOtherType (�) A binary feature that is set to one only if none of the IsCardType features is 1.
NumActiveDays (�) No. days with at least one impression in user’s proactive and reactive history.
ImpressionNo (�) No. previous proactive impressions in the same session.
StaticRank (�) Computed based on number of SAT-Clicks and SAT-Views recorded on that type of card during the training period.
ReactiveTermMatch (♦,♣) No. overlapping terms in URL-titles presented in the card and clicked URLs in reactive history (weighted by freq).
ProactiveTermMatch (♦,♠) No. overlapping terms in URL-titles presented in the card and clicked URLs in proactive history (weighted by freq).
ReactiveCatMatch (♦,♣) Similar to ReactiveTermMatch but computed based on the ODP categories assigned to URLs.
ProactiveCatMatch (♦,♠) Similar to ProactiveTermMatch but computed based on the ODP categories assigned to URLs.

While admittedly none of these approaches are ideal, we believe
that they provide a reasonable benchmark for first step experimen-
tation in this direction. We leave further investigation of the right
labeling strategy as future work.

Given that than 2/3 of proactive impressions in our logs have
only one card with a positive label (Hybrid-SAT = true), we decided
to pick mean reciprocal rank (MRR) as our evaluation metric E.
RR is defined as the reciprocal rank of the highest-ranked relevant
card in an impression, and is considered as 0 in the absence of
positive labels. MRR is computed by averaging RR over the test
impressions. Our choice is in line with several previous works on
search personalization that also used MRR as their evaluation metric
[12, 38, 39, 42].

Training. To train Carré, we sampled proactive impressions from
the logs of a commercial search engine as described in Section 3.
Each impression consists of a unique and persistent user identifier
that can be matched against reactive logs, a set of cards that were
presented to the user, and the related click statistics and time-stamps.
The relevance labels are assigned to the cards based on clicks and
viewport duration as explained above. We then train a model that
learns to rank the (pseudo) relevant cards on top based on available
features and penalizes their demotion. Table 1 illustrates our label-
ing and evaluation process in a toy example. Here, the sampled
impression contains 5 cards that were presented to a user. Among
them, the user had a SAT-Click (or a SAT-View) on the news card
which was shown at the third position (Hence, RR = 1/3 = 0.33).
Suppose that Carré has taken this impression along with the avail-
able features and reranked it as it is displayed on the right column
of the table. Here, since the news card is placed higher at the sec-
ond position we consider the ranking to be more effective than the
original order (RR = 1/2 = 0.50).

We chose LambdaMART [47] as our preference learning model.
LambdaMART is a learning to rank approach based on gradient
boosted decision trees and is an extension to LambdaRank [15]. It
has been shown to be one of the most effective models for learning
to rank [18], and has been a common choice among previous work
on personalized ranking [12, 13, 38, 39, 42]. We performed a pa-

rameter sweep over the number of trees {20,100,500}, number of
leaves per tree {2,4,8,· · · ,128}, the learning rate {0.02,0.05,0.1,0.4}
and the minimum number of instances per leaf {1,10,50} over our
validation datasets to tune the parameters. We split the proactive
logs explained in Section 3 based on time-stamps into three sets for
training, validation and testing. Impressions collected between 15
Nov 2014 – 21 Nov 2014 were used for training (291,039 in total),
those collected between 22 Nov 2014 – 28 Nov 2014 (248,353 in
total) were used for validation, and the remainder of impressions
logged between 29 Nov 2014 – 7 Dec 2014 (272,289 in total) were
used for testing and generating the reported results.

Features. Our experiments in the previous sections highlighted
various factors that can affect the user engagement with the cards.
Inspired by those observations we develop several features that can
be used for card reranking in Carré. The comprehensive list of
features is provided in Table 2, although in general they can be all
summarized in five overlapping groups:

• Reactive history (♣): These are features that are generated
based on the reactive search history of the user collected
separately as described in Section 3.

• Proactive history (♠): These are features that are generated
based on the last two weeks proactive history of the user.

• Lexical/Topical features (♦): These features are generated
based on lexical and topical similarity between the URLs
presented in the card, and documents clicked by the same user
in previous proactive and reactive impressions. They are only
available for cards that contain URL links and are set to zero
elsewhere.

• Local/Temporal features (♥): These features are generated
based on the time and the location of user when the proactive
impression was presented.

• Constant features (�): Features that do not belong to any of
the categories above (e.g. card position).



We can draw connection between many of the features used in our
model to those deployed previously in the search personalization lit-
erature. For instance, the ProactiveCatMatch and ReactiveCatMatch
features are similar to category-query features used by Bennett et al.
[11]. The ReactiveDomainMatches and ProactiveDomainMatches
features are related to the personal navigation models [41] but here
we compute them at the domain level. Moreover, Position and Im-
pressionNo are both commonly used for reranking search results
[11, 12, 38, 39, 42]

Baselines. We compare our results against two baselines. Our
first baseline which we refer to as the Default-ranker is the original
ranking of cards before ordering (middle column in Table 1). The
Default-ranker is the production ranker of a commercial system
(Cortana) that is already trained to produce the best ranking of cards
at each impression. As our second baseline we use a static ranking of
cards which produces the same ordering across all impressions. We
count the number of times that each type of card receives SAT-Clicks
or SAT-Views in our training period, and then rank the cards in all
our testing impressions accordingly. We refer to this baseline as
Static-ranker in our experiments. The effectiveness of Static-ranker
highlights how well such non-personalized usage-based rankers can
perform in the absence of other contextual signals.

