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2Quantum Architectures and Computation Group,
Microsoft Research, Redmond, WA 98052 (USA)

(Dated: October 9, 2012)

An important task required to build a scalable, fault-tolerant quantum computer is to efficiently
represent an arbitrary single-qubit rotation by fault-tolerant quantum operations. Traditionally,
the method for decomposing a single-qubit unitary into a discrete set of gates is Solovay-Kitaev
decomposition, which in practice produces a sequence of depth O(logc(1/ε)), where c ∼ 3.97 is the
state-of-the-art. The proven lower bound is c = 1, however an efficient algorithm that saturates
this bound is unknown. In this paper, we present an alternative to Solovay-Kitaev decomposition
employing state distillation techniques which reduces c to between 1.12 and 2.27, depending on
the setting. For a given single-qubit rotation, our protocol significantly lowers the length of the
approximating sequence and the number of required resource states (ancillary qubits). In addition,
our protocol is robust to noise in the resource states.
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Given recent progress in quantum algorithms, quan-
tum error correction, and quantum hardware, a scalable
quantum computer is becoming closer and closer to re-
ality. For many proposed quantum computer architec-
tures, e.g., topological systems based on the braiding of
non-Abelian anyons [1–5] or the surface code model based
on code deformation [6, 7], so-called Clifford operations
and stabilizer state preparations or measurements can be
implemented efficiently and accurately. However, these
operations alone are not sufficient for quantum univer-
sality since they can be simulated classically [8–10]. One
technique to achieve quantum universality is to use magic
state distillation [11–13] to augment the set with a single
non-Clifford operation, e.g., the single-qubit π/8 gate,
T . This augmented set can be used to approximate any
single-qubit unitary using Solovay-Kitaev decomposition
[14].

The Solovay-Kitaev theorem [15] states that for any ε
and single-qubit gate U , U can be approximated to pre-
cision ε using Θ(logc(1/ε)) gates drawn from a universal,
discrete gate set, where c is a small constant. State-
of-the-art implementations of Solovay-Kitaev decompo-
sition result in c ∼ 3.97 [14, 16], resulting in an average
decomposition sequence with hundreds to thousands of
T gates [16]. Each T gate requires a number of copies of
a quantum magic state |H〉 (Hadamard +1-eigenstate),
where the number depends on the specific state distilla-
tion protocol and purity of the state [11–13]. Therefore,
it is especially important to minimize the number of T
gates when decomposing a rotation, since each T gate
requires additional ancillary qubits for implementation.

In this paper, we present an alternative protocol to
Solovay-Kitaev decomposition that allows the implemen-
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tation of single-qubit rotations through the use of dis-
tilled magic |H〉 states. We show that the resources re-
quired by our protocol are substantially fewer than the
resources required by state-of-the-art implementations of
Solovay-Kitaev decomposition [16], in both the number
of gates and the number of quantum magic states neces-
sary to apply an arbitrary single-qubit unitary.

I. MAGIC STATE DISTILLATION AND
IMPLEMENTATION OF ROTATIONS

Solovay-Kitaev decomposition [14–16] enables the ap-
proximation of any gate using an approximately universal
set of elementary gates, e.g., {H,T,Λ(X)}, where Λ(X)
denotes the controlled-NOT gate. In particular, one can
approximate any single-qubit unitary operation using the
set {H,T}. Magic state distillation is then used to pro-
duce the magic |H〉 states necessary to implement the T
gate.

We call a state |ψ〉 magic if given n noisy copies of |ψ〉
and the ability to perform perfect Clifford operations, we
can obtain, or “distill”, a purer copy of |ψ〉 from a Clifford
circuit applied to the n noisy copies of |ψ〉. We can then
obtain even purer states which are arbitrarily close to
the perfect state by applying the protocol recursively [11–
13]. These distilled states can be used to implement non-
Clifford operations, e.g., the T gate, as described below.

We briefly review how to perform an arbitrary rotation
about the Z-axis using a resource state, and how to ap-
ply the T gate. We assume that Clifford operations are
applied perfectly, since they can be implemented fault-
tolerantly, and that the resource states are very close to
pure. One can use the protocols of [11, 12] to perform
the initial distillation in order to obtain arbitrarily pure
resource states for input. We focus on the +1 eigenstate
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|Z(θ)〉 X(Z) |m〉

|ψ〉 • Z(X)(−1mθ) |ψ〉

FIG. 1. Circuit randomly implementing a rotation of angle
±θ around the Z(X)-axis.

of the Hadamard operation, H,

|H〉 = cos
π

8
|0〉+ sin

π

8
|1〉 ,

and omit the cost of the initial distillation of the |H〉
state. We concentrate on single-qubit states found in ei-
ther the XZ- or XY -plane of the Bloch sphere. Note that
one can easily move a state from one plane to the other
by the application of the Clifford HSHX operation.

