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Abstract

In natural language understanding (NLU),
a user utterance can be labeled differently
depending on the domain or application
(e.g., weather vs. calendar). Standard
domain adaptation techniques are not di-
rectly applicable to take advantage of the
existing annotations because they assume
that the label set is invariant. We propose
a solution based on label embeddings in-
duced from canonical correlation analysis
(CCA) that reduces the problem to a stan-
dard domain adaptation task and allows
use of a number of transfer learning tech-
niques. We also introduce a new trans-
fer learning technique based on pretrain-
ing of hidden-unit CRFs (HUCRFs). We
perform extensive experiments on slot tag-
ging on eight personal digital assistant do-
mains and demonstrate that the proposed
methods are superior to strong baselines.

1 Introduction

The main goal of NLU is to automatically extract
the meaning of spoken or typed queries. In recent
years, this task has become increasingly impor-
tant as more and more speech-based applications
have emerged. Recent releases of personal dig-
ital assistants such as Siri, Google Now, Dragon
Go and Cortana in smart phones provide natu-
ral language based interface for a variety of do-
mains (e.g. places, weather, communications, re-
minders). The NLU in these domains are based
on statistical machine learned models which re-
quire annotated training data. Typically each do-
main has its own schema to annotate the words and
queries. However the meaning of words and utter-
ances could be different in each domain. For ex-
ample, “sunny” is considered a weather condition
in the weather domain but it may be a song title in

a music domain. Thus every time a new applica-
tion is developed or a new domain is built, a sig-
nificant amount of resources is invested in creating
annotations specific to that application or domain.

One might attempt to apply existing techniques
(Blitzer et al., 2006; Daumé III, 2007) in domain
adaption to this problem, but a straightforward ap-
plication is not possible because these techniques
assume that the label set is invariant.

In this work, we provide a simple and effec-
tive solution to this problem by abstracting the la-
bel types using the canonical correlation analysis
(CCA) by Hotelling (Hotelling, 1936) a powerful
and flexible statistical technique for dimensional-
ity reduction. We derive a low dimensional rep-
resentation for each label type that is maximally
correlated to the average context of that label via
CCA. These shared label representations, or label
embeddings, allow us to map label types across
different domains and reduce the setting to a stan-
dard domain adaptation problem. After the map-
ping, we can apply the standard transfer learning
techniques to solve the problem.

Additionally, we introduce a novel pretraining
technique for hidden-unit CRFs (HUCRFs) to ef-
fectively transfer knowledge from one domain to
another. In our experiments, we find that our
pretraining method is almost always superior to
strong baselines such as the popular domain adap-
tation method of Daumé III (2007).

2 Problem description and related work

Let D be the number of distinct domains. Let Xi

be the space of observed samples for the i-th do-
main. Let Yi be the space of possible labels for the
i-th domain. In most previous works in domain
adaptation (Blitzer et al., 2006; Daumé III, 2007),
observed data samples may vary but label space is



invariant1. That is,

Yi = Yj ∀i, j ∈ {1 . . .D}

butXi 6= Xj for some domains i and j. For exam-
ple, in part-of-speech (POS) tagging on newswire
and biomedical domains, the observed data sam-
ple may be radically different but the POS tag set
remains the same.

In practice, there are cases, where the same
query is labeled differently depending on the do-
main or application and the context. For example,
Fred Myer can be tagged differently; “send a text
message to Fred Myer” and “get me driving direc-
tion to Fred Myer ”. In the first case, Fred Myer is
person in user’s contact list but it is a grocery store
in the second one.

So, we relax the constraint that label spaces
must be the same. Instead, we assume that sur-
face forms (i.e words) are similar. This is a natu-
ral setting in developing multiple applications on
speech utterances; input spaces (service request
utterances) do not change drastically but output
spaces (slot tags) might.

Multi-task learning differs from our task. In
general multi-task learning aims to improve per-
formance across all domains while our domain
adaptation objective is to optimize the perfor-
mance of semantic slot tagger on the target do-
main.