7. EXPERIMENTS
We now focus on evaluating the effectiveness of our card rerank-

ing models. We begin our analysis by comparing Carré against our
baselines. Given the proprietary nature of the Default-ranker, we do
not disclose its absolute MRR, but instead compare the performance
of other models against it in terms of relative changes in MRR. The
results in Table 3 show that regardless of how the (pseudo) relevance
labels are assigned, Carré outperforms the Default-ranker. The gains
range between 6%-10% in terms of MRR and are all statistically
significant according to the t-test (p < 0.01). The Static-ranker
is significantly outperformed by the Default-ranker on all metrics
(p < 0.01) which confirms the quality of the original rankings
produced by the production system.

To verify if the gains and losses are distributed uniformly across
users we decided to group users based on their loyalty. We ranked
users in terms of the number of their proactive impressions in our
logs. We then assigned the users in the top 15% and the bottom
15% of this ranking to separate groups that we respectively refer to
as Head and Tail. Table 4 compares the performance of different
approaches on Head and Tail user groups. Once again, the results
are presented in terms of relative changes in MRR with respect to
Default-ranker and all differences are statically significant except for
one case (Carré, Tail users,Rv). Carré consistently outperforms the
Default-ranker on both sets of users. The gains are more substantial
on the Head set across all metrics. This is expected as most of
the proactive/reactive history (♣,♠) and lexical/topical features
(♦) are set to their default values for the Tail users due to lack of
enough historical data. In addition, it can be noted that the gains are
higher on the click-based evaluations (Rc). Given that clicks can be
considered as a more direct feedback from the user compared to the
relatively more noisy labels inferred from viewport, perhaps it is not
surprising to see the click-based models to be most effective. The
performance of the Static-ranker is less affected by the user group,
although the overall numbers follow similar trends.

Feature analysis. We demonstrated that the rankings produced
by Carré consistently outperform both baselines on all metrics and

Table 3: The effectiveness of card re-ranking models against the
Default-ranker. The gains and losses are only reported in relative
delta values (∆MRR%) to respect the proprietary nature of the
baseline ranker. The MRR values computed based on SAT-Clicks,
SAT-Views and SAT-Hybrid label sets (Rc,Rh,Rh) are grouped
separately. All differences are statistically significance (p < 0.01)
according to the pair t-test.

∆MRR ∆MRR ∆MRR
(Rc) (Rv) (Rh)

Static-Ranker H -0.72% H-13.24% H-1.59%
Carré N10.85% N 6.88% N 8.71%

Table 4: The effectiveness of Carré against the baseline ranker for
different groups of users (Head vs. Tail). The gains and losses
are only reported in relative delta values (∆MRR). Statistically
significance gains and losses according to the pair t-test (p < 0.01)
are respectively denoted by N and H.

∆MRR ∆MRR ∆MRR
(Rc) (Rv) (Rh)

Head users
Static-Ranker N 2.12% H -2.82% N 1.52%
Carré N19.69% N16.35% N17.69%
Tail users
Static-Ranker H-1.57% H-8.86% H-3.47%
Carré N 3.96% 0.22% N 0.79%

user groups. Next we investigate which feature groups contribute
most to these gains.

We train separate rankers by excluding all features from each
feature group and compare them with a Carré model trained over
the complete feature set. The results are summarized in Table 5.
As before, statistically significant differences (losses) according to
the t-test (p < 0.01) are distinguished by H. Dropping the features
from the constant group (�) hurts the performance more than any
other subset regardless of the choice of labels. In particular, Position
(original rank) is the most influential feature which is consistent
with prior work on search personalization [12, 13, 38, 42]. The
temporal/local (♥) features have the least impact on performance
which is expected as none of them are card-specific. Features based
on reactive history of the user (♣) are at least as effective as those
generated based on the proactive history (♠). This is notable as it
suggests that the previous search history of the users can be used for
reranking cards, and is particularly useful for the first time users of
proactive recommendations. Dropping all lexical/topical features
(♦) computed over the reactive and proactive search history of
users, substantially degrades the performance on all metrics. This
confirms that the fact that the same user browses similar topics
across platforms (Figure 6) can be used to improve their proactive
recommendations.

8. DISCUSSION
The results presented so far, confirm the effectiveness of Carré for

reranking proactive cards across all metrics. However, as we noted
in Section 6, the click-based (pseudo) relevance labels may not be
appropriate for evaluating all types of cards, and while the viewport-
based measures partially address this problem, they are yet to be
carefully tested on proactive scenarios. The threshold we picked
was based on previous work on short segments of text [16], however
different values might be discovered to be more suitable in proactive
mobile settings.



