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ABSTRACT 

Time of use tiered pricing schedules encourage shifting 

electricity demand from peak to off-peak hours. Charging 

times for electric vehicles (EV) can be shifted into overnight 

hours, which are usually off-peak. EVs can also be used as 

energy storage devices, available during certain peak hours 

to power a house with electricity stored during off-peak 

hours. Studies suggest both techniques are practical, but were 

based on simulated demand patterns or large commercial 

fleets. To investigate feasibility on a per home basis, we 

collected data from 15 EV homes using the Lab of Things 

sensing infrastructure. We evaluate a scheme that powers 

homes with their car battery during expensive electricity 

periods and then charges the battery during cheaper periods. 

We show an average potential savings of $10.91/month for 

shifting charging times, and an additional $13.58/month for 

powering the home from the EV, even accounting for the 

inefficiencies of electric conversion. 

Author Keywords 

Sustainability; electric vehicles; home energy use; sensing; 

Lab of Things; load leveling; residential.  

ACM Classification Keywords 

J.7 [Computer Applications]: Computers in Other Systems: 

Command and control  

INTRODUCTION  

The stability and availability of electrical energy is a critical 

concern for many countries. Researchers have focused on 

understanding and reducing energy use in homes through the 

development of new sensing techniques and eco-feedback 

interfaces [e.g. 3, 7, 9, 10, 13, 26, 36]. In addition to reducing 

overall usage in the home, another important consideration 

is shifting energy use, in particular reducing usage at peak 

times. The energy infrastructure must be provisioned to 

handle peak load, and methods for generating this extra 

capacity are often expensive, involving the use of less 

sustainable fuels that produce more carbon byproducts. 

While the problem of peak demand is well known, the 

increase of renewable energy sources such as wind and solar 

has introduced a new challenge of intermittent energy 

production. Unpredictable production requires energy 

storage during periods of overproduction and flexible loads 

that can shift between storing energy during periods of high 

production and providing energy when the renewable source 

is not available [5, 16].  

Energy companies already use a variety of strategies to 

encourage people to shift when they use energy in an effort 

to reduce peak demand or to shift to greener times of 

production. These include Time of Use (TOU) pricing, 

where rates are higher during peak times and lower during 

the non-peak, and demand response programs that offer 

savings to people who reduce energy use at certain times, 

typically with relatively short notice. Smart meters analyze 

energy use, and devices such as the Nest thermostat and other 

smart meters cooperate with electric companies to offer 

monetary incentives for participation in automatic energy 

reduction programs [30]. WattTime [44] attempts to monitor 

the grid in real-time to infer the source of energy production 

and provides a service to automatically shift appliance and 

device usage in the home to times of greener production as 

means to reduce overall carbon footprint. 

Electric vehicles (EVs) are an interesting addition to the 

energy usage landscape. They are large energy consumers 

and their charging times may be shiftable. Moreover, their 

batteries can be used as home energy sources using a power 

inverter. Past research has explored the economic feasibility 

of vehicles providing energy to the grid [20, 21, 22, 40] and 

the length of time a car battery could power a home during 

an emergency [41]. EVs provide an interesting opportunity 

to “time-shift” energy use, thereby reducing peak demand, 

saving costs, and operating within green production times.  
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Using data collected from 15 homes with electric vehicles, 

this research quantifies the potential for shifting energy use 

away from peak times in two ways. First, we evaluate 

shifting electric vehicle charging to non-peak times to save 

car owners money and help with peak load leveling. Second, 

we evaluate the feasibility of powering the car owner's home 

from the battery in their electric vehicle during peak times 

and then recharging the battery during non-peak times to 

shift when energy is drawn from the grid.  

We used the Lab of Things (LoT) platform [24] to log whole 

house energy use, car charging energy use, charging 

behavior, and car presence. We logged a median of 48 days 

per home, 113 days in one home, and 710 days in total. This 

real-world data set allows us to analyze the potential for 

energy shifting both to save the home owner money and shift 

peak demand. Unlike prior work, we are one of the first to 

empirically examine the use of EVs for shifting peak loads 

in the home by collecting actual EV usage data. 

Our experiments show that we can indeed save money for a 

homeowner by shifting charging times and powering the 

house from the EV battery by taking advantage of TOU 

tiered electricity pricing that utilities offer to reduce peak 

demand. The simplest optimization of shifting charging 

times would save the homeowners on average $10.91/month. 

For 98% of the 710 days in our dataset, the EV’s battery had 

enough charge when it arrived home to power the home 

during the peak hours. Doing so would save homeowners on 

average an additional $13.58/month, a 7.6% average savings 

on their monthly energy bill. Our primary analysis uses TOU 

rates from PG&E in California; additional analysis with 

other TOU pricing schedules shows similar results.    

RELATED WORK 

We describe related research on optimal charging schedules 

and providing power from an EV battery to the electrical grid 

or to a home.  

Charging Electric Vehicles 

The benefit of shifting electric vehicle charging has long 

been recognized. Many EVs offer simple timer mechanisms 

to configure charging to start at a certain time. An interview 

study conducted by Kurani et al. with 61 EV drivers in San 

Diego, CA showed that they were highly motivated to charge 

their vehicles during the super-off-peak period from 

midnight to 5 am [23]. This was due both to TOU pricing and 

their desire to be responsible citizens and not contribute to 

peak demand power issues which were well publicized in 

California. Davies and Kurani have also argued that models 

that assume one-per-day charging of EVs are overly 

simplistic, and given initial observations of variable charging 

behavior among EV drivers it would be better to use more 

complex models of EV charging. They stress the need to 

build a more comprehensive dataset of EV driving and 

charging [8]. 