Suppose we start with states |Z(θ)〉 and |ψ〉:

|Z(θ)〉 = |0〉+ eiθ |1〉 ,
|ψ〉 = a |0〉+ b |1〉 .

The circuit to implement a rotation around the Z-axis,
presented in Fig. 1, leads to the two-qubit state

|Z(θ)〉 |ψ〉 = a |00〉+ b |01〉+ aeiθ |10〉+ beiθ |11〉
Λ(X)−−−→ a |00〉+ b |11〉+ aeiθ |10〉+ beiθ |01〉 .

Upon measurement of the first qubit in the computa-
tional basis, we obtain

m=0−−−→ a |0〉+ beiθ |1〉 ,
m=1−−−→ aeiθ |0〉+ b |1〉 = a |0〉+ be−iθ |1〉 ,

each with probability 1/2. Thus, the angle of rotation is
chosen at random to be θ or −θ, up to global phase. An
analogous circuit performs a rotation about the X-axis.
Similar circuits can be found in [7].

As an important example of this procedure, consider
the XY -plane version of the |H〉 state:

|Z(π/4)〉 = HSHX |H〉 = |0〉+ eiπ/4 |1〉 .

Using the circuit in Figure 1, we can implement a Z-
rotation of angle ±π/4, producing at random either the
T gate or its adjoint, T †. In this particular case, we
can deterministically apply the desired gate T or T † by
applying the phase gate S, since ST † = T . In general,
however, this deterministic correction will not be possi-
ble.

II. NEW STATES FROM |H〉 STATES

In this section, we show that we can use a very simple
two-qubit Clifford circuit to obtain other non-stabilizer
states using only |H〉 states as an initial resource, and
then show that these states enable the approximation of

|H0〉 X |0〉 (|1〉)

|Hi〉 • |Hi+1〉 (|Hi−1〉)

FIG. 2. Two-qubit circuit used to obtain new |Hi〉 states from
initial resource states |H0〉. Upon measuring the 0 outcome,
the output state is |Hi+1〉. Upon measuring the 1 outcome,
the output state is |Hi−1〉.

any single-qubit rotation. We assume that we are pro-
vided with perfect copies of |H〉. We would like to mini-
mize the number of |H〉 states required to implement an
arbitrary single-qubit rotation, since these distilled states
can be costly to produce.

Consider the circuit of Fig. 2. One can easily verify
that it measures the parity of the two input qubits and
decodes the resulting state into the second qubit. We
begin by considering the two inputs to be |H〉 states. We
define θ0 = π

8 and |H〉 = |H0〉 = cos θ0 |0〉 + sin θ0 |1〉.
The circuit begins as:

|H0〉 |H0〉 = cos2 θ0 |00〉+ sin2 θ0 |11〉
+ cos θ0 sin θ0(|01〉+ |10〉)

Λ(X)−−−→ cos2 θ0 |00〉+ sin2 θ0 |01〉
+ cos θ0 sin θ0(|11〉+ |10〉).

Upon measurement of the first qubit, we have

m=0−−−→ cos2 θ0 |0〉+ sin2 θ0 |1〉
cos4 θ0 + sin4 θ0

,

m=1−−−→ 1√
2

(|0〉+ |1〉).

We define θ1 such that

cos θ1 |0〉+ sin θ1 |1〉 =
cos θ0 |0〉+ sin θ0 |1〉

cos4 θ0 + sin4 θ0

,

from which we deduce cot θ1 = cot2 θ0. We define |H1〉 =
cos θ1 |0〉+ sin θ1 |1〉, a non-stabilizer state obtained from
|H〉 states, Clifford operations, and measurements. If
the outcome of the measurement is 1, then we obtain a
stabilizer state and discard the output (see Fig. 2).

The two measurement outcomes occur with respective
probabilities

p0 = cos4 θ0 + sin4 θ0 =
3

4
,

p1 = 1− p0 =
1

4
.

We now recurse on this protocol using the non-
stabilizer states produced by the previous round of the
protocol as part of the input to the circuit of Fig. 2. We
define

|Hi〉 = cos θi |0〉+ sin θi |1〉 ,
cot θi = coti+1 θ0.
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FIG. 3. Process of obtaining other non-stabilizer states from
initial |H〉 states. A copy of |Hi〉 and |H0〉 probabilistically
yield a copy of |Hi−1〉 or |Hi+1〉 using the circuit of Fig. 2.
Each step along the ladder costs one copy of |H0〉, except the
first one which costs two.