Table 5: The effectiveness of card re-ranking models trained exclud-
ing the specified features against the Carré ranker trained with all
features. The gains and losses are only reported in relative delta
values (∆MRR) against the Carré model trained with all features.
Statistically significant differences (p < 0.01) according to the pair
t-test are denoted by H.

∆MRR ∆MRR ∆MRR
(Rc) (Rv) (Rh)

Carré (−♠) H-1.04% -0.04% H-0.69%
Carré (−♣) H-0.99% -0.25% H-0.94%
Carré (−♦) H-7.15% H -5.71% H-6.58%
Carré (−♥) H-0.28% 0.23% H-0.13%
Carré (−�) H-7.85% H-10.06% H-7.90%

Table 6: The accuracy of news click prediction models trained
excluding the specified features against the classifier trained with
all features (bottom row). All differences are statistically significant
according to the McNemar’s Chi-Square (χ2) test.

Accuracy ∆Accuracy
Carré (−♠) 0.7980 H-0.86%
Carré (−♣) 0.7988 H-0.77%
Carré (−♦) 0.7932 H-1.46%
Carré (−♥) 0.7997 H-0.65%
Carré (−�) 0.7829 H-2.74%
The accuracy when trained with all features: 0.8050

To remedy this issue, we decided to conduct another experiment
in which we exclusively focus on predicting clicks on news cards.
Focusing solely on news would allow us to simplify the problem
to a binary classification task. We also would not need to worry
about the viewport-based metrics, as our news cards are clickable5

and take the users directly to documents for which we know SAT-
click signals can be used reliably to infer relevance [11–13, 22, 39,
46]. Therefore, we updated our experimental datasets described in
Section 3 to form new sets that only include data for the news cards.
The details of training/validation/testing split remain unchanged
and the list of features stays identical. Instead of training a ranker
based on boosted decision trees (LambdaMART [47]), we train a
binary classifier based on gradient boosted decision trees [23]. The
parameter sweep is performed over the same set of ranges that was
specified in Section 6.

The motivation here is that if clicks on news cards can be pre-
dicted accurately, one can use this information to demote/promote
their positions accordingly. The results in Table 6 show the click
prediction accuracy of multiple Carré classifiers trained over differ-
ent subsets of features. Accuracy is defined as the ratio of cards that
were correctly classified ( True positives+True negatives

All ) and the bottom row
contains the accuracy of Carré when trained with all features. McNe-
mar’s Chi-Square (χ2) confirms that all differences are statistically
significant (p < 0.01) against this full model that we consider as
our baseline.6

Overall, the results are consistent with our previous experiments.
Excluding the constant (�) and lexical/topical (♦) features degrades
the accuracy more than any other feature group. The temporal/local
(♥) features have the lowest impact while proactive (♠) and reactive

5We ignore the potential headline glance interactions here.
6We used the t-test previously for measuring the statistical signifi-
cance of differences in our ranking experiments. However, it is not
applicable to this classification task.

(♣) features make similar contributions to accuracy. Using AUC as
metric instead of accuracy led to similar conclusions. For instance,
AUC dropped from 0.6909 to 0.6660 (H-3.60%) in the absence
of lexical/topical features (♦), and dropped to as low as 0.5987
(H-13.34%) when constant features were excluded. We skip more
details for brevity.

9. CONCLUSIONS
In this paper, we presented the first analysis on user interactions

with proactive cards. We found several resemblances between the
user interaction patterns with proactive cards and those recorded
from reactive search logs. We demonstrated that similar to reactive
search results, proactive card rankings also have a top-heavy click
distribution. We also showed that similar to search queries, the card
usage patterns are affected by temporal and local dynamics. For
instance, there are certain cards (e.g. finance) that are likely to be
clicked by the user in the morning, or at work. Furthermore, we
investigated the topics of documents clicked by the user in different
platforms and discovered that users are consistent across platforms
in terms of the topics they interact with.

In the second half of our study, we used the insights obtained in
the first half to develop features that can be used for reranking cards.
We proposed a new approach for inferring the relevance of a pre-
sented card based on the user’s click and viewport duration. We then
deployed these implicit labels in a supervised framework for rerank-
ing cards. Our experimental results confirmed the effectiveness of
our method (Carré) and showed that it consistently produces better
results than the original ranker (and a static baseline). They also con-
firmed that features generated based on the reactive search history of
users can be used to improve their proactive card recommendations.

There are several directions for future work. Inferring implicit
relevance labels for proactive cards is still an open question. We
tried to address that by adopting common techniques and thresholds
based on previous studies on text, and also focusing exclusively on
the news cards for some parts of this work. However, further inves-
tigations would be needed to better understand the user’s interaction
with the cards in order to derive realistic user models and metrics.
While all our experiments were based on synthetic inferred labels,
it would be important to assess our findings with real users in a
user study or on live user traffic. In addition it would be useful to
collect the proactive and reactive history of users over an extended
and consistent range of dates to measure the impact of short-term
and long-term history in each of these platforms. Last but not least,
we demonstrated that the reactive history of users can be used to im-
prove their proactive ranking; it would be interesting to investigate
if the reverse holds true as well.
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