Below, we review related work in domain adap-
tion and natural language understanding (NLU).

2.1 Related Work

Domain adaptation has been widely used in many
natural language processing (NLP) applications
including part-of-speech tagging (Schnabel and
Schütze, 2014), parsing (McClosky et al., 2010),
and machine translation (Foster et al., 2010).
Most of the work can be classified either su-
pervised domain adaptation (Chelba and Acero,
2006; Blitzer et al., 2006; Daume III and Marcu,
2006; Daumé III, 2007; Finkel and Manning,
2009; Chen et al., 2011) or semi-supervised adap-
tation (Ando and Zhang, 2005; Jiang and Zhai,
2007; Kumar et al., 2010; Huang and Yates, 2010).
Our problem setting falls into the former.

Multi-task learning has become popular in NLP.
Sutton and McCallum (2005) showed that joint

1Multilingual learning (Kim et al., 2011; Kim and Snyder,
2012; Kim and Snyder, 2013) has same setting.

learning and/or decoding of sub-tasks helps to im-
prove performance. Collobert and Weston (2008)
proved the similar claim in a deep learning archi-
tecture. While our problem resembles their set-
tings, there are two clear distinctions. First, we
aim to optimize performance on the target domain
by minimizing the gap between source and target
domain while multi-task learning jointly learns the
shared tasks. Second, in our problem the domains
are different, but they are closely related. On the
other hand, prior work focuses on multiple sub-
tasks of the same data.

Despite the increasing interest in NLU (De Mori
et al., 2008; Xu and Sarikaya, 2013; Sarikaya et
al., 2014; Xu and Sarikaya, 2014; Anastasakos et
al., 2014; El-Kahky et al., 2014; Liu and Sarikaya,
2014; Marin et al., 2014; Celikyilmaz et al., 2015;
Ma et al., 2015; Kim et al., 2015), transfer learn-
ing in the context of NLU has not been much ex-
plored. The most relevant previous work is Tur
(2006) and Li et al. (2011), which described both
the effectiveness of multi-task learning in the con-
text of NLU. For multi-task learning, they used
shared slots by associating each slot type with ag-
gregate active feature weight vector based on an
existing domain specific slot tagger. Our empiri-
cal results shows that these vector representation
might be helpful to find shared slots across do-
main, but cannot find bijective mapping between
domains.

Also, Jeong and Lee (2009) presented a transfer
learning approach in multi-domain NLU, where
the model jointly learns slot taggers in multiple
domains and simultaneously predicts domain de-
tection and slot tagging results.2 To share parame-
ters across domains, they added an additional node
for domain prediction on top of the slot sequence.
However, this framework also limited to a setting
in which the label set remains invariant. In con-
trast, our method is restricted to this setting with-
out any modification of models.

3 Sequence Modeling Technique

The proposed techniques in Section 4 and 5 are
generic methodologies and not tied to any partic-
ular models such as any sequence models and in-
stanced based models. However, because of supe-
rior performance over CRF, we use a hidden unit
CRF (HUCRF) of Maaten et al. (2011).

2Jeong and Lee (2009) pointed out that if the domain is
given, their method is the same as that of Daumé III (2007).



Figure 1: Graphical representation of hidden unit
CRFs.

While popular and effective, a CRF is still a lin-
ear model. In contrast, a HUCRF benefits from
nonlinearity, leading to superior performance over
CRF (Maaten et al., 2011). Thus we will focus on
HUCRFs to demonstrate our techniques in experi-
ments.