If we use as input a copy of |Hi〉 and a copy of |H0〉, we
have

|H0〉 |Hi〉 = cos θ0 cos θi |00〉+ sin θ0 sin θi |11〉
+ sin θ0 cos θi |10〉+ cos θ0 sin θi |01〉 ,

Λ(X)−−−→ cos θ0 cos θi |00〉+ sin θ0 sin θi |01〉
+ sin θ0 cos θi |10〉+ cos θ0 sin θi |11〉 .

Upon measurement of the first qubit, we have

m=0−−−→ (cos θ′ |0〉+ sin θ′ |1〉),
m=1−−−→ (cos θ′′ |0〉+ sin θ′′ |1〉),

where

cot θ′ = cot θi cot θ0 = coti+2 θ0 = cot θi+1,

cot θ′′ = cot θi tan θ0 = coti θ0 = cot θi−1.

Thus, if we measure 0, we obtain the state |Hi+1〉 and if
we measure 1, we obtain the state |Hi−1〉. The probabil-
ity of measuring 0 is given by

p0,i = cos2 θi cos2 θ0 + sin2 θi sin2 θ0.

Note that 3
4 ≤ p0,i < cos2 π

8 = 0.853 . . .. We can
view this recursive process as a semi-infinite random walk
with biased non-homogeneous probabilities, as Fig. 3 il-
lustrates. Every time a step is taken along this “ladder”
of states, one copy of |H〉 is consumed, except at the first
node of the ladder (the production of state |H0〉) when
we require two copies of |H〉: if the outcome 1 is mea-
sured at the first node, we discard the output and start
with two new copies of |H〉.

Table I lists the rotations obtained from the first few i
recursions, using the |Hi〉 states, and Figs. 4, 5 illustrate.
Note that there is a factor of two difference between the
angle θi involved in the description of the state and the
rotation applied, e.g., the |H0〉 state is over θ0 = π

8 , and
can be used to implement a π

4 rotation. Also, as 0 <
θi <

π
4 (∀i), the discontinuity of the cotangent is never a

problem.

III. NUMERICAL STUDY OF RANDOM
Z-ROTATIONS

In this section, we numerically study the cost of imple-
menting single-qubit rotations. Although the circuit in

i 2θi i 2θi

0 7.853× 10−1 9 2.974× 10−4

1 3.398× 10−1 10 1.232× 10−4

2 1.419× 10−1 11 5.102× 10−5

3 5.886× 10−2 12 2.113× 10−5

4 2.439× 10−2 13 8.753× 10−6

5 1.010× 10−2 14 3.626× 10−6

6 4.184× 10−3 15 1.502× 10−6

7 1.733× 10−3 16 6.221× 10−7

8 7.179× 10−4 17 . . .

TABLE I. Rotation by angle 2θi implementable using an
|Hi〉 = cos θi |0〉+ sin θi |1〉 state.

Π

4

Π

8
Π

16 Π

32
Π

64

i=0

i=1

i=2

i=4
i=5
…

FIG. 4. Red dots: Rotation by angle 2θi implementable using
an |Hi〉 = cos θi |0〉+ sin θi |1〉 state.

Fig. 1 randomly applies θ or −θ, we show that our pro-
tocol still results in an efficient application of the desired
Z-rotation.

Assume that we have the ideal case, where θi = 2θi+1.
In this hypothetical scenario, if we try to apply some
rotation using |Hi〉 and it fails, then we can correct the
gate by applying a rotation using |Hi−1〉. If this gate
also fails, then we follow with |Hi−2〉, and so on. There
are two crucial facts to point out. First, the probability
of failing n times in a row scales as 1/2n, i.e., it decays
exponentially with n, such that the expected number of
iterations is well-behaved. Second, and very importantly,
if a T gate fails (using a |H0〉 state), we can always correct
deterministically by applying the phase gate S (which is
a Z-rotation by eiπ/2).

Unfortunately, θi 6= 2θi+1; however, this assumption is
not too far from the truth (see Fig. 5). Since we only
require that a gate be approximated to a given precision,
we can actually apply any Z-rotation rapidly and with
good accuracy. First, apply the |Hi〉-rotation that gets
you closest to your target angle and then recurse. The
next gate to apply will depend on whether the current
gate succeeded or not. Due to the property discussed in
the previous paragraph, we will rapidly converge towards
our target angle.

