
A 2D Nearest-Neighbor Quantum Architecture for Factoring

Paul Pham
University of Washington
Quantum Theory Group

Box 352350, Seattle, WA 98195, USA,
ppham@cs.washington.edu,

http://www.cs.washington.edu/homes/ppham/

Krysta M. Svore
Microsoft Research

Quantum Architectures and Computation Group
One Microsoft Way, Redmond, WA 98052, USA

ksvore@microsoft.com,
http://research.microsoft.com/en-us/people/ksvore/

July 31, 2012

Abstract

We present a 2D nearest-neighbor quantum archi-
tecture for Shor’s factoring algorithm in polyloga-
rithmic depth. Our implementation uses parallel
phase estimation, constant-depth fanout and tele-
portation, and constant-depth carry-save modular
addition. We derive asymptotic bounds on the cir-
cuit depth and width of our architecture and pro-
vide a comparison to all previous nearest-neighbor
factoring implementations.

Keywords: quantum architecture, prime factor-
ization, Shor’s algorithm, nearest-neighbor, carry-
save addition

1 Introduction

Shor’s factoring algorithm is a central result in
quantum computing, with an exponential speed-up
over the best-known classical algorithm [16]. As
the most notable example of a quantum-classical

complexity separation, much effort has been de-
voted to implementations of factoring on a real-
istic architectural model of a quantum computer
[2, 11, 20, 21, 22]. We can bridge the gap between
the theoretical algorithm and a physical implemen-
tation by describing the layout and interactions of
qubits at an intermediate, architectural level of ab-
straction. This gives us a model for measuring cir-
cuit resources and their tradeoffs. In this work, we
present a novel quantum architecture for prime in-
teger factorization in two dimensions that allows
concurrent (parallel) two-qubit operations between
neighboring qubits.

Our paper is organized as follows. Section 2 in-
troduces quantum architectural models, circuit re-
sources, and constant-depth communication tech-
niques due to [9, 15]. Section 3 places this work
in the context of existing results. In Section 4, we
provide a self-contained pedagogical review of the
carry-save technique and encoding. In Section 5 we
extend the carry-save technique to a 2D modular

1

ar
X

iv
:1

20
7.

66
55

v1
 [

qu
an

t-
ph

]
 2

7
Ju

l 2
01

2

mailto:ppham@cs.washington.edu
http://www.cs.washington.edu/homes/ppham/
mailto:ksvore@microsoft.com
http://research.microsoft.com/en-us/people/ksvore/

adder, which we then use as a basis for a modular
multiplier (Section 6) and a modular exponentiator
(Section 7). Finally, we analyze the asymptotic cir-
cuit resources required by our approach and com-
pare them to previous implementations in the re-
lated work.

2 Background

Quantum architecture is concerned with the phys-
ical layout of qubits and constraints on their inter-
actions, as well as the efficient execution, in time,
space, and other resources, of algorithms on a given
architecture. In this paper, we focus on design-
ing a realistic nearest-neighbor circuit for running
Shor’s factoring algorithm on architectural models
of a physical quantum device.

2.1 Architectural Models and
Circuit Resources

Following Van Meter [21], we distinguish between
a model and an architectural implementation as fol-
lows. A model is a set of constraints and rules for the
placement and interaction of qubits. An architecture,
or implementation, is a particular spatial layout of
qubits (as a graph of vertices) and their constrained
interactions (edges between the vertices), following
the constraints of a given model.

The most general model is called Abstract Con-
current (AC) and allows arbitrary, long-range in-
teractions between any qubits and concurrent op-
eration of quantum gates. This corresponds to a
complete graph with an edge between every pair of
nodes, which is the model assumed in most quan-
tum algorithms.

A more specialized model restricts interactions
to nearest-neighbor, two-qubit, concurrent gates
(NTC) in a regular one-dimensional chain (1D
NTC), which is sometimes called linear nearest-
neighbor (LNN). This corresponds to a line graph.

To relieve movement congestion, we can extend
to a two-dimensional regular grid (2D NTC), where
each qubit has four neighbors and there is an ex-
tra degree of freedom in which to move data. In

this paper, we extend the 2D NTC model in two
ways. The first extension allows arbitrary planar
graphs with bounded degree, rather than a regu-
lar square lattice. Namely, we assume qubits lie
in a plane and edges are not allowed to intersect,
so that theoretically all qubits are accessible from
above or below by control and measurement ap-
paratus. Whereas 2D NTC conventionally assumes
each qubit has four neighbors, we consider up to six
neighbors in a roughly hexagonal layout. The sec-
ond extension we make is the realistic assumption
that classical control can access every qubit in paral-
lel, and we do not count these classical resources in
our implementation. We call these augmented mod-
els CCAC and CCNTC following [15]. The classi-
cal controller corresponds to fast digital computers
which are available in actual experiments and are
necessary for constant-depth communication in the
next section.

We measure the efficiency of a circuit on a par-
ticular architecture in terms of three resources: cir-
cuit size (number of non-identity gates), circuit depth
(number of time-steps), and circuit width (number
of qubits). For circuit depth, a two-qubit gate takes
one time-step and absorbs any adjacent single-qubit
gates. Multiple two-qubit gates on disjoint qubits
can occur in parallel during the same timestep.

2.2 Constant-depth Teleportation
and Fanout

Two key problems in nearest-neighbor architec-
tures deal with communication, namely moving
and copying quantum information. How can we
transport quantum information at one site to an-
other over arbitrarily long distances? To solve this
problem, we employ the constant-depth teleporta-
tion circuit shown in part (a) of Figure 1, using stan-
dard quantum circuit notation from [12].