More generally, managing and optimizing EV charging has 

long been a popular research topic. Anticipating the potential 

of wide spread EV adoption to cause an overload of the 

power grid during periods of simultaneous charging, 

researchers have proposed a range of algorithms to 

coordinate charging. Some assume centralized control over 

fleets of EVs [e.g. 15, 37], and others are distributed control 

algorithms [e.g. 2, 14, 27]. Many of the distributed control 

algorithms assume signals about the condition of the power 

grid, either directly based on monitoring that would be 

installed [2] or indirectly through price information from a 

utility [15, 27].  

While preventing wide-spread charging from overloading 

the power grid is an important topic, we focus on adjusting 

the charging schedule in individual homes to save money and 

reduce peak demand. We evaluate the potential savings using 

data collected on real usage, not with simulations. 

Vehicle to Grid (V2G) 

The University of Delaware Grid-Integrated Vehicle group 

has conducted research on the feasibility and economics of 

Vehicle to Grid power (V2G), where electric drive vehicles 

provide power to the grid when parked [e.g. 20, 21, 22, 40, 

43]. Given the relatively small amount of power available 

from any single car, their analysis demonstrates the need for 

an aggregation service to create coalitions of 300 or more 

EVs to guarantee the 1 megawatt of capacity necessary to 

participate in the power regulation market [20]. Other 

researchers have studied the achievable power capacity of 

coalitions of EVs [17]. 

For utilities or companies that own fleets of vehicles, their 

analysis in four US regional markets showed that V2G could 

be profitable [40]. Additional research by the group 

demonstrates that the storage and discharge capabilities of 

V2G could help stabilize the intermittency of renewable 

energy generation (e.g. wind, solar) [22].  

In our work, we empirically examine how households use 

power for homes and their EV charging. We focus on using 

the EV to minimize the cost of energy used at home by 

shifting when power is drawn from the grid, which does not 

require home owners to participate in V2G coalitions.  

Vehicle to Home (V2H) 

Companies and researchers have recognized the potential of 

EV batteries as direct energy sources for individual homes. 

One focus has been on their potential to power homes during 

emergencies when grid power is unavailable. In 2012, 

Toyota tested a V2H backup system using Prius cars in 10 

homes in the Toyota City Project in Japan [12]. In early 2015, 

the company announced that the hydrogen powered Mirai 

arriving in late 2015 includes a port in the trunk that Toyota 

claims can be used to power a typical Japanese home for up 

to a week [35]. Other car companies are also testing V2H 

technology. In late 2014, Nissan deployed a test of Leaf-To-

Home charging stations at dealerships in Japan [38], and in 

February 2015 Tesla announced it is working on a consumer 

battery pack based on batteries used in the Tesla car [34].  



Research studies support the potential of EV batteries to 

power homes, particularly in emergency situations. Tuttle et 

al. [41]  used residential energy data collected by the Pecan 

Street project [32] for 20 homes in Austin, Texas to analyze 

how long backup power could be provided by a battery 

electric vehicle (BEV) or plug-in hybrid electric vehicle 

(PHEV) alone, and in conjunction with rooftop photovoltaic 

solar panels. The BEV batteries sizes used in the simulations 

were 19.2 kWh and 32kWh, inspired by EVs available in 

2012. Depending on the home energy use, their simulation 

showed BEVs could keep the home running on average 

between 10 hours (hot summer months in Texas) and slightly 

over 50 hours in the best case (large battery in March). 

Our research differs from Tuttle et al. because we do not 

focus on emergency situations. Instead we use logged data to 

analyze the use of EV batteries to shift when homes draw 

energy from the grid to save consumers money and flatten 

grid demand during normal use. Also, many of our 

participants have EVs with larger batteries (60 and 85 kWh). 

Tuttle et al. [41] used an 88% conversion efficiency for 

discharging energy from the battery to the home. This was 

based on measurement of a Chevrolet Volt battery during hot 

weather (≥ 92 oF, 33 C). The authors found a 93% conversion 

efficiency during cooler weather (67– 71 oF, 19 – 21 C), but 

opted to use the more conservative value. For our data, we 

analyze a range of conversion efficiencies to show how 

savings differ.  

In their SmartCharge work, Mishra et al. compute the 

monetary return for individual homes to use dedicated 

rechargeable batteries for load shifting [28]. They develop a 

learned model for predicting a home’s next-day electricity 

demand. Combined with next-day pricing data from electric 

utilities, they optimize the interplay between charging and 

discharging a home’s batteries, showing a potential for a 

positive return on investment. In contrast, we propose using 

EV batteries instead of home batteries, which means the 

battery cost is absorbed as part of the vehicle cost, but the 

batteries may be away and not always available to power the 

house. A follow-up project by Mishra et al., proposes a peak 

demand surcharge to flatten demand and introduces 

PeakCharge, a peak-aware charging algorithm that would 

optimize energy use given the proposed surcharge [29]. We 

evaluate savings given existing TOU pricing schedules. 

A project by Pedrasa et al. solves a complex optimization 

problem concerning electric energy costs and comfort for a 

home with a PHEV, electric water heater and space heater, 

pool pump, and other “must-run” electric services [33]. In 

this case, a demand pattern is assumed known in advance. 

Like us, they assume the home’s vehicle can be used to 

power the house. Unlike our work, this work depends on a 

simulated demand pattern.  