3.1 Hidden Unit CRF (HUCRF)

A HUCRF introduces a layer of binary-valued hid-
den units z = z1 . . . zn ∈ {0, 1} for each pair of
label sequence y = y1 . . . yn and observation se-
quence x = x1 . . . xn. A HUCRF parametrized by
θ ∈ Rd and γ ∈ Rd′ defines a joint probability of
y and z conditioned on x as follows:

pθ,γ(y, z|x) =

exp(θ>Φ(x, z) + γ>Ψ(z, y))∑
z′∈{0,1}n
y′∈Y(x,z′)

exp(θ>Φ(x, z′) + γ>Ψ(z′, y′))

(1)

where Y(x, z) is the set of all possible label se-
quences for x and z, and Φ(x, z) ∈ Rd and
Ψ(z, y) ∈ Rd′ are global feature functions that de-
compose into local feature functions:

Φ(x, z) =
n∑
j=1

φ(x, j, zj)

Ψ(z, y) =
n∑
j=1

ψ(zj , yj−1, yj)

HUCRF forces the interaction between the obser-
vations and the labels at each position j to go
through a latent variable zj : see Figure 1 for illus-
tration. Then the probability of labels y is given
by marginalizing over the hidden units,

pθ,γ(y|x) =
∑

z∈{0,1}n
pθ,γ(y, z|x)

As in restricted Boltzmann machines (Larochelle
and Bengio, 2008), hidden units are conditionally
independent given observations and labels. This
allows for efficient inference with HUCRFs de-
spite their richness (see Maaten et al. (2011) for
details). We use a perceptron-style algorithm of
Maaten et al. (2011) for training HUCRFs.

4 Transfer learning between domains
with different label sets

In this section, we describe three methods for uti-
lizing annotations in domains with different la-
bel types. First two methods are about transfer-
ring features and last method is about transfer-
ring model parameters. Each of these methods re-
quires some sort of mapping for label types. A
fine-grained label type needs to be mapped to a
coarse one; a label type in one domain needs to be
mapped to the corresponding label type in another
domain. We will provide a solution to obtaining
these label mappings automatically in Section 5.

4.1 Coarse-to-fine prediction

This approach has some similarities to the method
of Li et al. (2011) in that shared slots are used
to transfer information between domains. In this
two-stage approach, we train a model on the
source domain, make predictions on the target do-
main, and then use the predicted labels as addi-
tional features to train a final model on the target
domain. This can be helpful if there is some cor-
relation between the label types in the source do-
main and the label types in the target domain.

However, it is not desirable to directly use the
label types in the source domain since they can
be highly specific to that particular domain. An
effective way to combat this problem is to re-
duce the original label types such start-time,
contract-info, and restaurant as to a
set of coarse label types such as name, date,
time, and location that are universally shared
across all domains. By doing so, we can use
the first model to predict generic labels such as
time and then use the second model to use this
information to predict fine-grained labels such as
start-time and end-time.

4.2 Method of Daumé III (2007)

In this popular technique for domain adapta-
tion, we train a model on the union of the
source domain data and the target domain data



but with the following preprocessing step: each
feature is duplicated and the copy is conjoined
with a domain indicator. For example, in a
WEATHER domain dataset, a feature that indi-
cates the identity of the string “Sunny” will
generate both w(0) = Sunny and (w(0) =
Sunny) ∧ (domain = WEATHER) as fea-
ture types. This preprocessing allows the model
to utilize all data through the common features
and at the same time specialize to specific do-
mains through the domain specific features. This
is especially helpful when there is label ambigu-
ity on particular features (e.g., “Sunny” might be a
weather-condition in a WEATHER domain
dataset but a music-song-name in a MUSIC
domain dataset).

Note that a straightforward application of this
technique is in general not feasible in our situation.
This is because we have features conjoined with
label types and our domains do not share label
types. This breaks the sharing of features across
domains: many feature types in the source domain
are disjoint from those in the target domain due to
different labeling.

Thus it is necessary to first map source domain
label types to target domain label type. After the
mapping, features are shared across domains and
we can apply this technique.

4.3 Transferring model parameter

In this approach, we train HUCRF on the source
domain and transfer the learned parameters to ini-
tialize the training process on the target domain.
This can be helpful for at least two reasons:

1. The resulting model will have parameters for
feature types observed in the source domain
as well as the target domain. Thus it has bet-
ter feature coverage.