The second problem is copying information. Al-
though general cloning is impossible [12], we only
need to perform unbounded quantum fanout, the
operation |x, y1, . . . , yn〉 → |x, y1 ⊕ x, . . . , yn ⊕ x〉.
This is used in our arithmetic circuits when a sin-
gle qubit needs to control (be entangled with) a

2

|ψ〉
Bell

j1

|0〉 H • k1

|0〉 Xk1 Zj1 |ψ〉

Bell
j2

|0〉 H • k2

|0〉 Xk2 Zj2 Xk1 Zj1 |ψ〉

Bell
j3

|0〉 H • k3

|0〉 Xk3 Zj3 Xk2 Zj2 Xk1 Zj1 |ψ〉

|ψ〉 • |`〉
|0〉

Bell
j1

|0〉 H • k1

|0〉 • Xk1 Zj1 |`〉
|0〉

Bell
j2

|0〉 H • k2

|0〉 • Xk2 Zj2 |`〉
|0〉

Bell
j3

|0〉 H • k3

|0〉 • Xk3 Zj3 |`〉
|0〉 Xk3 Zj3 |`〉

(a) (b)

Figure 1: Constant-depth circuits based on [3, 4] for (a) teleportation [15] and (b) fanout [9].

large quantum register (called a fanout rail). We em-
ploy a constant-depth circuit due to insight from
measurement-based quantum computing [14] that
relies on the creation of an n-qubit cat state [4]. It re-
quires O(1)-depth, O(n)-size, and O(n)-width, and
is shown in part (b) of Figure 1 for the case of fan-
ning out |ψ〉 to four qubits. The technique works by
creating multiple small cat states of a fixed size (in
this case, three qubits) and linking them together
with Bell measurements. The qubits marked |`〉
are entangled into a (slightly) larger cat state, up
to Pauli corrections.

1√
2

Xk1
1 Zj1

1 Xk2
2 Zj2

2 Xk3
3 Xk3

4 Zj3
3 Zj3

4 (|0000〉+ |1111〉)
(1)

The operators Xk
i and Zj

` denote Pauli X and Z oper-
ators on qubits i and `, controlled by classical bits k
and j, respectively. These corrections are enacted by
the classical controller based on the Bell measure-
ment outcomes (not depicted). Unfortunately, this
“consumes” the cat state in that there is no known
way to unentangle the source qubit from the cat

state after they have been jointly measured [15].

3 Related Work

We extend the body of work which applies classi-
cal ideas to quantum logic. Gossett [8] uses carry-
save techniques to add numbers in constant-depth
and multiply in logarithmic-depth using a special
encoding, but at a quadratic cost in qubits (circuit
width). The underlying idea of encoded adding,
sometimes called a 3-2 adder, derives from Wallace
trees [24].

Choi and Van Meter are the first to discuss 2D
architectures by designing an adder that runs in
Θ(
√

n)-depth on 2D NTC [5] using O(n)-qubits
with dedicated, special-purpose areas of a physical
circuit layout.

Takahashi and Kunihiro have also discovered a
linear-depth and linear-size adder using zero an-
cillae [17], and also an adder with variable trade-
offs between O(n/d(n)) ancillae and O(d(n))-depth
for d(n) = Ω(log n) [19] which has better width

3

but worse depth than our adder. This approach
assumes unbounded fanout, which has not been
mapped to a nearest-neighbor circuit until the cur-
rent work.

Once an adder implementation is chosen, it can
be extended to perform modular reduction, modu-
lar multiplication, modular exponentiation, and ul-
timately quantum period finding (QPF), the only
quantum part of the factoring algorithm. Since
Shor’s algorithm is a probabilistic algorithm, re-
quiring several rounds of QPF to amplify success
probability, it suffices to determine the resources re-
quired for a single round of QPF with a fixed, mod-
est success probability. The original approach to
QPF performs controlled modular exponentiation
followed by an inverse quantum Fourier transform
(QFT) [12]. We will call this serial QPF.

This is the approach taken by all other factoring
(QPF) implementations on any architectural model
before the current work. For example, Beauregard
[2] uses this QPF approach to construct a cubic-
depth quantum period-finder using only 2n + 3
qubits on AC, by combining the ideas of Draper’s
transform adder [6], Vedral et al.’s modular arith-
metic blocks [23], and a semi-classical QFT. This ap-
proach was subsequently adapted to 1D NTC by
Fowler, Devitt, and Hollenberg [7] to achieve ex-
act resource counts for an O(n3)-depth quantum
period-finder. Kutin [11] later improved this using
an idea from Zalka for approximate multipliers to
get a QPF circuit on 1D NTC in O(n2)-depth. Thus,
there is only a constant overhead from Zalka’s own
factoring implementation on AC, also in quadratic
depth [25]. Takahashi and Tani extend their earlier
O(n)-depth adder to a factoring circuit in O(n3)-
depth but with linear width.

All these works assume qubits are expensive
(width) and that execution time (depth) is not the
limiting constraint. We compare our work primar-
ily against Kutin’s method, and we make the alter-
native assumption that ancillae are cheap and that
fast classical control is available which can access
all qubits in parallel. Therefore, we optimize circuit
depth at the expense of width.

Serial QPF is depth-limited by having to the per-
form an inverse QFT. On an AC architecture, even

when approximating the (inverse) QFT by truncat-
ing two-qubit π/2k rotations beyond k = O(log n),
the depth is O(n log n) for factoring n-bit numbers.
There is an alternative, parallel version of phase es-
timation described in Section 13 of [1], which de-
creases depth in exchange for increased width and
additional classical post-processing. This eliminates
the need to do an inverse QFT. We refer the reader
to [1] and [13] for details. Our factoring scheme em-
ploys our 2D quantum arithmetic circuits and this
parallel QPF, and we will show that it is asymptoti-
cally more efficient than the other QPF method. We
compare the circuit resources required by our work
with the serial QPF implementations above in Table
1 of Section 8.