Finally, although not a focus of our research, for people with 

privacy concerns, other researchers have suggested that the 

use of rechargeable batteries to shift power usage can be 

valuable for hiding appliance usage information from non-

intrusive load monitoring [19, 31].  

STUDY METHOD 

We gathered a data set of real-world home energy usage and 

car charging behavior from 15 houses using the Lab of 

Things research platform. Due to the amount of equipment 

required in each house, we conducted the study in two 

rounds. Round 1 occurred from July-September 2014 and 

collected data from six homes. Round 2 occurred from 

January-March 2015 and collected data from eight homes. 

One additional home participated in both rounds and as a 

long term testbed to bring the total to 15 homes. This section 

describes how we used LoT to collect data, the participating 

homes, changes we made to the LoT platform, and our study 

method to handle issues encountered during deployment.  

LoT Research Platform 

Lab of Things is a freely available, extensible research 

platform designed to enable deployments into homes of a 

range of connected devices for studies [24]. The LoT 

platform consists of a Windows computer called the Home 

Hub installed at the home and running the HomeOS client 

code to interact with devices [11], and a set of cloud services 

for remote access, monitoring, data upload, and remote 

updating. LoT code has been downloaded more than 8,000 

times, used by more than 80 student developers in class 

projects, and enabled several research projects [25]. The first 

author co-leads the Lab of Things project. 

LoT's goal is to change the scale and pace of research on 

connected devices in homes by enabling researchers to focus 

on their area of interest, e.g. building new technology or 

conducting studies, without needing to build out 
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Figure 1. (a) Hardware deployed in Round 1 homes. In Round 2, two of the red beacons seen in (b) replaced the custom 

distance sensor, one was put in the car and the other in garage. (b) EV29’s Home Hub and home beacon 

 (c) EV26’s garage wall with the two energy meters we added.  

 



infrastructure for field deployments. LoT's extensible 

platform already supports logging data from and actuating a 

wide range of sensors, including energy meters, cameras, 

thermometers, motion sensors, Microsoft Kinect, and custom 

sensors built with Arduino or .NET Gadgeteer. LoT can be 

extended as needed to interact with new devices by writing a 

small amount of code called a driver. For this field 

deployment, we extended the default LoT Sensor application 

with additional monitoring capabilities and also contributed 

a driver for Texas Instruments Bluetooth beacons.  

Data Collection 

We used the Lab of Things’s Sensor Logger application to 

collect sensor readings and send them to cloud data storage 

for analysis. Figure 1 shows the hardware deployed in each 

house for data collection, including the Home Hub, an Aeon 

labs z-stick to communicate with zwave sensors, and the 

following sensors to collect: 

1. Whole house energy use. We used an Aeon Labs Home 

Energy Meter connected to the LoT Sensor application to 

record data at 1 minute intervals. This two-clamp meter was 

installed by an electrician inside the home’s electrical panel. 

In Round 1, a few homes had more than one electrical panel. 

In those homes, we installed multiple meters and combined 

the results to get total home energy use. In Round 2, we 

recruited for homes with only a single panel to enable 

deployment in more homes given our supply of meters. 

2. Energy used for car charging. For homes that charge 

using a 240 volt circuit we used another Aeon Labs Home 

Energy Meter (13 homes). For homes that charged using an 

110 volt outlet (2 homes, EV6, EV22) we inserted inline an 

Aeon Lab Smart Energy Switch which measures energy used 

by plugged-in devices. Both reported at 1 minute intervals. 

3. Presence of the car at home. The car’s presence at home 

determines the hours charging can be shifted and when its 

battery would be available to power the house. The energy 

signature of a charging car is trivial to detect, but after 

charging completes the vehicle is no longer detectable. 

Reliably detecting a car’s presence at home was the most 

difficult sensing task of the study. We piloted many different 

approaches including placing motion sensors on the garage 

floor, which were destroyed by being run over, GPS trackers 

in the car which were deemed privacy invasive and 

expensive, and garage door sensors, which were not reliable 

due to double garage doors and opening of garage doors for 

other reasons.  

For Round 1, we built custom distance sensors using 

Microsoft .NET Gadgeteer, one of which is shown in Figure 

1. These were designed to be placed in the garage a short 

distance away from the car. The sensor reports a small 

distance when the car is parked and a longer distance when 

the car was not present. We also deployed the ECOLINK Z-

Wave Garage Door Tilt Sensor as an emergency back-up. 

Unfortunately, we had not anticipated that a participant 

might park their car in several different places.  

For Round 2, we extended Lab of Things with the drivers to 

enable Bluetooth Beacons and tracked car presence using the 

Texas Instruments CC2541 configured as beacons (Figure 

1b). We deployed two beacons to each house, one for the car 

ID 
Valid 

Days 
Car Type People 

Home 

Size  

(sq. ft.) 