We now present simulation results of obtaining the Z-
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10 20 30 40
i

10-12

10-9

10-6

0.001

1
Θ

FIG. 5. Dots: States obtainable by recursively using the cir-
cuit of Fig. 2 and only |H〉 states as initial input. Full line:
exponential decay fit, θi ∼ 2.41−0.881i.

rotation Z(φ), where φ is chosen randomly, in order to
characterize the efficiency of the protocol proposed in
previous sections. The simulation proceeds as follows:

1. Set desired accuracy ε.

2. Randomly pick a target rotation angle 0 < φ < 2π.

3. Find the state |Hi〉 such that 2θi is close to φ.

4. Simulate an instance of the ladder to obtain that
state and add its cost to the offline cost.

5. Apply a rotation using the |Hi〉 state and the circuit
of Fig. 1 and add one to the online cost.

6. Recurse on steps 3 through 5 until the desired ac-
curacy is reached.

We define the accuracy of the applied rotation V com-
pared to the target rotation U as

max
|ψ〉

D(U |ψ〉 〈ψ|U†, V |ψ〉 〈ψ|V †),

where

D(ρ, σ) =
1

2
tr

(√
(ρ− σ)†(ρ− σ)

)
is the trace distance between states ρ and σ. If U and V
are rotations about the same axis, one can show that for
small angles of rotation, which will always be our case,
this reduces to the difference of rotation angles, ε = ∆φ.

In [16], the distance measure used is

D(U, V ) =

√
2− |tr(UV †)|

2
.

In the case of rotations about the same axis, it can be
reduced to

√
1− | cos(∆φ)| ≈ ∆φ/

√
2 for small ∆φ. This

conversion between the two measures is important since
we later compare performance.

To compare the resource cost of our protocol to
Solovay-Kitaev decomposition, we define an online and
offline cost to apply a unitary gate. The online cost,
Con, is the expected number of non-Clifford gates, or
|Hi〉 states, required to implement the unitary gate on a

(a)Fit: ln(Con) = −0.49 + 1.29 ln(ln(1/ε)).

(b)Fit: ln(COff) = −0.72 + 2.27 ln(ln(1/ε)).

FIG. 6. Target accuracies are chosen such that 10−12 < ε <
10−4 and the sample size is ∼ 1.8× 104. The clouds of points
are used to fit the data according to a linear fit. We obtain
c ∼ 1.29 and c′ ∼ 2.27.

qubit. The offline cost, Coff, is the total number of dis-
tilled |H〉 states required to obtain all of the intermediate
|Hi〉 states used to perform the given unitary operation,
that is, the sum of the |H〉 states used for each ladder pro-
cess. In our resource costs, we do not include the initial
cost to distill |H〉 states. For Solovay-Kitaev decomposi-
tion, the offline cost is always 0 and the online cost is the
total number of T and T † gates in the decomposition.

We ran the simulation for target accuracies ranging
between 10−12 < ε < 10−4, each time considering a new
random angle to produce a sample of∼ 1.8×104 instances
of this protocol. Just like in the case of Solovay-Kitaev
decomposition, we suppose that

Con ∼ lnc(
1

ε
),

Coff ∼ lnc
′
(
1

ε
),

where Con and Coff are the online and offline costs, re-
spectively, such that

lnCon ∼ c ln ln(
1

ε
),

lnCoff ∼ c′ ln ln(
1

ε
).

The results are given in Fig. 6. Fits are also presented
from which we deduce that c ∼ 1.29 and c′ ∼ 2.27 for
our protocol.

As discussed in Section V, both of these scalings repre-
sent a significant improvement over the best implementa-
tion, to our knowledge, of Solovay-Kitaev decomposition
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[16], which was itself a significant improvement over the
previous implementation of [14].

Note that one can implement any single-qubit unitary
U using three rotations around the X- and Z-axes [10]:

U ∝ X(α)Z(β)X(γ),

for some angles α, β, γ. We have explicitly shown sim-
ulaton results for Z-rotations, however X-rotations can
be obtained at the same cost using the X-rotation cir-
cuit given in Fig. 1. Thus we can use our protocol to
produce each of the three rotations, and produce any de-
sired single-qubit unitary operation.

A. Other states

To further reduce the resource costs and their respec-
tive scalings, we show that we can use different Clifford
circuits to produce new non-Clifford states that can be
used as initial resources for the previously presented pro-

tocols. We first introduce three new states
∣∣∣ψ0,1,2

0

〉
and

discuss how to combine them into the described protocol.
Consider the circuit of Fig. 7. It is a Clifford circuit to

which we input four copies of |H〉. The measurement out-

come 000 occurs with probability 3(2 +
√

2)/32 ≈ 0.320,
otherwise the output is discarded. If the measurement
yields result 000, then the produced state is∣∣ψ0

0

〉
= cosφ0

0 |0〉+ sinφ0
0 |1〉 ,

φ0
0 =

π

2
− cot−1

(
2 + 3

√
2

6 + 5
√

2

)
≈ 0.446.

