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ABSTRACT

A new type of deep neural networks (DNNs) is presented
in this paper. Traditional DNNs use the multinomial logis-
tic regression (softmax activation) at the top layer for clas-
sification. The new DNN instead uses a support vector ma-
chine (SVM) at the top layer. Two training algorithms are
proposed at the frame and sequence-level to learn parameters
of SVM and DNN in the maximum-margin criteria. In the
frame-level training, the new model is shown to be related to
the multiclass SVM with DNN features; In the sequence-level
training, it is related to the structured SVM with DNN fea-
tures and HMM state transition features. Its decoding process
is similar to the DNN-HMM hybrid system but with frame-
level posterior probabilities replaced by scores from the SVM.
We term the new model deep neural support vector machine
(DNSVM). We have verified its effectiveness on the TIMIT
task for continuous speech recognition.

Index Terms— DNN, multiclass SVM, structured SVM,
maximum margin, sequence training

1. INTRODUCTION

Neural Networks and Support Vector Machines (SVMs) are
two successful approaches for supervised machine learning
and classification [1]. Neural Networks are universal models
in the sense that they can approximate any nonlinear func-
tions arbitrary well on a compact interval [2]. However, there
are two major drawbacks of neural networks. First, the train-
ing usually requires to solve a highly nonlinear optimization
problem which has many local minima. Second, they tend to
overfit given the limited data if training goes on too long [1].

Alternatively, the SVMs [3] supplied with the maximum
margin classifier idea has received extensive research atten-
tions [4–6]. The SVM has serval prominent features. First,
it has been proven that maximizing the margin is equivalent
to minimising an upper bound on the generalization error [3].
Second, the optimization problem of SVM is convex, which
is guaranteed to have a global optimal solution. The SVM
was originally proposed for binary classification. It can be
extended to handle the multiclass classification or sequence
recognition using the majority voting [7] or directly modify-

ing the optimization [8–10].1 However, SVMs are in principle
shallow architectures, whereas deep architectures with neural
networks have been shown to achieve state-of-the-art perfor-
mances in speech recognition [13–15]. Although there are
some works on deep architectures of binary SVMs [16, 17],
how to extend them for ASR is still open problem.

This paper is a first attempt (to the best of our knowledge)
on deep learning using SVM for ASR. Traditional deep neural
networks use the multinomial logistic regression (softmax ac-
tivation function) at the top layer for classification. This work
illustrates the advantage of replacing the logistic regression
with a SVM. Two training algorithms are proposed at frame
and sequence-level to learn the parameters of SVM and DNN
in maximum-margin criteria. In the frame-level training, the
new model is shown to be related to the multiclass SVM with
DNN features; In the sequence-level training, it is related to
the structured SVM with DNN features and HMM state tran-
sition features [18, 19]. In the sequence case, the parameters
of SVM, HMM state transitions and language models can be
jointly learned. Its decoding process is similar to the DNN-
HMM hybrid system but with frame-level posterior probabili-
ties replaced by scores from the SVM. We term the new model
deep neural support vector machine (DNSVM) and verify its
effectiveness on the TIMIT task for continuous speech recog-
nition.

2. DEEP NEURAL SVM

Most of the DNNs use the multinomial logistic regression,
also known as softmax active function, at the top layer for
classification. Specifically, given the observation ot at frame
t, let ht is the output vector of the top hidden layer in DNNs,
the output of DNNs for state st can be expressed as

P (st|ot) =
exp

(
wT
stht

)∑N
st=1 exp

(
wT
stht

) (1)

where wst are the weights connecting the last hidden layer to
the output state st, and N is the number of states. Note the
normalization term in equation (1) is independent of states,

1The modified SVMs for multiclass classification and sequence recogni-
tion are known as the multiclass SVMs [8] and structured SVMs [9, 11, 12],
respectively.
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thus, it can be ignored during frame classification or sequence
decoding.2 For example, in the frame classification, given an
observation ot, the corresponding state st can be inferred by

arg max
s

logP (s|ot) = arg max
s

wT
sht (2)

For multiclass SVM [8], the classification function is

arg max
s

wT
sφ(ot) (3)

where φ(ot) is the predefined feature space and ws is the
weight parameter for class/state s. If DNNs are used to de-
rive the feature space, e.g., φ(ot) , ht, decoding of multi-
class SVMs and DNNs are the same. Note that DNNs can be
trained using the frame-level cross-entropy (CE) or sequence-
level MMI/sMBR criteria [15]. In this paper, two algorithms,
at frame and sequence-level, are also proposed to estimate
the parameters of SVM (in the last layer) and to update the
parameters of DNN (in all previous layers) using maximum
margin criteria. The resulting model is named Deep Neural
SVM (DNSVM). Its architecture is illustrated in Fig. 1.