Median 

Charging Time 

per Session 

(minutes) 

Median 

Charging 

Power per 

Session (kW) 

Median 

Charge per 

Day (kWh) 

Median 

Household 

Demand per Day 

(kWh) 

EV2 26 Tesla 3 3000 29 17.6 8.5 26.9 

EV3 113 Tesla 4 2400 105 8.6 17.4 15.2 

EV4 15 Tesla 4 4700 43 13.6 6.6 61.5 

EV5 21 Leaf 3 3100 114 3.5 5.1 31.2 

EV6 48 Leaf 4 4390 438 1.4 10.7 59.1 

EV7 63 Leaf 4 2800 123 3.4 3.0 55.0 

EV8 68 Tesla 3 2700 38 18.0 7.0 37.5 

EV22 42 Leaf 4 2900 548 1.4 11.9 15.7 

EV23 42 Tesla-60 5 4000 51 8.5 15.6 34.6 

EV24 50 Leaf 4 2900 150 3.5 9.4 26.7 

EV25 50 Leaf 3 1790 68 5.1 7.4 12.1 

EV26 49 Leaf 3 3300 39 5.9 4.4 13.0 

EV27 27 Tesla 3 3000 146 7.4 14.1 23.5 

EV28 48 Tesla 6 2100 90 4.3 17.0 45.6 

EV29 48 Tesla-60 4 3000 121 6.5 12.1 19.9 

Table 1: Households that participated in the study. Except for the two Tesla-60, all the Teslas had 85 kWH batteries. The 

Leaf battery is 24kWh. EV6 and EV22 used Level 1 Chargers (110 Volt circuit), all other homes had Level 2 (240 Volt).  



and one for data validation to remain in the garage. Detecting 

the garage beacon meant that logging was still working and 

served as a check on the health of the beacon receiver. Again 

the Garage Door Tilt Sensor was deployed as back-up. 

4. Temperature sensing. EV batteries are sensitive to 

temperature extremes [41], so we logged temperatures in the 

garages where the vehicles were parked using the Aeotec Z-

Wave Multi-Sensor. In our moderate climate, we saw only a 

comfortable temperature range, from 54.2o F (5th percentile) 

to 80.9o F (95th percentile) and do not consider temperature 

impact on battery efficiency in our primary analysis. Note, 

Figure 5 shows potential savings using a range of battery 

efficiency providing insight into how savings would change 

for less efficient batteries due to temperature or other factors. 

Participants & Install visits 

We recruited households with a single, completely battery 

operated vehicle, either a Nissan Leaf (24kWh battery, 7 

cars) or Tesla Model S (2 60kWh batteries, 6 85kWh 

batteries). To simplify analysis we selected drivers who 

charge their cars only at home with rare exceptions, drive 

more than 75 miles per week, and excluded hybrid vehicles. 

Homes ranged in size from 1790 – 4700 sq. ft. (median 

3000). All homes had 3 to 5 residents with a mix of adults 

and children, and were located in Washington State, USA. 

Participants were recruited through a neighborhood mailing 

list and an EV enthusiast mailing list at our company. 

Table 1 shows household demographics. EV2–EV8 

participated in Round 1, EV3, EV22 – EV99 in Round 2. We 

visited each home twice, once to deploy sensors and once to 

remove them. We brought a licensed electrician to install or 

remove the clamp meters placed inside the home’s electrical 

panel. Participants received their choice of two software 

gratuities for participating in the study. EV2, EV3 are the 

homes of last author and first author respectively.  

Representative Participants 

We were interested in how representative our 15 homes 

were. We asked the main driver of each EV to estimate their 

average weekly driving distance. The results are shown as a 

box plot in Figure 3. (For drivers who gave us a range of 

distances, we took the midpoint of the range.) We compared 

this with data from the 2009 U.S. National Household Travel 

Survey (NHTS) [42].  

The NHTS is a survey of U.S. household travel patterns. It 

includes vehicle data giving estimates of the annual miles 

driven. We filtered out vehicles that were not driven for 

work, commercial vehicles, and those that were not regular 

cars (i.e. not vans, SUVs, trucks, motorcycles, or golf carts). 

The survey did not ask if the vehicles were electric, but we 

surmise the vast majority were gasoline powered, given the 

relative popularity of EVs in 2009. We used the survey’s 

BESTMILE estimate of annual mileage, eliminating those 

values flagged as outliers and zero values, leaving annual 

mileage estimates for 86,193 vehicles. Dividing the annual 

numbers by the number of weeks in a year, the box plot for 

weekly mileage from NHTS is shown in Figure 3. We see 

that the two middle quartiles of our subjects generally fall 

within the third quartile of NHTS respondents, meaning our 

subjects generally drive farther than average, although not 

excessively more. 

A further comparison with other drivers is based on a 2012 

survey of 1400 U.S. EV owners in California [6]. The survey 

 

Figure 3: Our subjects generally drove more miles per 

week than drivers from the 2009 U.S. National Household 

Travel Survey. 
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Figure 2: Processed household sensor values indicate the household electric demand, vehicle charging demand, and whether or 

not the vehicle is home. This vehicle was undergoing repairs from an accident for about nine days in the middle of the timeline. 

 



found that 91% of California owners lived in a single-family, 

detached home, and that 91% have installed a residential 

charger. Both these features were also true of all our study 

participants. 

Monitoring to Reduce Real World Deployment Issues  

Based on our own experience and that of other researchers 

[e.g. 18], we were aware that in-home sensor deployments 

invariably have challenges. We took several steps to detect 

sensor and data collection issues. First, we followed the 

online LoT study deployment instructions to make all hub 

interfaces remotely accessible and set up an email alert if any 

hub failed to send a heartbeat message for 15 minutes. We 

also extended the Sensor application deployed in each house 

with configurable monitoring per sensor and set up email 

alerts when no data was seen from the home energy sensor 

or home beacon for 30 minutes. Finally, at the end of every 

week we used the data export tool to download and plot data 

(see Figure 2) for each hub to check for anomalous values.  