Since the probability of success is 0.320 and that every
trial consumes four copies of |H〉, the average cost to pro-
duce

∣∣ψ0
0

〉
is 12.50 |H〉 states. This circuit was designed

to measure the stabilizer code presented in Table II. An-
other interesting state can be obtained from the same cir-
cuit, substituting one of the input states by a |+〉 state as
is illustrated by Fig. 8. The measurement outcome 000
is obtained with probability (6 +

√
2)/32 ≈ 0.232. The

corresponding output state is∣∣ψ1
0

〉
= cosφ1

0 |0〉+ sinφ1
0 |1〉 ,

φ1
0 =

π

2
− cot−1

(
2
√

2

3 +
√

2

)
≈ 0.570.

Since the probability of success is 0.232 and every trial
consumes three copies of |H〉, the average cost to produce∣∣ψ1

0

〉
is 12.95 |H〉 states. Fig. 9 presents another useful

circuit. The measurement outcome 000 is obtained with
probability 11/32 ≈ 0.344. The corresponding output
state is ∣∣ψ2

0

〉
= cosφ2

0 |0〉+ sinφ2
0 |1〉 ,

φ2
0 =

π

2
− cot−1

(
7

6
√

2

)
≈ 0.690.

|H0〉 H X • 0

|H0〉 • • H 0

|H0〉 H X • • H H
∣∣ψ0

〉
|H0〉 X Z X 0

FIG. 7. Circuit to produce
∣∣ψ0

0

〉
states. The probability of

success is 0.320 and every trial consumes four copies of |H〉
such that the average cost is 12.50 to produce a copy of

∣∣ψ0
0

〉
.

S ± 0 1 2 3

s0 + X Z X .
s1 + . X Z X
s2 + X . X Z
Z + Z Z Z Z

TABLE II. The stabilizer code decoded by the circuit of Fig. 7.

The probability of success is 0.344 and every trial con-
sumes four copies of |H〉 such that the average cost to
produce

∣∣ψ2
0

〉
is 11.64 |H〉 states. Table III presents the

stabilizer code in terms of its generators S that are de-
coded by the circuit.

We will use these states as input states to the circuit
given in Fig. 2, where one of these states is used in place
of the |H0〉 input state. We start with a copy of

∣∣ψi0〉 and
a copy of |H0〉. If measurement outcome 1 is obtained,
the state is discarded. Otherwise, we obtain∣∣ψi1〉 = cosφi1 |0〉+ sinφi1 |1〉 ,

cotφi1 = cotφi0 cot θ0.

Similarly to the |Hi〉 states, we define∣∣∣ψji〉 = cosφji |0〉+ sinφji |1〉 ,

cotφji = cotφj0 coti θ0.

If we input a copy of
∣∣∣ψji〉 and a copy of |H0〉, we obtain

|H0〉
∣∣∣ψji〉 Λ(X)−−−→ cos θ0 cosφji |00〉+ sin θ0 sinφji |01〉

+ sin θ0 cosφji |10〉+ cos θ0 sinφji |11〉 .

|H0〉 H X • 0

|+〉 • • H 0

|H0〉 H X • • H H
∣∣ψ1

〉
|H0〉 X Z X 0

FIG. 8. Circuit to produce
∣∣ψ1

0

〉
states. The probability of

success is 0.232 and every trial consumes four copies of |H〉
such that the average cost is 12.95 to produce a copy of

∣∣ψ1
0

〉
.



6

|H0〉 • • H 0

|H0〉 X X H
∣∣ψ2

〉
|H0〉 • X 0

|H0〉 X • 0

FIG. 9. Circuit to produce
∣∣ψ2

0

〉
states. The probability of

success is 0.344 and every trial consumes four copies of |H〉
such that the average cost is 11.64 to produce a copy of

∣∣ψ2
0

〉
.

S ± 0 1 2 3

s0 + X X X X
s1 + Z . Z .
s2 + Z . . Z
Z + Z Z Z Z

TABLE III. The stabilizer code decoded by the circuit of
Fig. 9.

such that the output state obtained is, depending on mea-
surement outcome,

m=0−−−→
∣∣∣ψji+1

〉
m=1−−−→

∣∣∣ψji−1

〉
.