Recent results by Browne, Kashefi, and Perdrix
(BKP) connect the power of measurement-based
quantum computing to the quantum circuit model
augmented with unbounded fanout [4]. Their
model, which we adapt and call CCNTC, uses the
classical controller mentioned in 2.2. They describe
a constant-depth circuit for exact factoring, improv-
ing on a constant-depth circuit for approximate fac-
toring by Høyer and Špalek [10]. A direction for
future work is to determine how our approach com-
pares to the BKP result in terms of circuit size and
width.

4 The Constant-Depth
Carry-Save Technique

Our 2D factoring approach rests on the central tech-
nique of the constant-depth carry-save adder (CSA)
[8], which converts the sum of three numbers a,
b, and c, to the sum of two numbers u and v:
a + b + c = u + v. To explain this technique and
how it achieves constant depth, we need the follow-
ing definitions.

A conventional number x can be represented in n
bits as x = ∑n−1

i=0 2ixi, where xi ∈ {0, 1} denotes
the ith bit of x, which we call an i-bit.1 Equiva-
lently, x can be represented as a (non-unique) sum

1It will be clear from the context whether we mean an i-bit,
which has significance 2i , or an i-bit number.

4

of two smaller conventional numbers, u and v. We
say (u + v) is a carry-save encoded, or CSE, number.
The CSE representation itself consists of 2n− 2 in-
dividual bits where v0 is always 0 by convention.

At the level of bits, a CSA converts the sum of
three i-bits into the sum of an i-bit (the sum bit) and
an (i + 1)-bit (the carry bit): ai + bi + ci = ui + vi+1.
By convention, the bit ui is the parity of the input
bits (ui = ai⊕ bi⊕ ci) and the bit vi+1 is the majority
of {ai, bi, ci}. See Figure 2 for a concrete example,
where (u + v) has 2n− 2 = 8 bits, not counting v0.

It will also be useful to refer to a subset of the
bits in a conventional number using subscripts to
indicate a range of indices.

x(j,k) ≡
k

∑
i=j

2ixi x(i) ≡ x(i,i) = 2ixi (2)

Using this notation, the following identity holds.

x(j,k) = x(j,`) + x(`+1,k) for all j ≤ ` < k (3)

We can express the relationship between the bits of
x and (u + v) as follows.

x = x(0,n−1) ≡ u + v = u(0,n−2) + v(1,n−1) (4)

Finally, we will denote taking the modular residue
of a number as follows: x(j,k)[m] ≡ x(j,k) mod m.

Using a Toffoli gate decomposition (see p. 182

[12]), two control qubits and a single target qubit
must be mutually connected to each other. Given
this constraint, and the interaction of the CNOTs
in Figure 3, we can rearrange these qubits on a 2D
planar grid and obtain the layout shown in Figure
4, which satisfies our 2D NTC model. Note that
this uses more gates and one more ancilla than the
equivalent quantum full adder circuit in Figure 5 of
[8], but this is necessary to meet our architectural
constraints and does not change the asymptotic re-
sults. Also in Figure 4 is a variation called a 2-2
adder, which simply re-encodes two i-bits into an
i-bit and an (i + 1)-bit, which will be useful in the
next section.

At the level of numbers, the sum of three n-
bit numbers can be converted into the sum of
two n-bit numbers by applying a CSA layer of n
parallel, single-bit CSA’s. Since each CSA oper-
ates in constant depth, the entire layer also oper-
ates in constant-depth, and we have achieved (non-
modular) addition.

An important consideration here is the circuit
width. The circuit above operates out-of-place and
produces two garbage qubits, the original inputs bi
and ci. A single addition of three n-bit numbers
requires a O(n) circuit width.

5 Quantum Modular Addition

To perform addition of two numbers a and b mod-
ulo m, we consider the variant problem of modular
addition of three numbers to two numbers: Given
three n-bit input numbers a, b, and c and an n-
bit modulus m, compute the following: (u + v) =
(a + b + c)[m], where (u + v) is a CSE number.

In this section, we provide an alternative, peda-
gogical explanation of Gossett’s modular reduction
[8]. Later, we contribute a mapping to a 2D architec-
ture, using unbounded fanout to maintain constant-
depth for adding back modular residues. This last
step is missing in Gossett’s original approach.

To start, we will demonstrate the basic method
of modular addition and reduction on an n-bit con-
ventional number. In general, adding two n-bit con-
ventional numbers will produce an overflow n-bit,
which we can truncate as long as we add back its
modular residue 2n mod m. How can we guaran-

ai bi bici ci

ui uivi+1 vi+1

Figure 4: The carry-save adder (CSA), or 3-2 adder,
and carry-save 2-2 adder.

5

x = 30 = u + v = 8 + 22 =

u3 u2 u1 u0

v4 v3 v2 v1
x4 x3 x2 x1 x0

 =

1 0 0 0

1 0 1 1
1 1 1 1 0

Figure 2: An example of carry-save encoding for the 5-bit conventional number 30.

|0〉 |ai∧(bi⊕ci)〉 |(bi∧ci)⊕ai∧(bi⊕ci)〉 × |ui〉
|ai〉 • |ai⊕bi⊕ci〉 × × |0〉
|bi〉 • |bi⊕ci〉 • • • |bi〉
|ci〉 • • • • |ci〉
|0〉 |bi∧ci〉 • × |vi+1〉

Figure 3: Carry-save adder circuit for a single bit position i: ai + bi + ci = ui + vi+1.

tee that we won’t generate another overflow bit by
adding back the modular residue? It turns out we
can accomplish this by allowing a slightly larger
input and output number (n + 1 bits in this case),
truncating multiple overflow bits, and adding back
their modular residues.