Using these methods we successfully detected numerous 

problems and either visited homes or worked with household 

members remotely to try fix them. However, the time to 

schedule revisits to homes and other issues led to lost data as 

shown in the valid data column of Table 1. In EV4, remote 

monitoring revealed the distance sensor was dropping off the 

home WiFi.  Unfortunately even with visits and reinstalls we 

ultimately got only a few days of data from this home. EV5 

parked the car outside the garage invisible to the distance 

sensor for several days. In EV27, we visited the home after 

detecting anomalous readings and discovered one of the 

electric clamps had slipped. In EV25, lack of car charging 

data was due to a car accident which put the car in the repair 

shop for several days. We also asked households about low 

energy or car charging readings and found several 

households went on break during a school holiday. 

However, to make clear the realities of home deployments, 

we also want to report on two failed deployment sites not 

included in Table 1 or any analysis. In Round 1, the failed 

home (EV9) had multiple issues: a car frequently parked 

outside the garage out of range of the distance sensor and a 

low-bandwidth home WiFi connection that prevented remote 

monitoring so we could not detect sensor failures. Based on 

this home and EV5, we moved to beacons for car presence. 

In Round 2, the batteries in both beacons for EV21 failed 

three days into study. Remote monitoring alerted us to this, 

and we visited and replaced them. However, due either to 

hardware problems with the beacons or the distance the car 

was parked from the house, the car beacon data ended up 

having significant gaps that we deemed too unreliable to use 

for analysis, and we had to drop this house, despite our 

recovery efforts. 

Even though two homes had deployment problems, overall 

the existing monitoring of LoT combined with the additions 

we contributed to the platform helped us catch and respond 

to many problems or detect when home-owners’ behaviors 

had changed so we could check-in with them (about 

vacation, etc.). We hope the additional monitoring options 

we added to the platform are valuable to future researchers 

deploying studies.  

DATA ANALYSIS 

With raw data gathered as described above, we processed it 

into clean, meaningful signals to support our analysis of 

charge shifting and vehicle-to-grid. Specifically, we needed 

to know household electricity demand, vehicle charging 

electricity demand, and whether or not the vehicle was 

parked at home. 

The raw sensor data was stored in log files as tuples giving 

the sensor name, a time stamp, and a sensor measurement for 

each sensor reading. For each household, we built 

configuration files that mapped the specific sensor names to 

the actual signals we were trying to measure, such as 

household power demand and vehicle charging demand. 

These configuration files were useful for abstracting away 

the household-specific sensor names and to account for when 

a sensor was renamed or replaced during the course of the 

study. This was also how we accommodated homes with 

multiple electrical circuit breaker boxes, which led to 

multiple household power sensors that had to be summed to 

measure whole-household demand. 

After reading each sensor log and de-duplicating identical 

time stamps, the sensor data was concatenated according to 

the configuration files into four different raw time series: 

• Household electric power demand 

• Vehicle charging electric demand 

• Vehicle distance from depth sensor 

• Vehicle beacon signal strength 

 

Figure 4: This shows the computed state of the vehicle 

from Figure 2 on Saturday, 17 January 2015. The vehicle 

was waiting at home from midnight until it left at 

approximately 9 a.m. It arrived home again around 12:30 

p.m., was briefly in the “waiting” state, and then almost 

immediately plugged in for charging until about 2 p.m. 

Then the vehicle was driven away again for another two 

hours, parked at home, and charged starting around 4 

p.m. The vehicle left home shortly before 6 p.m., came 

home briefly around 10 p.m. and then left again. 

 



The household power demand values were normally stable 

and thus required no further processing. The vehicle 

charging values sometimes showed brief, unrealistically 

large spikes, so we smoothed them with a 20-minute wide 

symmetric median filter, extending 10 minutes prior and 10 

minutes after the value being smoothed. As explained above, 

we measured vehicle presence with either a depth sensor or 

a beacon. We discovered the depth sensor produced very 

noisy values, so we smoothed it with a 30-minute wide 

symmetric median filter. The four resulting time series 

supported not only our subsequent analysis, but also served 

as a convenient way to discover problems with our logging 

system (such as a sensor going off-line) or unexpected 

behavior from our study participants (such as a vacation).  

An example of these time series is shown in Figure 2. Note 

that the household power demand is always larger than the 

vehicle charger demand. This is because the household 

demand includes the charger demand. For this particular 

household (EV25), the participants’ vehicle was undergoing 

repairs from an accident that occurred on 21 January, which 

explains the approximately 9 days of vehicle absence in the 

middle of the timeline. 

After this processing, we produced a clean, interpolated 

summary log for each household with evenly sampled values 

at 1-minute intervals consisting of: 

• Household electric power demand in watts 

• Vehicle charging demand in watts 

• Vehicle state from {away from home, waiting at home (not 

charging), charging (at home), unknown} 

We considered the vehicle charging whenever the smoothed 

charging demand exceeded a manually set threshold. We 

considered the vehicle at home whenever the smoothed depth 

sensor measurement was below a manually set threshold 

(indicating the vehicle was close to the sensor) or whenever 

the vehicle’s beacon was detected. Note that we included an 

unknown state for the vehicle to account for those times 

when the depth sensor was not reporting and no charging was 

occurring. An example of the vehicle state from the first day 

of the household in Figure 2 is shown in Figure 4. In our data 

analysis algorithms as described next, we err on the side of 

caution and filter out any data with an unknown state from 

our computations of savings and cost benefits. 