New “ladders” of states can be obtained using the∣∣∣ψ0,1,2
0

〉
states as inputs in place of the |H0〉 states.

Fig. 10 shows the four ladders. Table IV lists the rota-
tions obtained from the first few i recursions and Fig.11
illustrates. We see that the set of possible rotations is
more dense. We reproduced the numerical experiment
of Section III with basic offline costs of 12.50, 12.95 and
11.64 for

∣∣ψ0
0

〉
,
∣∣ψ1

0

〉
, and

∣∣ψ2
0

〉
, respectively. The results

are presented in Fig. 13. Since the set of states is denser,
we expected improved scalings for both the online and
offline costs. This is indeed the case, we find c ∼ 1.12
and c′ ∼ 1.75.

However, the basic offline costs of our new states∣∣ψi0〉 are significantly higher; for precision ∼ 10−4, even
though the online cost is smaller using the new states,
the offline cost is still smaller if we restrict ourselves to
the simpler scheme using only |H〉 states. For the proto-
col using the new input states to reduce both the online
and offline costs, we need to consider precisions smaller
then ε ≈ 1.28× 10−5, see Fig. 12.

The reason why we do not consider other measurement
outcomes in the circuits considered in this section is that
in general, potential errors on the |H〉 states are amplified
by the circuit. Output states in these cases might still
prove useful, but a careful analysis of the evolution of
errors must be conducted.

2 4 6 8 10
i10-4

0.001

0.01

0.1

1
Θ

FIG. 10. Dots: States obtainable by recursively using the
circuit of Fig. 2 with initial resource states |H〉,

∣∣ψ0
〉
,
∣∣ψ1

〉
and

∣∣ψ2
〉
.

Π

4

Π

8
Π

16 Π

32
Π

64

ÈH0>

ÈH1>

ÈΨ0
2

>

ÈΨ1
2

>

ÈΨ0
1

>

ÈΨ1
1

>

ÈΨ0
0

>

ÈΨ1
0

> …

FIG. 11. Dots: Rotations implementable using |Hi〉,
∣∣ψ0

i

〉
,∣∣ψ1

i

〉
,
∣∣ψ2

i

〉
states.

B. Minimizing the online cost

In this section, we aim to minimize the online cost, at
the price of potentially increasing the offline cost.

The protocol up to this point can be summarized as
follows. Suppose one wants to implement a Z-rotation
of an arbitrary angle φ on a logical state |ψ〉. One has
to implement a sequence of j rotations {Z(2θij )} on |ψ〉
using the sequence of states {

∣∣Hij

〉
}, such that Z(φ) ≈

i 2θi 2φ0
i 2φ1

i 2φ2
i

0 7.853× 10−1 4.456× 10−1 5.698× 10−1 6.898× 10−1

1 3.398× 10−1 1.871× 10−1 2.415× 10−1 2.954× 10−1

2 1.419× 10−1 7.770× 10−2 1.004× 10−1 1.231× 10−1

3 5.886× 10−2 3.220× 10−2 4.162× 10−2 5.105× 10−2

4 2.439× 10−2 1.334× 10−2 1.724× 10−2 2.115× 10−2

5 1.010× 10−2 5.525× 10−3 7.142× 10−3 8.761× 10−3

6 4.184× 10−3 2.288× 10−3 2.959× 10−3 3.629× 10−3

7 1.733× 10−3 9.479× 10−4 1.225× 10−3 1.503× 10−3

8 7.179× 10−4 3.926× 10−4 5.076× 10−4 6.226× 10−4

TABLE IV. Rotations implementable using
|Hi〉 ,

∣∣ψ0
i

〉
,
∣∣ψ1

i

〉
,
∣∣ψ2

i

〉
states.
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'

FIG. 12. Dashed line: Offline (top) and online (bottom)
costs for the scheme using only |H〉 states. Dotted lines: Of-
fline (top) and online (bottom) costs for the scheme using
{|H〉 ,

∣∣ψ0
0

〉
,
∣∣ψ1

0

〉
,
∣∣ψ2

0

〉
} states. The two top curves cross at

ε ≈ 1.28× 10−5.

(a)Fit: ln(C′on) = −0.78 + 1.12 ln(ln(1/ε)).

(b)Fit: ln(C′Off) = 0.54 + 1.75 ln(ln(1/ε)).

FIG. 13. Target accuracies are chosen such that 10−12 < ε <
10−4 and the sample size is ∼ 1.8× 104. The clouds of points
are used to fit the data according to a linear fit. We obtain
c ∼ 1.12 and c′ ∼ 1.75, improving on the results of Fig.6.

∏
j Z(2θij ). The online cost is given by

∣∣{∣∣Hij

〉
}
∣∣.