2. If the training objective is non-convex, this
initialization can be helpful in avoiding bad
local optima.

Since the training objective of HUCRFs is non-
convex, both benefits can apply. We show in our
experiments that this is indeed the case: the model
benefits from both better feature coverage and bet-
ter initialization.

Note that in order to use this approach, we need
to map source domain label types to target domain
label type so that we know which parameter in

Figure 2: Illustration of a pretraining scheme for
HUCRFs.

the source domain corresponds to which param-
eter in the target domain. This can be a many-to-
one, one-to-many, one-to-one mapping depending
on the label sets.

4.3.1 Pretraining with HUCRFs
In fact, pretraining HUCRFs in the source domain
can be done in various ways. Recall that there are
two parameter types: θ ∈ Rd for scoring obser-
vations and hidden states and γ ∈ Rd′ for scoring
hidden states and labels (Eq. (1)). In pretraining,
we first train a model (θ1, γ1) on the source data
{(x(i)src, y(i)src)}nsrc

i=1 :

(θ1, γ1) ≈ arg max
θ,γ

nsrc∑
i=1

log pθ,γ(y(i)src|x(i)src)

Then we train a model (θ2, γ2) on the target
data {(x(i)trg, y

(i)
trg)}

ntrg

i=1 by initializing (θ2, γ2) ←
(θ1, γ1):

(θ2, γ2) ≈ arg max
θ,γ

ntrg∑
i=1

log pθ,γ(y
(i)
trg|x

(i)
trg)

Here, we can choose to initialize only θ2 ← θ1 and
discard the parameters for hidden states and labels
since they may not be the same. The θ1 parame-
ters model the hidden structures in the source do-
main data and serve as a good initialization point
for learning the θ2 parameters in the target domain.
This can be helpful if the mapping between the la-
bel types in the source data and the label types in
the target data is unreliable. This process is illus-
trated in Figure 2.

5 Automatic generation of label
mappings

All methods described in Section 4 require
a way to propagate the information in label
types across different domains. A straightfor-
ward solution would be to manually construct



such mappings by inspection. For instance, we
can specify that start-time and end-time
are grouped as the same label time, or that
the label public-transportation-route
in the PLACES domain maps to the label
implicit-location in the CALENDAR do-
main.

Instead, we propose a technique that automat-
ically generates the label mappings. We induce
vector representations for all label types through
canonical correlation analysis (CCA) — a pow-
erful and flexible technique for deriving low-
dimensional representation. We give a review of
CCA in Section 5.1 and describe how we use
the technique to construct label mappings in Sec-
tion 5.2.

5.1 Canonical Correlation Analysis (CCA)

CCA is a general technique that operates on a
pair of multi-dimensional variables. CCA finds k
dimensions (k is a parameter to be specified) in
which these variables are maximally correlated.

Let x1 . . . xn ∈ Rd and y1 . . . yn ∈ Rd′ be n
samples of the two variables. For simplicity, as-
sume that these variables have zero mean. Then
CCA computes the following for i = 1 . . . k:

arg max
ui∈Rd, vi∈Rd′ :
u>i ui′=0 ∀i′<i
v>i vi′=0 ∀i′<i

∑n
l=1(u

>
i xl)(v

>
i yl)√∑n

l=1(u
>
i xl)

2
√∑n

l=1(v
>
i yl)

2

In other words, each (ui, vi) is a pair of projec-
tion vectors such that the correlation between the
projected variables u>i xl and v>i yl (now scalars) is
maximized, under the constraint that this projec-
tion is uncorrelated with the previous i − 1 pro-
jections.