2.1. Frame-level max-magin training

Given the training observations and their corresponding state
labels, {(ot, st)}Tt=1, where st ∈ {1, . . . , N}, in frame-level
training, the parameters of DNNs are normally estimated by
minimizing the cross-entropy. In this work, let φ(ot) , ht
as the feature space derived from the DNN, the parameters
of the last layer are first estimated using the multiclass SVM
training algorithm [8],

min
ws,ξt

1

2

N∑
s=1

‖ws‖22 + C

T∑
t=1

ξ2
t (4)

s.t. for every training frame t = 1, . . . , T,

for every competing states s̄t ∈ {1, . . . , N} :

wT
stht −wT

s̄tht ≥ 1− ξt, s̄t 6= st

where ξt ≥ 0 is the slack variable which penalizes the data
points that violate the margin requirement. Note that the ob-
jective function is essentially the same as the binary SVM.
The only difference comes from the constraints, which basi-
cally says that, the score of the correct state label, wT

stht, has
to be greater than the scores of any other states, wT

s̄tht, by a
margin determined by the loss. In equation (4) the loss is a
constant 1 for any misclassification. According to [16], using
the squared slacks is slightly better than ξt, thus ξ2

t is applied
in equation (4).

Note if the correct score, wT
stht, is greater than all the

competing scores, wT
s̄tht, it must be greater than the “most”

competing score, max
s̄t 6=st

wT
s̄tht. Thus, substituting the slack

2Thoeritically, the softmax normalization can be ignored without affect-
ing the performance, but it may affect the pruning.
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Fig. 1. The architecture of Deep Neural SVMs. The double-
headed arrows illustrate the scope of parameters for DNNs,
Multiclass SVMs and Structured SVMs. For sequence-level
max-margin training, the solid blue arrows (in the trellis) rep-
resent the reference state sequence, and the dash green arrows
represent the most competing state sequence.

variable ξt from the constraints into the objective function,
equation (4) can be reformulated as the minimization of

FfMM(w) =
1

2
‖w‖22 + C

T∑
t=1

[
1−wT

stht + max
s̄t 6=st

wT
s̄tht

]2

+

(5)
where w = [wT

1 , . . . ,w
T
N ]T are the parameter vectors for

each state and [·]+ is the hinge function [20]. Note the max-
imum of a set of linear functions is convex, thus equation (5)
is convex with respect to w.

Given the multiclass SVM parameters w, the parameters
of the previous layer w[l], can be updated by back propagating
the gradients from the top layer multiclass SVM,

∂FfMM

∂w
[l]
i

=

T∑
t=1

(
∂FfMM

∂ht

T ∂ht

∂w
[l]
i

)
. (6)

Note ∂ht/∂w
[l]
i is the same as standard DNNs. The key is

to compute the derivative of FfMM w.r.t. the activations, ht.
However, equation (5) is not differentiable because of the
hinge function and max(·). To handle this, the subgradient
method [21] is applied. Given the current multiclass SVM
parameters (in the last layer) for each state, ws, and the most
competing state label s̄t = arg maxs̄t w

T
s̄tht, the subgradient

of objective function (5) can be expressed as

∂FfMM

∂ht
= 2C

[
1 + wT

s̄tht −wT
stht

]
+

(ws̄t −wst) (7)

After this point, the backpropagation algorithm is exactly the
same as the standard DNNs. Note that, after training of mul-
ticlass SVMs, most of training frames can be classified cor-
rectly and beyond the margin. This means, for those frames,
wT
stht > wT

s̄tht+1. Thus, only the rest few training samples
(support vectors) have non-zeros sugradients.
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2.2. Sequence-level max-margin training

In the max-margin sequence training, for simplicity, first con-
sider one training utterance (O, S), where O = {o1, . . . ,oT }
is the observation sequence and S = {s1, . . . , sT } is the cor-
responding reference states. The parameters of the model can
be estimated by maximising

min
S 6=S

{
log

P (S|O)

P (S|O)

}
= min
S 6=S

{
log

p(O|S)P (S)

p(O|S)P (S)