For an (n + 1)-bit conventional number x, we
truncate its high-order bits xn and xn−1 and add
back their modular residue, x(n−1,n)[m].

x mod m = x(0,n)[m]

= x(0,n−2) + x(n−1,n)[m] (5)

Since both the truncated number x(0,n−2) and the
modular residue are n-bit numbers, their sum is an
(n + 1)-bit number as desired, equivalent to x[m].

Now we must do the same modular reduc-
tion on a CSE number (u + v), which represents
an (n + 1)-bit conventional number and has 2n
bits. First, we truncate the three high-order bits
(vn, un−1, vn−1) of (u + v), yielding an n-bit con-
ventional number with a CSE representation of
2n − 3 bits: {u0, u1, . . . , un−2} ∪ {v1, v2, . . . , vn−2}.
Then we add back the three modular residues
(v(n)[m], u(n−1)[m], v(n−1)[m]), and we are guaran-
teed not to get more overflow bits (of significance

2n−1 or higher). This equivalence is shown in Equa-
tion 6.

(u + v)[m] =
(

u(0,n−1) + v(1,n)

)
[m]

= u(0,n−2) + v(1,n−2) +

u(n−1)[m] + v(n−1)[m] +

v(n)[m] (6)

Lemma 1 (Modular Reduction in Constant Depth
[8]). The modular addition of three n-bit numbers to two
n-bit numbers can be accomplished in constant depth.

Proof. Our goal is to show how to perform modular
addition while keeping our numbers of a fixed size
by treating overflow bits correctly. First, we enlarge
our registers to allow the addition of (n + 2)-bit
numbers, while keeping our modulus of size n bits.
(In Gossett’s original approach, he takes the equiv-
alent step of restricting the modulus to be of size
(n− 2) bits.) We accomplish the modular addition
by first performing a layer of non-modular addition,
truncating the three high-order overflow bits, and
then adding back modular residues controlled on
these bits in three successive layers, where we are
guaranteed that no additional overflow bits are gen-

6

erated. This is illustrated for a 3-bit modulus, and
5-bit registers, in Figure 5.

We use the following notation. The non-modular
sum of the first layer is u and v. The CSE output
of the first modular reduction layer is u′ and v′,
and the modular residue is written as cvn+1 to mean
the precomputed value 2n+1 mod m controlled on
vn+1. The CSE output of the second modular re-
duction layer is u′′ and v′′, and the modular residue
is written as cun+1 to mean the precomputed value
2n+1 mod m controlled on un+1. The CSE output of
the third and final modular reduction layer is u′′′

and v′′′, and the modular residue is written as cvn+2

to mean the precomputed value 2n+2 mod m con-
trolled on vn+2.

We show that at no layer is an overflow (n + 2)-
bit generated, namely in the v component of any
CSE output. (The u component will never exceed
the size of the input numbers.) First, we know that
no v′n+2 bit is generated after the first modular re-
duction layer, because we have truncated away all
(n + 1)-bits. Second, we know that no v′′n+2 bit is
generated because we only have one (n + 1)-bit to
add, v′n+1. Finally, we need to show a sufficient con-
dition for no v′′′n+2 bit being generated in the third
modular reduction layer. This bit is the majority
of u′′n+1, v′′n+1, and cvn+2

n+1 = 0. This means we only
have to guarantee that at most one of u′′n+1 and v′′n+1
has value 1. This is equivalent to requiring that
u′′(n,n+1) + v′′(n+1) ≤ 3 · 2n+1, that is, the sum of these
three bits has value at most 3. Bit u′′n+1 is copied
directly from v′n+1 by the rules of CSA, which im-
plies the following condition for the second mod-
ular reduction layer: u′(n) + v′(n,n+1) ≤ 3 · 2n. This
is true because u′(n) + v′(n+1) = u(n) + v(n) ≤ 2 and
v′(n) ≤ 1. Everywhere we use the fact that the mod-
ular residues are restricted to n bits. Therefore,
the modular sum is computed as the sum of two
(n + 2)-bit numbers with no overflows in constant-
depth.

As a side note, we can perform modular reduc-
tion in one layer instead of three by decoding the

three overflow bits into one of seven different mod-
ular residues. This can also be done in constant
depth, and in this case we only need to enlarge all
our registers to (n + 1) bits instead of (n + 2) as in
the proof above. However, we omit this proof here
for simplicity.

To summarize, the circuit resources for modular
addition are O(1) depth and O(n) width.

5.1 A Concrete Example of
Modular Addition

A 2D circuit for modular addition of 5-bit num-
bers using four layers of parallel CSA’s is shown
graphically in Figure 6 which corresponds directly
to the schematic proof in Figure 5. Figure 6 also
represents the approximate physical layout of the
qubits as they would look if this circuit were to be
fabricated. Here, we convert the sum of three 5-
bit integers into the modular sum of two 5-bit inte-
gers, with a 3-bit modulus m. In the first layer, we
perform 4 CSA’s in parallel on the input numbers
(a, b, c) and produce the output numbers (u, v).