   Car Charging Shifted to Cheaper Tier Car Powers Home During Expensive Tier  

ID 
Valid 

Days 

Median 

Household 

Demand 

per Day 

(kWh) 

Avg. amount 

saved per 

month ($) 

% Savings on 

monthly bill 

Avg. amount 

saved per 

month ($) 

No. of days car 

charge 

insufficient 

% Savings on 

monthly bill 

EV2 26 26.9 11.71 7.2 7.76 0 4.8 

EV3 113 15.2 13.59 4.9 1.81 0 0.6 

EV4 15 61.5 0.00 0.0 5.76 0 6.2 

EV5 21 31.2 5.52 5.1 10.11 0 9.4 

EV6 48 59.1 4.88 1.7 18.91 10 6.6 

EV7 63 55.0 6.22 2.9 22.73 3 10.5 

EV8 68 37.5 0.00 0.0 35.32 0 18.1 

EV22 42 15.7 3.01 2.0 16.59 1 10.9 

EV23 42 34.6 28.22 9.7 20.44 0 7.0 

EV24 50 26.7 15.06 7.5 10.94 0 5.5 

EV25 50 12.1 10.63 10.6 3.45 0 3.4 

EV26 49 13.0 10.60 11.8 10.72 0 11.9 

EV27 27 23.5 26.96 24.8 8.17 0 7.5 

EV28 48 45.6 19.73 6.1 24.48 0 7.6 

EV29 48 19.9 7.46 4.6 6.54 1 4.0 

Average 47.3  10.91 6.6 13.58  7.6 

Table 2: (Left) Average amount saved per month and % savings on monthly bill for shifting car charging to cheaper tier. (Right) 

Additional average amount saved per month and % savings on monthly bill for car powering home during expensive tier with a 

90% battery efficiency model. Also shown are number of days for which the car’s battery had insufficient charge to completely 

offset the home’s power demand during peak pricing tier. PG&E TOU tiered pricing assumed. 

 



CHARGE SHIFTING 

One of the optimizations to save energy costs in a TOU tiered 

pricing structure is to shift the use of energy to cheaper tiers. 

That is, instead of the car being charged as soon as the 

homeowner plugs it in, the charging is scheduled to happen 

during the cheapest tier. We analyze the savings as a result 

of such shifting by computing the energy used by the car’s 

charger per household during peak demand period for each 

24-hour period. This is accomplished by isolating the car 

charger’s power data during the expensive tier and 

computing the energy consumed. We then apply pricing 

from each tier to estimate the energy costs.  

Analyzing TOU tiered pricing for various states across the 

US, one notes that the peak demand period is often between 

1 p.m. and 8 p.m. For our analysis, we made use of the PG&E 

TOU pricing where the base price per kWh is $0.143 and 

peak demand pricing is $0.336/kWh between the hours of 1 

p.m. and 7 p.m. PG&E serves California, even though our 

subjects were all in Washington State. Because Washington 

does not offer TOU pricing to consumers, we chose PG&E 

as a nearby electric utility that does offer TOU pricing. 

For this analysis, we computed the effect of delaying the start 

of charging until 7 p.m. when the vehicle was at home in the 

evening. Table 2 (left) shows the average dollar amount 

saved per household as a result of charge shifting. Over all 

15 households, the average monthly savings is $10.91. Also 

shown are the total dollar savings during the entire duration 

of the study. In every case, the EV was available the next 

morning with a full charge. 

It is important to note that because these households are 

located in an area that currently does not have TOU charging, 

there is no current financial incentive for the households 

themselves to use features provided by car manufactures to 

delay EV charging to cheaper times during the late night. In 

fact, in our dataset only two homes, EV4 and EV8, did not 

charge their cars during peak hours. Our data shows in the 

absence of TOU pricing, most homes did not shift their 

charging away from peak periods. 

We showed earlier that our EV drivers drove more than most 

drivers in the National Household Travel Survey. Because 

more driving means more electricity use, absolute savings 

for vehicles driven less would be reduced. 

Though a straightforward optimization, simple shifting of 

charging schedule is only the first step in making use of the 

car’s battery and TOU pricing to save energy costs. Savings 

could be further maximized by offsetting the home’s power 

consumption (in essence shifting the home’s power) during 

peak demand tiers, which we examine next. 

POWERING HOUSE WITH THE CAR (V2H) 

Several constraints must be taken into account to assess the 

economics of using the EV’s battery to offset a home’s 

power demand during peak pricing times. First, the car’s 

battery should be charged during a cheaper pricing tier. In 

our dataset we observed the typical office hour’s schedule 

where the car was left charging overnight, ready to be driven 

the next morning to work.  

Use the PG&E pricing schedule as an example, the first 

constraint mandates that the car’s charging period be shifted 

out of the 6 hour expensive segment. In our analysis, we 

assume this is the case and verified that the duration of non-

peak hours provides sufficient time for all cars in our study 

to be fully recharged. This is also important for the second 

constraint: if the car’s battery is depleted as a result of 

powering the house, there should be sufficient time left in the 

non-peak segment for the car’s battery to be fully charged. 

We analyzed the dataset in segments of 24 hour periods with 

cost computation performed on a per-minute granularity. For 

each day, we estimated the residual charge of the battery that 

could power the home during the expensive tier. This 

estimation is performed at the beginning of the expensive 

tier, with the proviso that during the expensive tier the car 

cannot be charged and can only power the house. This 

estimation is performed by looking ahead in time (up until 

the start of the next day’s expensive tier time point) at all the 

car charge events. Figure 5 illustrates this process.  

The net kilowatt hours of these charge events is computed 

and subtracted from the car’s total battery capacity to 

estimate the amount of charge available to power the house. 

It should be noted that it is possible to have multiple distinct 

charge events with the car being driven in-between. 