This is a non-convex problem due to the inter-
action between ui and vi. Fortunately, a method
based on singular value decomposition (SVD) pro-
vides an efficient and exact solution to this prob-
lem (Hotelling, 1936). The resulting solution
u1 . . . uk ∈ Rd and v1 . . . vk ∈ Rd′ can be used
to project the variables from the original d- and
d′-dimensional spaces to a k-dimensional space:

x ∈ Rd −→ x̄ ∈ Rk : x̄i = u>i x

y ∈ Rd
′ −→ ȳ ∈ Rk : ȳi = v>i y

The new k-dimensional representation of each
variable now contains information about the other

variable. The value of k is usually selected to be
much smaller than d or d′, so the representation is
typically also low-dimensional.

5.2 Inducing label embeddings
We now describe how to use CCA to induce vec-
tor representations for label types. Using the same
notation, let n be the number of instances of la-
bels in the entire data. Let x1 . . . xn be the original
representations of the label samples and y1 . . . yn
be the original representations of the associated
words set contained in the labels.

We employ the following definition for the orig-
inal representations for reasons we explain below.
Let d be the number of distinct label types and d′

be the number of distinct word types.

• xl ∈ Rd is a zero vector in which the entry
corresponding to the label type of the l-th in-
stance is set to 1.

• yl ∈ Rd′ is a zero vector in which the entries
corresponding to words spanned by the label
are set to 1.

The motivation for this definition is that similar
label types often have similar or same word.

For instance, consider two label types
start-time, (start time of a calendar event)
and end-time, meaning (the end time of a cal-
endar event). Each type is frequently associated
with phrases about time. The phrases {“9 pm”,
“7”, “8 am”} might be labeled as start-time;
the phrases {“9 am”, “7 pm”} might be labeled
as end-time. In these examples, both label
types share words “am”, “pm”, “9”, and “7” even
though phrases may not match exactly.

Figure 3 gives the CCA algorithm for inducing
label embeddings. It produces a k-dimensional
vector for each label type corresponding to the
CCA projection of the one-hot encoding of that
label.

5.3 Discussion on alternative label
representations

We point out that there are other options for in-
ducing label representations besides CCA. For
instance, one could simply use the sparse fea-
ture vector representation of each label. How-
ever, CCA’s low-dimensional projection is com-
putationally more convenient and arguably more
generalizable. One can also consider training a
predictive model similar to word2vec (Mikolov



Figure 4: Bijective mapping: labels in REMINDER domain (orange box) are mapped into those in
PLACES and ALARM domains.

CCA-LABEL
Input: labeled sequences {(x(i), y(i))}ni=1, dimension k
Output: label vector v ∈ Rk for each label type

1. For each label type l ∈ {1 . . . d} and word type w ∈
{1 . . . d} present in the sequences, calculate

• count(l) = number of times label l occurs
• count(w) = number of times word w occurs
• count(l, w) = number of times word w occurs

under label l

2. Define a matrix Ω ∈ Rd×d′ where:

Ωl,w =
count(l, w)√

count(l)count(w)

3. Perform rank-k SVD on Ω. Let U ∈ Rd×k be a matrix
where the i-th column is the left singular vector of Ω
corresponding to the i-th largest singular value.

4. For each label l, set the l-th normalized row of U to be
its vector representation.

Figure 3: CCA algorithm for inducing label em-
beddings.

et al., 2013). But this requires significant efforts in
implementation and also very long training time.
In contrast, CCA is simple, efficient, and effec-
tive and can be readily implemented. Also, CCA
is theoretically well understood while methods in-
spired by neural networks are not.

5.4 Constructing label mappings

Vector representations of label types allow for nat-
ural solutions to the task of constructing label
mappings.

5.4.1 Mapping to a coarse label set
Given a domain and the label types that occur
in the domain, we can reduce the number of la-
bel types by simply clustering their vector repre-
sentations. For instance, if the embeddings for
start-time and end-time are close together,
they will be grouped as a single label type. We run
the k-means algorithm on the label embeddings to
obtain this coarse label set.