As described above, we truncate the three high-
order bits during the initial CSA round (bits
u4, v4, v5) to retain a 4-bit number. Each of these bits
serves as a control for adding its modular residue
to a running total. We can classically precompute
24[m] for the two additions controlled on u4 and v4
and 25[m] for the addition controlled on v5.

In layer 2, we use a constant-depth fanout rail (see
Figure 1) to distribute the control bit v4 to its modu-
lar residue, which we denote as |cv4〉 ≡

∣∣24[m] · v4
〉
.

cv4 has n bits, which we add to the CSE results of
layer 1. The results ui and vi+1 are teleported into
layer 3. The exception is v′4 which is teleported into
layer 4, since there are no other 4-bits to which it
can be added. Wherever there are only two bits of
the same significance, we use the 2-2 adder from 4.

Layer 3 operates similarly to layer 2, except that
the modular residue is controlled on u4: |cu4〉 ≡∣∣24[m] · u4

〉
. cu4 has 3 bits, which we add to the CSE

results of layer 2, where u′i and v′i+1 are teleported
forward into layer 4.

7

a4 a3 a2 a1 a0 5-bit input number a

b4 b3 b2 b1 b0 5-bit input number b

c4 c3 c2 c1 c0 5-bit input number c

u4 u3 u2 u1 u0 truncate u4

v5 v4 v3 v2 v1 truncate v4, v5

cv4
2 cv4

1 cv4
0 add back 24 mod m controlled on v4

u′3 u′2 u′1 u′0
v′4 v′3 v′2 v′1

cu4
2 cu4

1 cu4
0 add back 24 mod m controlled on u4

u′′4 u′′3 u′′2 u′′1 u′′0 the bit u′′4 is the same as v′4
v′′4 v′′3 v′′2 v′′1

cv5
2 cv5

1 cv5
0 add back 25 mod m controlled on v5

u′′′4 u′′′3 u′′′2 u′′′1 u′′′0 Final CSE output with 5 bits

v′′′4 v′′′3 v′′′2 v′′′1 Final CSE output with 5 bits

Figure 5: A schematic proof of Gossett’s constant-depth modular reduction for n = 3

Layer 4 is similar to layers 2 and 3, with the mod-
ular residue controlled on v5: |cv5〉 ≡

∣∣25[m] · v5
〉
.

cv5 has 3 bits, which we add to the CSE results of
layer 3. There is no overflow bit v′′′5 , and no carry
bit from v′′4 and v′4 as argued in Lemma 1. The final
modular sum (a + b + c)[m] is u′′′ + v′′′.

6 Quantum Modular
Multiplication

We can build upon our carry-save adder to imple-
ment quantum modular multiplication in logarith-
mic depth. We start with a completely classical
problem to illustrate the principle of multiplication
by repeated addition. Then we consider modular
multiplication of two quantum numbers in a serial
and a parallel fashion in 6.1. Both of these problems
use as a subroutine the generic problem of modular
multiple addition which we define and solve in 6.2.

First we consider a completely classical problem:
given three n-bit classical numbers a, b, and m, com-
pute c = ab mod m, where c is allowed to be in CSE.

We only have to add shifted multiples of a to it-
self, “controlled” on the bits of b. There are n shifted
multiples of a, let’s call them z(i), one for every bit
of b: z(i) = 2iabi mod m. We can parallelize the ad-
dition of n numbers in a logarithmic depth binary
tree to get a total depth of O(log n).

6.1 Modular Multiplication of
Two Quantum Numbers

We now consider the problem of multiplying a clas-
sical number controlled on a quantum bit and a
quantum number,2 which is a quantum superposi-

2In this paper, quantum numbers often result by entangling a
classical number in one register with a quantum control bit. This
should not be confused with the physics meaning of a quantum
number.

8

FANOUT RAIL

FANOUT RAIL

FANOUT RAIL

Figure 6: Addition and three rounds of modular reduction for a 3-bit modulus.

tion of classical numbers: given an n-qubit quantum
number |x〉, a control qubit |p〉, and two n-bit classi-
cal numbers a and m, compute |c〉 = |xa[m]〉, where
c is allowed to be in CSE. This problem occurs nat-
urally in modular exponentiation (described in the
next section) and can be considered serial multipli-
cation, in that t quantum numbers are multiplied in
series to a single quantum register.

We first create n quantum numbers
∣∣∣z(i)〉, which

are shifted multiples of the classical number a con-
trolled on the bits of x:

∣∣∣z(i)〉 ≡ ∣∣2ia[m] · xi
〉
. How

do we create these numbers, and what is the depth
of the procedure? First, note that

∣∣2ia[m]
〉

is a clas-
sical number, so we can precompute this classically
and prepare them in parallel using single-qubit op-
erations on n registers, each consisting of n ancil-
lae qubits. Each n-qubit register will hold a future

∣∣∣z(i)〉 value. We then copy all n bits of x, n times
each, using an unbounded fanout operation so that
n copies of each bit |xi〉 is next to register

∣∣∣z(i)〉. This

takes a total of O(n2) parallel CNOT operations.
We then entangle each

∣∣∣z(i)〉 with the correspond-
ing xi. The schematic for this is shown in Figure 7,
not showing how we interleave these numbers into
groups of three using constant-depth teleportation.
This reduces to the task of modular multiple addi-
tion, in order to add these numbers down to a single
number modulo m, which is described in 6.2.