However, by only subtracting the net energy of charge events 

from the total battery capacity, we compute a conservative 

estimate. Additionally, losses during battery charging 

(efficiency factor) are taken into account. The following 

equation summarizes how we compute the estimated battery 

charge available to power the home. 

𝐸𝐵𝐶 = 𝐵𝐴𝑇𝑇𝐶𝐴𝑃 − (𝐸𝐹𝐹𝐶𝐻𝐺 ∗  ∑ 𝐶𝐻𝐴𝑅𝐺𝐼𝑁𝐺𝐾𝑊𝐻) 

𝑤ℎ𝑒𝑟𝑒, 𝐸𝐵𝐶 = 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐶ℎ𝑎𝑟𝑔𝑒 
𝐵𝐴𝑇𝑇𝐶𝐴𝑃 = 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 
𝐸𝐹𝐹𝐶𝐻𝐺 = 𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 
𝐶𝐻𝐴𝑅𝐺𝐼𝑁𝐺𝐾𝑊𝐻 = 𝐸𝑛𝑒𝑟𝑔𝑦 (𝑘𝑊ℎ) 𝑢𝑠𝑒𝑑 𝑝𝑒𝑟 𝑐ℎ𝑎𝑟𝑔𝑒 𝑒𝑣𝑒𝑛𝑡 

 
Figure 5: Estimation of battery charge (EBC) that can be 

used to offset the home during the expensive tier is made 

at the start of the tier. EBC is computed by summing 

energy consumed by all car charging events following the 

estimation point for the day up until the start of the next 

day’s expensive tier. 



Next, the usable battery charge (UBC) is computed that takes 

into account the inverter and the battery’s chemical to 

electrical conversion inefficiencies. This is computed by 

multiplying the EBC with the discharge efficiency factor: 

𝑈𝐵𝐶 = 𝐸𝐹𝐹𝐷𝑆𝐶𝐻 ∗ 𝐸𝐵𝐶. For our analysis, it was assumed 

that the charging and usage efficiency factors were the same, 

i.e. 𝐸𝐹𝐹𝐶𝐻𝐺 =  𝐸𝐹𝐹𝐷𝑆𝐶𝐻. As described later, we run our 

analysis for a variety of efficiency factor values ranging from 

low to high. This allows us to model the economics of 

offsetting home power demand using a car battery without 

explicitly considering complex battery models to predict 

efficiency factors that depend on its chemistry, temperature, 

discharge rate, humidity etc.  

Once an estimate for the UBC is computed, we segment out 

the home’s power usage during the peak expensive tier that 

can be offset by the car for potential savings. We compute 

the total energy in kWh that the home consumes in this 

period with the condition that the car be present. In 

particular, if the car status is away or unknown, we do not 

sum the energy for those periods to the expensive tier’s home 

energy use as it cannot be offset by the car. 

Finally, we compute how much of the expensive tier energy 

can be offset by the car and the resulting price for that energy. 

It should be noted that a corrective factor that takes into 

account the battery charge-discharge inefficiencies is used to 

compute the effective price per kWh for energy used from 

battery to offset the home. That is, for every 1 kWh used 

from the battery, we use 1/( 𝐸𝐹𝐹𝐶𝐻𝐺  * 𝐸𝐹𝐹𝐷𝑆𝐶𝐻) from the 

grid. If the UBC is less than the total energy used by a home 

during the expensive tier, then a deficit results which is 

charged at the expensive tier rate. 

Table 2 shows the average savings in USD and percentage 

during peak pricing tier when an electric vehicle is used to 

offset the home’s power needs, assuming an efficiency factor 

of 0.9 for battery charge and discharge. The average savings 

per household is $13.58/month. Also noted in Table 2 are 

number of days for each house where the UBC was less than 

the total energy a home consumed during the expensive tier. 

That is, the car’s battery did not have sufficient charge to 

bring about maximum savings. Out of the 710 days in our 

dataset this occurred 15 times (2%), and primarily in one 

household EV6 (10 days). Thus 98% of the time, the EV 

battery had sufficient charge to fully power the house during 

the expensive tier.  

Break Even Point at Low Battery Efficiency 

As discussed previously, the battery and inverter efficiency 

can vary based on a large number of parameters. To better 

understand how the savings from car powering the home 

vary with battery efficiency, we ran our analysis on 

efficiency ranging from 45% to 95%. Figure 6 shows that the 

break-even point is around 65%, which is far worse than 

modern battery technology.  

This is a significant observation as it opens up making use of 

used but still functional EV batteries for home power 

management. For instance, a modern Li-Ion battery nearing 

end of life for EV use still performs at about 75-80% capacity 

and efficiency [1]. Such second-use in energy storage system 

for residential peak demand flattening has been an active 

area of research, particularly from the perspective of 

understanding a battery’s capacity fade model and making 

the most out of a second-use battery. Our results based on 

real power usage further bolsters the argument for using 

“spent” EV battery for home power. 

DISCUSSION 

Other Pricing Schemes Have Similar Savings 

Though we make use of the PG&E TOU tiered pricing plan 

for our analysis, the results extend to other tiered pricing 

plans as well. In particular, it is important to have a sufficient 

difference in the expensive tier and base tier so that battery 

inefficiencies do not matter. If this is the case, the 

homeowner will benefit by powering their home with their 

car’s battery. To validate this, we ran our analysis using 

pricing for Baltimore Gas and Electric and Wisconsin Public 

Services and found an average monthly saving across all 

households of $13.36 and $13.50 respectively for powering 

the house from the EV. 