Table 1 shows examples of this clustering. It
demonstrates that the CCA representations ob-
tained by the procedure described in Section 5.2
are indeed informative of the labels’ properties.

Cluster Labels Cluster Labels

Time

start time

Person

contact info
end time artist

original start time from contact name
travel time relationship name

Loc

absolute loc

Loc ATTR

prefer route
leaving loc public trans route
from loc nearby

position ref distance

Table 1: Some of cluster examples

5.4.2 Bijective mapping between label sets
Given a pair of domains and their label sets, we
can create a bijective label mapping by finding
the nearest neighbor of each label type. Figure 4
shows some actual examples of CCA-based bijec-
tive maps, where the label set in the REMINDER
domain is mapped to the PLACES and ALARM
domains. One particularly interesting example is
that move earlier time in REMINDER do-
main is mapped to Travel time in PLACES
and Duration in ALARM domain. This is a tag
used in a user utterance requesting to move an



Domains # of label Source Training Test Description
Alarm 7 27865 3334 Set alarms

Calendar 20 50255 7017 Set appointments & meetings in the calendar
Communication 18 104881 14484 Make calls, send texts, and communication related user request

Note 4 17445 2342 Note taking
Ondevice 7 60847 9704 Phone settings

Places 32 150348 20798 Find places & get direction
Reminder 16 62664 8235 Setting time, person & place based reminder
Weather 9 53096 9114 Weather forecasts & historical information about weather patterns

Table 2: Size of number of label, labeled data set size and description for Alarm, Calendar, Communica-
tion, Note, Ondevice, Places, Reminder and Weather domains partitioned into training and test set.

appointment to an earlier time. For example, in
the query “move the dentist’s appointment up by
30 minutes.”, the phrase “30 minutes” is tagged
with move earlier time. The role of this tag
is very similar to the role of Travel time in
PLACES (not Time) and Duration in ALARMS
(not Start date), and CCA is able to recover
this relation.

6 Experiments

In this section, we turn to experimental findings to
provide empirical support for our proposed meth-
ods.

6.1 Setup

To test the effectiveness of our approach, we apply
it to a suite of eight Cortana personal assistant do-
mains for slot sequence tagging tasks, where the
goal is to find the correct semantic tagging of the
words in a given user utterance.

The data statistics and short descriptions are
shown in Table 2. As the table indicates, the do-
mains have very different granularity and diverse
semantics.

6.2 Baselines

In all our experiments, we trained HUCRF and
only used n-gram features, including unigram, bi-
gram, and trigram within a window of five words
(±2 words) around the current word as binary fea-
ture functions. With these features, we compare
the following methods for slot tagging:

• NoAdapt: train only on target training data.

• Union: train on the union of source and target
training data.

• Daume: train with the feature duplication
method described in 4.2.

• C2F: train with the coarse-to-fine prediction
method described in 4.1.

• Pretrain: train with the pretraining method
described in 4.3.1.

To apply these methods except for Target, we
treat each of the eight domains in turn as the test
domain, with one of remaining seven domain as
the source domain. As in general domain adap-
tation setting, we assume that the source domain
has a sufficient amount of labeled data but the tar-
get domain has an insufficient amount of labeled
data. Specifically, For each test or target domain,
we only use 10% of the training examples to sim-
ulate data scarcity. In the following experiments,
we report the slot F-measure, using the standard
CoNLL evaluation script 3

6.3 Results on mappings

Mapping technique
Adaptation
technique Manual Li et al. (2011) CCA

Union 68.16 64.7 70.51
Daume 73.42 67.32 75.85

C2F 75.47 75.69 76.29
Pretrain 77.72 76.99 78.76

NoAdapt 75.13

Table 3: Comparison of slot F1 scores using
the proposed CCA-derived mapping versus other
mapping methods combined with different adap-
tation techniques.