Finally, we tackle the most interesting problem:
given two n-qubit quantum numbers |x〉 and |y〉
and a n-bit classical number m, compute |c〉 =
|xy mod m〉, where |c〉 is allowed to be in CSE. This
can be considered parallel multiplication and is re-
sponsible for our logarithmic speedup in modular

9

FANOUT FANOUT FANOUT FANOUT

Figure 7: Creating n = 4 shifted values {z(0), z(1), z(2), z(3)} for an input number x.

exponentiation.
Instead of creating n quantum numbers

∣∣∣z(i)〉, we

must create n2 numbers
∣∣zi,j〉 for all possible pairs of

quantum bits xi and yj, i, j ∈ {0, . . . , n− 1}:
∣∣zi,j〉 ≡∣∣2i2j[m] · xi · yj

〉
. We create these numbers using a

similar procedure to the previous problem. Adding
n2 quantum numbers of n qubits each takes depth
O(log(n2)) which is still O(log n). Creating n2 × n-
bit quantum numbers takes width O(n3).

6.2 Modular Multiple Addition

As a subroutine to modular multiplication, we de-
fine the operation of repeatedly adding multiple
numbers down to a single CSE number, called mod-
ular multiple addition.

The modular multiple addition circuit generically
adds down t× n-bit conventional numbers to an n-
bit CSE number.

z(0) + z(1) + . . . z(n−1) ≡ (u + v)[m] (7)

It does not matter how the t numbers are generated,
as long as they are divided into groups of three and
have their bits interleaved to be the inputs of a CSA
tile. In the cases above, serial multiplication results
in t = n and parallel multiplication results in t =
n2. At the beginning of the circuit, all CSA tiles
are active in that they have tile input numbers z(i) to
multiply, and their tile outputs will affect the overall
circuit output, u + v.

As the circuit proceeds through a number of
timesteps, tiles will become inactive when they do
not receive new numbers for their tile inputs; at that
point, their tile outputs can no longer affect the cir-
cuit output. Since the CSA tile is a 3-2 adder, one

can see that if there are t CSA tiles active at the be-
ginning of a timestep, there are d2t/3e active tiles
at the end of the timestep, since there are roughly
two-thirds as many input numbers left to add down
to the circuit output u+ v. One can see that the total
number of timesteps is therefore dlog3/2(t/3)e+ 1.

To facilitate the below discussion, we will assign
colors to each CSA tile, which are updated during
the circuit execution. Active tiles can either be black
or gray. A black tile will keep its two output num-
bers as inputs and receive a third input number. An
exception is the rightmost black tile may teleport
one of its output numbers to its left black nearest
neighbor and receive two input numbers from its
right gray nearest neighbor. A gray tile will tele-
port one of its output numbers to the nearest active
tile to its left and the other output number to the
nearest active tile to its right. An exception is the
rightmost gray tile may teleport both output num-
bers to its left black nearest neighbor. We can think
of inactive tiles as white tiles in that they “fade” out
of the circuit, and numbers get teleported through
them without stopping to be added. The symbols
for these colors are shown in Figure 8.

The rules for updating tiles at the end of each
timestep are as follows:

• Black tiles are always active for the next
timestep, but change colors as follows.

– The leftmost tile always stays black.
– If a black tile has a gray tile as its

nearest active right neighbor in the cur-
rent timestep, it stays black in the next
timestep.

– If a black tile has a black tile as its nearest
active neighbor either to the right or the

10

Figure 8: From left to right, the symbols for a black, gray, and white tile, respectively.

left, and it is not the leftmost tile, it turns
gray in the next timestep.

• Gray tiles always turn white (inactive) in the
next timestep.

The initial state of the tile colors depends on its
index i ∈ {0, 1, . . . , q− 1} within q = dt/3e tiles.

• If i mod 3 = 0, then it starts out black.

• If i mod 3 = 1, then it starts out gray.

• If i mod 3 = 2, then it starts out black.

Given the rules above, one can see that the left-
most tile stays black throughout the entire circuit,
and holds the final output number (u + v) at the
end.

Each timestep of the circuit consists of the follow-
ing operations:

1. All active CSA tiles will execute in parallel to
transform their three input numbers into two
output numbers (a CSE number).

2. Gray tiles teleport their output numbers to the
left and to the right to their black tile neigh-
bors. The exception is the rightmost gray tile
will teleport both of its output numbers to its
left black tile nearest neighbor.

3. Tile colors will change according to the rules
above. Approximately two-thirds of the tiles
will become inactive in the next timestep.

4. Go back to Step 1 for the next timestep.

These steps and the above tile color rules are best
illustrated with a concrete example. In Figure 9, we
see the circuit for modular multiple addition as a se-
ries of snapshots, separated by heavy dotted lines,
with the passage of time going downward. The tiles
change color over time, and the arrows indicate the
teleportation of output numbers to neighboring ac-
tive tiles in each timestep. In the initial timestep, the
tiles are numbered to show how they are assigned
their initial color. Between Timestep 0 and Timestep
1, all dn/3e CSA tiles are active. After each succeed-
ing timestep, b2/3c fewer CSA tiles are active until
the very end, when only one CSA tile is active. By
the convention established above, we teleport the
rightmost output numbers to the left, so that the fi-
nal output is read out from the leftmost CSA tile.

Now we can analyze the circuit resources for mul-
tiplying n-bit quantum numbers, which requires
(t − 2) modular additions, for t = n2. The cir-
cuit width is the sum of the O(n3) ancillae needed
for number generation and the ancillae required for
O(n2) modular additions. Each modular addition
has width O(n) and depth O(1) from the previ-
ous section. There are dlog3/2(n

2/3)e+ 1 timesteps
of modular addition. Therefore the entire modu-
lar multiplier circuit has depth O(log n) and width
O(n3).