Consider instead the following protocol to implement
the same rotation by angle φ. Prepare offline the state
|Z(φ)〉 from a copy of |0〉. To achieve this, use the proto-
col described in the previous paragraph to rotate |0〉 to
|Z(φ)〉. Note that you can implement it offline because
you are applying rotations on an ancilla state. Then, use
|Z(φ)〉 online to apply the desired rotation. With proba-
bility 1

2 , the rotation Z(φ) is applied and the online cost
is 1. If it fails, correct for it by preparing offline the
state |Z(2φ)〉. Again, with probability 1

2 , the overall ro-
tation Z(φ) is applied and the online cost is 2. If it fails,
prepare offline |Z(4φ)〉, and so on. The probability that
a number n of iterations is required before success de-

2.4 2.6 2.8 3.0 3.2 3.4 Ln!Ln!1
Ε
""2

4
6
8
10
12

COn''

(a)Fit: 〈C′′on〉 = 1.99.

2.6 2.8 3.0 3.2 3.4
LnHLnH

1

Ε

LL

2

4

6

8

LnHCOff
'' L

(b)Fit: ln(C′′Off) = 1.13 + 1.75 ln(ln(1/ε)).

FIG. 14. Target accuracies are chosen such that 10−12 <
ε < 10−4 and the sample size is ∼ 1.8 × 103. (a) The cloud
of points is averaged to get the expected number of online
rotations. (b) The cloud of point is used to perform a linear
fit.

creases exponentially with n. This process is a negative
binomial of parameter p = 1

2 and the expected number

of online rotations before success goes as ∼ 1
p = 2.

We numerically simulated this process for various ran-
dom angles, 0 < φ < 2π, and accuracies, 10−12 < ε <
10−4. As Fig. 14 illustrates, we note that there is no
significant change in the online cost for different values
of ε. Moreover, the expected number of online rotations
to apply is roughly two, the result one would expect in
this situation. The scaling of the offline cost is the same
as that of the previous scheme, as expected. Also, even
though the scaling is the same, the actual values of the
offline cost are bigger. The shift is 1.13−0.64 = 0.59, see
Figs. 13(b) and 14(b), which corresponds to a factor of
e0.59 ≈ 1.80. One would expect a slightly bigger shift of
the offline cost by ln 2 since we repeat the scheme twice
on average. This suggests that there might exist some
favorable correlations between the expected offline cost
of an angle θ and of twice that angle 2θ.

IV. ERRONEOUS STATES

In this section, we determine the effect of errors on
our resource |H〉 states, and their effect on the produced
|Hi〉 states. A priori, the errors might be amplified by
the two-qubit circuit of Fig. 2, however we show this is
not the case.

The probabilistic and non-homogeneous nature of the
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FIG. 15. Evolution of the trace distance between imperfect
ρai and perfect |Hi〉 states. Circles: data for p = 10−4, 1 ≤
i ≤ 28. Squares: data for p = 10−6, 1 ≤ i ≤ 22. Diamonds:
data for p = 10−8, 1 ≤ i ≤ 16. The full lines are exponential
decay fits: (2.08 ∗ 10−3) × 2.31−i using points 18 ≤ i ≤ 28,
(1.63 ∗ 10−5) × 2.28−i using points 18 ≤ i ≤ 22 and (1.26 ∗
10−7)× 2.24−i using points 13 ≤ i ≤ 16 for the circle, square
and diamond data set, respectively. Sample size is 1000. We
conclude that if the initial resource state has desired accuracy,
then this is also true of all derived resource states.

presented protocol is not well suited for an analytical
study of the evolution of errors on |Hi〉 states. Instead,
we rely on a numerical study for three different types of
errors. We use the trace distance on states ρ and σ,

D(ρ, σ) =
1

2
tr(
√

(ρ− σ)†(ρ− σ)),

to measure the accuracy of the imperfect |Hi〉 states. We
assume Clifford operations are perfect and that errors can
only occur on the |H〉 states.