To assess the quality of our automatic mapping
methods via CCA described in Section 5, we com-
pared against manually established mappings and
also the mapping method of Li et al. (2011). The
method of Li et al. (2011) is to associate each
slot type with the aggregate active feature weight
vectors based on an existing domain specific slot
tagger (a CRF). Manual mapping were performed

3http://www.cnts.ua.ac.be/conll2000/chunking/output.html



Target Source Minimum distance domain performance
Domain Nearest Domain NoAdapt Union Daume C2F Pretrain
Alarm Calendar 74.82 84.46 84.97 81.54 84.88

Calendar Reminder 70.51 73.94 73.07 72.82 77.08
Note Reminder 65.38 56.39 69.89 66.6 69.55

Ondevice Weather 70.86 66.66 71.17 71.49 73.5
Reminder Calendar 77.3 83.38 82.19 81.29 83.22

Communication Reminder 79.31 74.28 80.33 79.66 82.96
Places Weather 73.93 73.74 75.86 73.73 80.11

Weather Places 92.78 92.88 94.43 93.75 97.18
Average - 75.61 75.72 78.99 77.61 81.06

Table 4: Slot F1 scores on each target domain using adapted models from the nearest source domain.
hhhhhhhhhhhhSource

Target Alarm Calendar Note Ondevice Reminder Communication Places Weather Average

NoAdapt 74.82 70.51 65.38 70.86 77.3 79.31 73.93 92.78 75.61

Alarm

Union - 72.26 59.92 67.32 79.45 77.91 73.78 92.67 74.76
Daume - 72.77 66.28 70.94 81.12 80.38 75.62 93.12 77.18

C2F - 70.59 64.06 71 78.8 79.5 74.29 92.75 75.86
Pretrain - 76.68 68.12 71.8 81.25 81.5 77.1 95.03 78.78

Calendar

Union 84.46 - 50.64 64.7 83.38 75.02 71.13 93.2 74.65
Daume 84.97 - 65.43 70.12 82.19 79.78 75.21 93.1 78.69

C2F 81.54 - 66.08 71.22 81.29 80.11 73.75 93.18 78.17
Pretrain 84.88 - 69.21 72.3 83.22 82.75 77.89 95.8 80.86

Note

Union 60.26 60.42 - 65.79 69.81 76.85 70.56 90.02 70.53
Daume 66.03 67.38 - 69.54 76.65 77.83 73.49 92.09 74.72

C2F 74.68 70.51 - 71.34 77.49 79.48 74.17 92.89 77.22
Pretrain 75.52 72.4 - 71.4 80.1 82.06 76.53 94.22 78.89

Ondevice

Union 63.72 66.28 55.67 - 75.16 74.85 70.59 90.7 71.00
Daume 71.01 69.39 64.02 - 75.75 77.92 74.41 92.62 75.02

C2F 74.02 70.33 64.99 - 77.43 79.53 73.84 92.71 76.12
Pretrain 76.27 71.59 67.21 - 78.67 82.34 77.45 95.04 78.37

Reminder

Union 84.74 73.94 56.39 61.27 - 74.28 68.14 92.22 73.00
Daume 84.66 73.07 69.89 67.94 - 80.33 73.36 93.19 77.49

C2F 80.42 72.82 66.6 71.36 - 79.66 74.35 92.38 76.80
Pretrain 84.75 77.08 69.55 71.9 - 82.96 78.57 95.37 80.03

Communication

Union 58.25 54.69 65.28 62.95 63.98 - 68.16 87.13 65.78
Daume 70.4 67.41 69.14 69.26 77.67 - 73.33 92.82 74.29

C2F 74.54 70.84 65.48 70.81 77.68 - 74.15 92.79 75.18
Pretrain 76.04 74.01 68.76 73.2 80.74 - 76.83 94.58 77.74

Places

Union 71.7 67.56 45.37 53.93 67.78 63.67 - 92.88 66.13
Daume 75.69 69.01 66.11 65.46 79.01 78.42 - 94.43 75.45