7 Quantum Modular
Exponentiation

We now extend our arithmetic to modular exponen-
tiation, which is repeated modular multiplication

11

|u〉 , |v〉

INPUT

OUTPUT (CSA ENCODED)

0 1 2 3 4 5

Figure 9: Modular multiple addition of quantum numbers on a CSA tile architecture for t = 18 with depth
(dlog 3

2
(t/3)e+ 1) = 6 timesteps

controlled on qubits supplied by a phase estima-
tion procedure. If we wish to multiply a n-qubit
quantum input number |x〉 by t classical numbers
a(j), we can multiply them in series. This requires
depth O(t log n) based on the modular multipliers
in previous sections.

Now consider the same procedure, but this time
each classical number a(j) is controlled on a quan-
tum bit pj. This is a special case of multiplying
by t quantum numbers in series, since a classical
number entangled with a quantum number is also
quantum. It takes the same depth O(t log n) as the
previous case.

Finally, we consider multiplying t quantum num-
bers {x(0), x(1), . . . , x(n−1)} in a parallel, logarithmic
depth, binary tree. This is shown in Figure 10. The
tree has depth log2(t) in modular multiplier oper-
ations. Furthermore, each modular multiplier op-
eration has depth O(log(n)) for n-qubit numbers.

Therefore, the overall depth of this parallel modu-
lar exponentiation structure is O(log(t) log(n)). In
phase estimation for QPF, it is sufficient to take
t = O(n) [12, 1]. Therefore our total depth is
O(log2(n)) as desired. At this point, combined with
the parallel phase estimation procedure of [1], we
have a complete factoring implementation in our 2D
nearest-neighbor architecture.

For all known QPF procedures, there are t =
O(n) control bits needed, and also O(n) modular
multiplications in a tree of depth O(log n). Each
modular multiplication has depth O(log n) and
width O(n3). Therefore, the depth of the parallel
modular exponentiation circuit above is O(log2 n)
and the width is O(n4).

12

Figure 10: Parallel modular exponentiation: multiplying t quantum numbers in a O(log (t) log (n))-depth
binary tree.

Implementation Architecture Depth Width
Vedral, Barenco & Ekert [23] AC O(n3) O(n)

Gossett [8] AC O(n log n) O(n2)
Beauregard [2] AC O(n3) O(n)

Zalka [25] AC O(n2) O(n)
Takahashi & Kunihiro [18] AC O(n3) O(n)

Fowler, Devitt, Hollenberg [7] 1D NTC O(n4) O(n3)
Kutin [11] 1D NTC O(n2) O(n)

Current Work 2D NTC O(log2 n) O(n4)

Table 1: Asymptotic resource usage for quantum factoring of an n-bit number.

8 Results

The resources required for our approach, as well
as other nearest-neighbor approaches, are listed in
Table 1, where the asymptotic resource bounds as-
sume some fixed constant error probability for each
round of period-finding. We achieve an exponen-
tial improvement in nearest-neighbor circuit depth
(from quadratic to polylogarithmic) with our ap-
proach at the cost of a polynomial increase in cir-
cuit width. Similar depth improvements at the cost
of width increases can be achieved using the mod-
ular multipliers of other factoring implementations

by arranging them in a parallel, KSV-style modular
exponentiator.

9 Conclusions and Future Work

In this paper, we have presented a 2D architec-
ture for factoring on a quantum computer. Us-
ing a combination of algorithmic improvements
(carry-save adders and parallelized phase esti-
mation) and architectural improvements (irregular
two-dimensional layouts and constant-depth com-
munication), we conclude that we can run the cen-

13

tral part of Shor’s factoring algorithm (quantum
period-finding) with asymptotically smaller depth
than previous implementations.

For future work, we would like to determine the
exact width, depth, and size of our proposed factor-
ing circuit, including the constants, as well as fur-
ther optimizing our depth to be constant. Along
those lines, Rosenbaum recently showed how to
convert any n-qubit CCAC circuit to an equivalent
CCNTC circuit in constant depth using n2 ancil-
lae [15]. It is an interesting open question how a
generic conversion of a constant-depth CCAC fac-
toring architecture [4, 10] to CCNTC compares to
our hand-optimized circuit. The depth of our circuit
may also be improved by extending the carry-save
adder from a 3→ 2 circuit to any 2n−1 → n circuit.

The authors wish to thank Aram Harrow, Austin
Fowler, and David Rosenbaum for useful discus-
sions. P. Pham conducted the factoring part of this
work during an internship at Microsoft Research.
He also acknowledges funding of the architecture
and layout portions of this work from the Intelli-
gence Advanced Research Projects Activity (IARPA)
via Department of Interior National Business Cen-
ter contract number D11PC20167. The U.S. Gov-
ernment is authorized to reproduce and distribute
reprints for Governmental purposes notwithstand-
ing any copyright annotation thereon. Disclaimer:
The views and conclusions contained herein are
those of the authors and should not be inter-
preted as necessarily representing the official poli-
cies or endorsements, either expressed or implied,
of IARPA, DoI/NBC, or the U.S. Government.

References

[1] M.N. Vyalyi A. Yu. Kitaev, A.H. Shen: Classi-
cal and Quantum Computation. American Math-
ematical Society, Providence, Rhode Island,
2002.

[2] Stephane Beauregard: Circuit for Shor’s
algorithm using 2n+3 qubits. May 2002.
[arXiv:0205095].

[3] Anne Broadbent and Elham Kashefi: Par-
allelizing Quantum Circuits. April 2007.
[arXiv:0704.1736].

[4] Dan E. Browne, Elham Kashefi, and Si-
mon Perdrix: Computational depth complex-
ity of measurement-based quantum compu-
tation. In Proceedings of the Fifth Conference
on Theory of Quantum Computation, Communica-
tion, and Cryptography (TQC), September 2010.
[arXiv:0909.4673].