Prediction Unnecessary With Current TOU Pricing 

When we started this research, we anticipated we would need 

to learn participants’ commute patterns and use prediction to 

ensure the shifting algorithm would start recharging in time 

to guarantee enough battery charge for the following day’s 

driving needs. However, we found for all homes in our study 

that the off-peak pricing tier lasted long enough to fully 

charge the EV battery, even when the battery was discharged 

to power the home during the most expensive pricing tier. 

Thus with current Time of Use pricing schedules, learning 

and prediction of user’s commute patterns is not needed. 

Utilities would need to shorten their off-peak pricing times 

for prediction to become relevant. 

 

Figure 6: Average monthly percentage savings during 

peak pricing tier when using the car’s battery to offset the 

home power consumption as a function of the battery 

efficiency. Notice that the cost benefit break-even point is 

around 65%, i.e., using battery of efficiency lower than 

65% would result in a monetary loss. 

 



Risk of Uncharged Battery 

There is some risk that delaying the start of charging until 

later, or using the EV’s battery for powering the house, may 

leave the EV with insufficient charge for an unusual trip. We 

see two simple solutions to this potential problem. First, 

chargers could be equipped with an override button, allowing 

an owner to easily indicate that the vehicle should be ready 

for another trip soon, ignoring the charging/discharging 

algorithms we proposed above. Offering manual override, or 

more generally the option to manually control charge 

shifting, would be valuable in future studies to investigate 

whether EV owners are comfortable with automated shifting 

or prefer manual control. A study of time of use pricing for 

mobile data found participants preferred to manually control 

their usage [39]. Our expectation is that automated shifting 

will appeal to EV drivers who currently leave their cars 

charging for long periods, but it may take time for people to 

develop trust in shifting algorithms and would be interesting 

to study. 

Another way to decrease the risk of an uncharged battery is 

to impose a rule that the EV battery can never be discharged 

below some predefined capacity (e.g. 20%) to account for an 

unanticipated trip. In our analysis using the aforementioned 

PG&E tiered pricing, we found that in general there was 

sufficient time to re-charge the car completely after being 

used to offset energy in the expensive tier. It is unlikely, but 

possible that undercharged events may happen with the 110V 

slower chargers, especially when attempting to fully charge 

a completely depleted battery. 

Scaling to Even Larger Deployments 

Using LoT we collected a dataset containing 710 days of data 

from 15 houses. To scale to hundreds or thousands of homes, 

based on our experience, the biggest challenge would be 

designing the in-home sensing infrastructure so that it could 

be installed by the home owner independently. 

Pragmatically, there is also the cost of provisioning sensing 

hardware to consider, but this is a trade-off between money 

and time: as we did in our study, a limited number of 

hardware kits can be rotated through homes to deploy in a 

larger number of sites over a longer period of time. 

Choosing sensors that can be installed by home owners 

comes with trade-offs, and we considered some of these 

approaches in our study design. For example, plug-in GPS 

trackers are available for cars, which would be a simple 

alternative to our vehicle presence sensor. But with GPS, the 

participant must agree to have their car location tracked all 

the time rather than only sharing when they are home. Also, 

we wanted real-time data in order to detect data collection 

issues as soon as possible, which requires a data service plan 

for each tracker. This increased the potential cost beyond 

what was feasible for our study. 

To sense energy use without an installation visit, we could 

have limited our participant pool to homes that have smart 

connected meters. We could have then inferred EV charging 

data from the whole house data with some loss of accuracy 

or recruited participants that charge their EV’s using 110 volt 

outlets who could self-install inline smart energy switches. 

These constraints might be an acceptable trade-off for future 

large scale studies, but for our initial study we wanted fine 

grained whole house energy use, separate sensing of car 

energy use, and EV’s charged using 240 and 110 volt outlets. 

These real-world challenges do not mean as a community we 

should give up on the goal of scaling field deployments. One 

advantage of using LoT is that we contributed our software 

driver for Bluetooth beacons back to the platform so that 

sensor can be easily used by others. As discussed in [4], 

another way to facilitate larger deployments is collaborating 

across research groups to deploy studies in pools of homes 

recruited by other research groups (and vice versa). This 

would increase the size of deployments and add geographic 

diversity while preserving a local contact for the home 

owners to help with installation or other issues. 

CONCLUSION 

As peak electricity demand becomes more acute, power 

companies are encouraging a shift in demand to off-peak 

hours. Electric vehicles offer the chance to shift when they 

are charged and to store electricity from less expensive, off-

peak hours for use during more expensive times. We 

outfitted 15 EV homes with sensors to record home 

electricity use, EV charging, and vehicle presence. We 

developed a fairly simple schedule of using the car battery to 

power the house during peak hours and charging the vehicle 

during non-peak hours, effectively reducing peak demand 

and saving money with tiered pricing.  

Using our recorded data, we showed that the batteries in EVs 

could power the homes during the expensive tier during for 

98% of the days in our dataset. Doing this would save 

homeowners money. At a 90% conversion efficiency, the 

average monthly savings from simple shifting of EV 

charging would be $10.91. The additional savings from 

powering the house from the EV would be $13.58/month. 

The conversion efficiency would have to drop to an 

unrealistically low 55% before the cost savings went to zero 

for powering the home from the EV. Powering the home 

from the EV would allow an average 7.6% savings on the 

monthly electric bill. An advantage of this approach is that 

the home would not have to pay for dedicated home batteries, 

but could use EV batteries for both transportation and home 

power, without any changes in their driving habits. 
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