C2F 78.9 71.64 66.93 71.26 79.2 79.19 - 93.75 77.27
Pretrain 76.8 74.12 67.5 72.7 81 81.89 - 97.18 78.74

Weather

Union 69.43 58.53 56.76 66.66 74.98 77.53 73.74 - 68.23
Daume 75 71.73 66.54 71.17 79.36 80.57 75.86 - 74.32

C2F 77.61 71.47 63.24 71.49 78.44 79.43 73.73 - 73.63
Pretrain 77.37 74.5 68.23 73.5 80.96 82.05 80.11 - 76.67

Average

Union 70.37 64.81 55.72 63.23 73.51 74.3 70.87 91.26 70.51
Daume 75.4 70.23 66.77 69.2 78.32 79.32 74.47 93.05 75.85

C2F 77.39 71.17 65.4 71.21 78.62 79.56 74.04 92.92 76.29
Pretrain 78.80 74.34 68.37 72.40 80.85 82.22 77.78 95.32 78.76

Table 5: Slot F1 scores of using Union, Daume, Coarse-to-Fine and pretraining on all pairs of source and
target data. The numbers in boldface are the best performing adaptation technique in each pair.

by two experienced annotators who have PhD in
linguistics and machine learning. Each annotator
first assigned mapping slot labels independently
and then both annotators collaborated to reduce
disagreement of their mapping results. Initially,
the disagreement of their mapping rate between
two annotators was about 30% because labels of
slot tagging are very diverse; furthermore, in some
cases it is not clear for human annotators if there
exists a valid mapping.

The results are shown at Table 3. Vector repre-

sentation of Li et al. (2011) increases the F1 score
slightly from 75.13 to 75.69 in C2F, but it does not
help as much in cases that require bijective map-
ping: Daume, Union and Pretrain.

In contrast, the proposed CCA based technique
consistently outperforms the NoAdapt baselines
by significant margins. More importantly, it also
outperforms manual results under all conditions.
It is perhaps not so surprising – the CCA derived
mapping is completely data driven, while human
annotators have nothing but the prior linguistic



knowledge about the slot tags and the domain.

6.4 Main Results

The full results are shown in Table 5, where all
pairs of source and target languages are consid-
ered for domain adaptation. It is clear from the ta-
ble that we can always achieve better results using
adaptation techniques than the non-adapted mod-
els trained only on the target data. Also, our pro-
posed pretraining method outperforms other types
of adaptation in most cases.

The overall result of our experiments are shown
in Table 4. In this experiment, we compare dif-
ferent adaptation techniques using our suggested
CCA-based mapping. Here, except for NoAdapt,
we use both the target and the nearest source do-
main data. To find the nearest domain, we first
map fine grained label set to coarse label set by
using the method described in Section 5.4.1 and
then count how many coarse labels are used in a
domain. And then we can find the nearest source
domain by calculating the l2 distance between the
multinomial distributions of the source domain
and the target domain over the set of coarse labels.

For example, for CALENDAR, we identify
REMINDER as the nearest domain and vice versa
because most of their labels are attributes related
to time. In all experiments, the domain adapted
models perform better than using only target do-
main data which achieves 75.1% F1 score. Sim-
ply combining source and target domain using our
automatically mapped slot labels performs slightly
better than baseline. C2F boosts the performance
up to 77.61% and Daume is able to reach 78.99%.4

Finally, our proposed method, pretrain achieves
nearly 81.02% F1 score.

7 Conclusion

We presented an approach to take advantage of ex-
isting annotations when the data are similar but
the label sets are different. This approach was
based on label embeddings from CCA, which re-
duces the setting to a standard domain adapta-
tion problem. Combined with a novel pretrain-
ing scheme applied to hidden-unit CRFs, our ap-
proach is shown to be superior to strong baselines
in extensive experiments for slot tagging on eight
distinct personal assistant domains.

4It is known that Daume is less beneficial when the source
and target domains are similar due to the increased number of
features.
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