[5] Byung-Soo Choi and Rodney Van Meter:
“Θ(
√

n)”-depth Quantum Adder on a 2D NTC
Quantum Computer Architecture. August
2010. [arXiv:1008.5093].

[6] Thomas G. Draper: Addition on a Quantum
Computer. August 2000. [arXiv:0008033].

[7] Austin G. Fowler, Simon J. Devitt, and

Lloyd C. L. Hollenberg: Implementation
of Shor’s Algorithm on a Linear Nearest
Neighbour Qubit Array. Quantum Informa-
tion and Computation, 4:237–251, February 2004.
[arXiv:0402196].

[8] Phil Gossett: Quantum Carry-Save Arith-
metic. Quantum, 1998.

[9] Aram Harrow and Austin Fowler: Private
communication, October 2011.

[10] Peter Høyer and Robert Špalek: Quan-
tum Circuits with Unbounded Fan-out. The-
ory of Computing, 1(5):81–103, August 2005.
[arXiv:0208043].

[11] Samuel A. Kutin: Shor’s algorithm on
a nearest-neighbor machine. August 2006.
[arXiv:0609001].

[12] Michael A. Nielsen and Isaac L. Chuang:
Quantum Computation and Quantum Information.
Cambridge University Press, Cambridge, U.K.,
2000.

[13] Paul Pham: Quantum compiling with par-
allelized phase estimation. Unpublished
manuscript, February 2011.

14

http://arxiv.org/abs/0205095
http://arxiv.org/abs/0704.1736
http://arxiv.org/abs/0909.4673
http://arxiv.org/abs/1008.5093
http://arxiv.org/abs/0008033
http://arxiv.org/abs/0402196
http://arxiv.org/abs/0208043
http://arxiv.org/abs/0609001

[14] Robert Raussendorf, Daniel Browne,
and Hans Briegel: Measurement-
based quantum computation on cluster
states. Physical Review A, 68(2), August
2003. [doi:10.1103/PhysRevA.68.022312,
arXiv:0301052].

[15] David Rosenbaum: Optimal Quantum Circuits
for Nearest-Neighbor Architectures. April
2012. [arXiv:1205.0036].

[16] P. Shor: Algorithms for quantum computa-
tion: Discrete logarithms and factoring. In
Proceedings of the 35th Annual Symposium on
Foundations of Computer Science, Santa Fe, NM,
November 1994. [arXiv:9598927].

[17] Yasuhiro Takahashi and Noboru Kunihiro:
A linear-size quantum circuit for addition with
no ancillary qubits. Quantum, 5(6):440–448,
2005.

[18] Yasuhiro Takahashi and Noboru Kunihiro:
A quantum circuit for Shor’s factoring algo-
rithm using 2n+2 qubits. Quantum Information
and Computation, 6(2):184–192, 2006.

[19] Yasuhiro Takahashi, Seiichiro Tani, and

Noboru Kunihiro: Quantum Addition Cir-
cuits and Unbounded Fan-Out. Quantum Infor-
mation and Computation, 10(9–10):872–890, Oc-
tober 2010. [arXiv:0910.2530].

[20] Rodney Van Meter: Architecture of a Quan-
tum Multicomputer Optimized for Shor’s Factor-
ing Algorithm. Ph.d., Keio University, 2006.
[arXiv:0607065v1].

[21] Rodney Van Meter and Kohei Itoh:
Fast quantum modular exponentia-
tion. Physical Review A, 71(5), May
2005. [doi:10.1103/PhysRevA.71.052320,
arXiv:0408006].

[22] Rodney Van Meter, Kohei Itoh, and Thad-
deus Ladd: Architecture-dependent execu-
tion time of Shor’s algorithm. May 2005.
[arXiv:0507023].

[23] Vlatko Vedral, Adriano Barenco, and

Artur Ekert: Quantum networks for el-
ementary arithmetic operations. Physical
Review A, 54(1):147–153, July 1996. [
doi:10.1103/PhysRevA.54.147, arXiv:9511018].

[24] C. S. Wallace: A Suggestion for a Fast
Multiplier. IEEE Transactions on Electronic
Computers, EC-13(1):14–17, February 1964.
[doi:10.1109/PGEC.1964.263830].

[25] Christof Zalka: Fast versions of Shor’s
quantum factoring algorithm. 1998.
[arXiv:9806084v1].

15

http://dx.doi.org/10.1103/PhysRevA.68.022312
http://arxiv.org/abs/0301052
http://arxiv.org/abs/1205.0036
http://arxiv.org/abs/9598927
http://arxiv.org/abs/0910.2530
http://arxiv.org/abs/0607065v1
http://dx.doi.org/10.1103/PhysRevA.71.052320
http://arxiv.org/abs/0408006
http://arxiv.org/abs/0507023
http://dx.doi.org/10.1103/PhysRevA.54.147
http://arxiv.org/abs/9511018
http://dx.doi.org/10.1109/PGEC.1964.263830
http://arxiv.org/abs/9806084v1

	1 Introduction
	2 Background
	2.1 Architectural Models and Circuit Resources
	2.2 Constant-depth Teleportation and Fanout

	3 Related Work
	4 The Constant-Depth Carry-Save Technique
	5 Quantum Modular Addition
	5.1 A Concrete Example of Modular Addition

	6 Quantum Modular Multiplication
	6.1 Modular Multiplication of Two Quantum Numbers
	6.2 Modular Multiple Addition

	7 Quantum Modular Exponentiation
	8 Results
	9 Conclusions and Future Work
	References