}
Here the margin is defined as the minimum distance between
the reference state sequence S and competing state sequence
S in the log posterior domain as illustrated in the Fig. 2. Note
that, unlike MMI/sMBR sequence training, the normalization
term

∑
S p(O, S) in posterior probability is cancelled out, as

it appears in both numerator and denominator. For clarity, the
language model probability is not shown here. To generalize
the above objective function, a loss function L(S, S) is intro-
duced to control the size of the margin, a hinge function [·]+
is applied to ignore the data that beyond the margin, and a
prior P (w) is incorporated to further reduce the generaliza-
tion error. Thus the criterion becomes minimizing

− logP (w) +

[
max
S 6=S

{
L(S, S)− log

p(O|S)P (S)

p(O|S)P (S)

}]2

+

(8)

For DNSVM, the log (p(O|S)P (S)) can be computed via

T∑
t=1

(
wT
stht − logP (st) + logP (st|st−1)

)
= wTφ(O, S) (9)

where φ(O, S) is the joint feature [22], which characterizes
the dependencies between O and S,

φ(O, S) =

T∑
t=1


δ(st = 1)ht

...
δ(st = N)ht

logP (st)
logP (st|st−1)

 ,w =


w1

...
wN

−1
+1

 (10)

where δ(·) is the the Kronecker delta (indicator) function.3

Here the prior, P (w), is assumed to be a Gaussian with a
zero mean and a scaled identity covariance matrix CI, thus
logP (w) = logN (0, CI) ∝ − 1

2Cw
Tw. Substituting the

prior and equation (9) into criterion (8), the parameters of
DNSVM (in the last layer) can be estimated by minimizing

FsMM(w) =
1

2
‖w‖22 + C

U∑
u=1

[ linear︷ ︸︸ ︷
−wTφ(Ou, Su) (11)

+ max
S̄u 6=Su

{
L(Su, Su) + wTφ(Ou, Su)

}
︸ ︷︷ ︸

convex

]2

+

3For clarity, constant weights “-1” and “+1” are shown in (10). In practice
the weirghts for state priors and transition probabilities are also learned.
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φ
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)

Fig. 2. The margin is defined in the log-postieria domain
between reference state sequence S and the most competing
state sequence S.

where u = 1, . . . , U is the index of training utterances. Like
the FfMM, FsMM is also convex for w. Interestingly, objective
function (11) for DNSVM is the same as the training criterion
for structured SVMs [9] with the features defined in (10).

To solve equation (11), the cutting plane algorithm [11]
can be applied. It requires to search the most competing state
sequence Su efficiently. If the state-level loss is applied, the
search problem, maxS̄u

{·}, can be solved using the Viterbi
decoding algorithm (see section 2.3). The computational load
during training is dominated by this search process. To speed
up the training, denominator lattices with state alignments
are used to constraint the search space. Then a lattice-based
forward-backward search [12, 19] is applied to find the most
competing state sequence Su .

Similar to the frame-level case, the parameters of previous
layers can also be updated by back propagating the gradients
from the top layer. The key is to calculate the subgradient of
FsMM w.r.t. ht for utterance u and frame t,

∂FsMM

∂ht
= 2C

[
L+ wTφ̄−wTφ

]
+

(ws̄t −wst) (12)

where L is the loss for between the reference Su and its most
competing state sequence S̄u, and φ̄ is short for φ(Ou, Su).
After this point, the backpropagation algorithm is exactly the
same as the standard DNNs. According to [23], fine tuning
the previous layers in MMI training does not have gain. The
equation (12) is not implemented in this work. It was dis-
cussed for theoretical interests.

2.3. Inference

The decoding process is similar to the standard DNN-HMM
hybrid system but with posterior probabilities, logP (st|ot),
replaced by the scores from DNSVM, wT

stht. If the sequence
training is applied, the state priors, state transition probabili-
ties (in log domain) and language model scores are also scaled
by the weights that learned from equation (11). Note that de-
coding the most likely state sequence S is essentially the same
as inferring the most competing state sequence Su in equation
(11), except for the loss L(Su, Su). They can be solved using
the same Viterbi algorithm (see Fig. 1).
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2.4. Practical Issues

An efficient implementation of the algorithm is important for
speech recognition. In this section several design options for
DNSVM training (at frame and sequence-level) are described
that have a substantial influence on computational efficiency.
Form of Prior. Previously a zero-mean Gaussian prior is used
in (11). However, a proper mean of prior for DNSVM should
be the parameters of DNN, logP (w) = logN (wDNN, CI).
Thus the term 1

2‖w‖22 in (5) and (11) becomes 1
2‖w−wDNN‖22.

Since a better mean is applied, a smaller variation C can be
used to reduce the training iterations [19].
Caching. To avoid the computation cost by repeatedly
searching the same s̄t and Su in (5) and (11) during train-
ing iterations, the 5 most recently used s̄t and Su for each
training sample are cached. This reduces the number of calls
to search in the full decoding space or lattices.
Parallelization. The computational load during training is
dominated by finding the best competing state sequence Su
for each utterance. One could make use of up to U parallel
threads, each searching the Su for a subset of training data. A
central server can be used to collect Su from each thread and
then update the parameters.

3. EXPERIMENTS

The TIMIT phone recognition task [24] was used to evaluate
the effectiveness of the deep neural SVM proposed in Section
2. The training set of the TIMIT corpus contains 462 speakers
and 3696 utterances. A separate dev set (400 utterances) was
used for tuning the hyper parameters, e.g. the penalty factor
C in equations (5) and (11). Results are reported using the
core test set (192 utterances). Fourier transform based log
filterbank with 40 coefficients and log energy (distributed on a
Mel scale) along with deltas and double deltas were extracted
to form 123-dimensional observations.

To be consistent with previous works [25], 183 target class
labels were used with 3 states for each of 61 phones. After
decoding, the original 61 context-independent phones were
mapped to a set of 39 phones for final scoring according to
the standard evaluation protocol. A bi-gram language model
over phones, estimated from the training set, was used in de-
coding and sequence training. To prepare the DNN training,
a triphone based GMM-HMM system was built to produce

GMM DNN DNSVM
monophone triphone CE frame MM seq. MM

31.02% 26.23% 22.87% 21.95% 21.04%

Table 1. The results (in phone error rate) for GMM-HMM,
DNN-HMM and DNSVM-HMM systems trained using max-
imum likelihood, cross-entropy (CE) and max-margin (MM)
criteria, respectively. All the systems use the same labels rep-
resenting 61 monophones with 3 states per phone.

DNN Features ht
DNSVM (frame-level)

last layer only + previous layers
183 posterior features 22.03% 21.95%

2000 top hidden features 21.90% 21.90%

Table 2. The results (in phone error rate) of DNSVMs using
frame-level max-margin training.

DNN Features ht
DNSVM (sequence-level)

acoustic only joint learn with LM
183 posterior features 21.38% 21.04%

Table 3. The performance of DNSVM using sequence-level
max-margin training without updating previous layers.

state-level labels using Viterbi alignment. The DNN had three
layers of 2000 hidden units each, 15-frame context input, and
was trained using the CE criterion. The baseline results of
GMM and DNN-HMM are shown in Table 1. They are com-
parable with results produced by state-of-the-art open-source
tools, e.g., CNTK [26].

For DNSVM, in the frame-level training, the scaled 0/1
loss was used in equation (4) instead of “1”. The scalar was
tuned using the dev set. In the sequence training, the state
loss [15] was applied in equation (11). Although top hidden
layer features ht were used to derive the DNSVM in section
2, any other forms of DNN features, e.g., posterior features,
could also be applied in equations (4) and (11). These features
are examined in Table 2. Using top hidden layer features was
slightly better, however it required much more memory dur-
ing training. In the frame-level case, DNSVMs improve over
DNNs by 4% relatively. In the sequence case, the weights
for each state prior, transition probability and bigram prob-
ability can be jointly learned with acoustic parameters (see
section 2.2). The results are shown in Table 3. Comparing to
the DNN baseline in Table 1, the proposed DNSVM provided
8% relative error rate reduction.

4. CONCULUTION AND FUTURE WORK

We have presented a new type of DNN. Traditional DNNs use
the softmax at the top layer for classification. The new DNN
instead uses a SVM at the top layer. We have derived train-
ing algorithms at the frame and sequence-level to jointly learn
parameters of SVM and DNN in the maximum-margin crite-
ria. In the frame-level training, the new model is shown to be
related to the multiclass SVM with DNN features; In the se-
quence training, it is related to the structured SVM with DNN
features and state transition features. The proposed model,
named DNSVM, yields 8% relative error rate reduction over
DNNs (CE trained) on TIMIT task. Future works will ex-
amine the DNSVM on top of sequence trained DNNs [15]
on large vocabulary tasks. In this work only the last layer
of DNNs is replaced by linear SVMs, future work will also
investigate non-linear kernels and “DNN-free” deep SVMs.
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