We consider three types of erroneous states. First, we
assume that the mixed state, ρa0 , is perfectly along the
line joining the center of the Bloch sphere and the the
perfect state, i.e.,

ρa0(p) = (1− p)|H0〉〈H0|+ p| −H0〉〈−H0|,

where |−H0〉 = sin π
8 |0〉−cos π8 |1〉 is the state orthogonal

to |H0〉. We denote the imperfect version of |Hi〉 obtained
from ρa0 states as ρai . If Clifford operations are perfect,
we can always bring any mixed state into this form using
twirling [12]. However, for the protocol to be of practical
interest, we require it to remain stable under the two
following types of errors, where we assume that the state
is pure, but that the rotation is slightly off of the desired
axis by δ:

ρb0(δ) =
1

2

(
I + sin

(π
4

+ δ
)
X + cos

(π
4

+ δ
)
Z
)

ρc0(δ) =
1

2

(
I + sin

π

4
cos δX + sin

π

4
sin δY + cos

π

4
Z
)
.

We numerically generated pseudo-random instances of
the scheme to produce |Hi〉 states for different values of
i and for different noise strengths. We considered 1000
instances for each of the three types of errors and noise
strengths 10−4, 10−6 and 10−8. Figures 15 and 16 show
that the protocol actually reduces the amplitude of pos-
sible errors on the resource |H〉 states, such that if we
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(a)Fits: (1.17 ∗ 10−3)× 2.31−i,
(1.03 ∗ 10−5)× 2.29−i and

(7.50 ∗ 10−8)× 2.25−i

æ æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ

à à
à

à
à

à
à

à
à

à
à

à
à

à
à

à
à

à
à

à
à

à

ì ì
ì

ì
ì

ì
ì

ì
ì

ì
ì

ì
ì

ì
ì

ì

5 10 15 20 25
i

10-10

10-7

10-4

0.1

DHΡi,Ρi
cL

(b)Fits: (8.28 ∗ 10−4)× 2.31−i,
(7.32 ∗ 10−6)× 2.30−i and

(5.30 ∗ 10−8)× 2.25−i

FIG. 16. Distances between the ideal |Hi〉 states and the
imperfects states ρbi and ρci respectively. Sample size is 1000.
ε = 10−4, 10−6, 10−8 in both cases.

start with |H〉 meeting our target accuracy, all the sub-
sequent derived |Hi〉 states will also meet it. This even
suggests that for bigger values of i, one could use noisier
|H〉 states and still achieve the desired accuracy. This
could make a dramatic difference if it enables one to re-
duce the number of distillation recursions necessary to
prepare the |H〉 states.

We note a very similar behavior for the three types of
errors. The exponential decay of the distance between
erroneous and ideal states confirms that the errors are
well behaved under the proposed protocol. We note that
the bases for the exponential decay of the errors are com-
parable, but smaller, than the basis for the exponential
decay of the angle implemented. So, for a given error
rate, there exits a point where the angle of rotation im-
plemented by |Hi〉 for some i is going to be comparable
or smaller to the error on that angle. However, this is
not a problem in practice since for, e.g., ε ∼ 10−4, we
find i = 150. For this value of i the angle is θi ∼ 10−57.

V. COMPARISON TO SOLOVAY-KITAEV
DECOMPOSITION

In this section, we compare the performance of the
Solovay-Kitaev decomposition of [16] and that of the
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(a)
ln(CZ

SK) = −4.88 + 4.41 ln(ln(1/ε))

ln(CZ
On) = −0.49 + 1.29 ln(ln(1/ε))

ln(CZ
Off) = −0.72 + 2.27 ln(ln(1/ε))
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Ε
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1000010000
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(b)
ln(CSK) = −2.67 + 3.40 ln(ln(1/ε))

ln(COn) = −0.49 + 1.29 ln(ln(1/ε)) + ln 3
ln(COff) = −0.72 + 2.27 ln(ln(1/ε)) + ln 3

FIG. 17. Full line: Cost of Solovay Kitaev decompostion
(SKD) of (a) random Z-rotations and (b) random unitaries
as a function of the precision ε. Dotted line: Offline costs of
(a) random Z-rotations and (b) random unitaries. We assume
that, loosely speaking, a random unitary is the composition of
three random rotations, hence the additional factor of three.
Dashed line: Online cost of (a) random Z-rotations and (b)
random unitaries. (a) For practical values of ε, the online cost
is significantly smaller than SK. The offline cost is lower than
SK when ε ≤ 8.71 × 10−4. (b) Again, for practical values of
ε, the online cost is significantly smaller than SK. The offline
cost is lower than SK when ε ≤ 2.67× 10−7.

schemes presented in this article. In order to do this,
we first consider different Z-rotations of angles π/16,
π/128, and π/1024 and different accuracies 10−4, 10−8

and 10−12.

Table V lists the expected costs. Con and Coff are
respectively the online and offline costs to implement
the gate using only |H〉 states. C ′on and C ′off refer
to the costs for the version of the scheme thats uses
{|H〉 ,

∣∣ψ0
0

〉
,
∣∣ψ1

0

〉
,
∣∣ψ2

0

〉
} as initial resource states. CSK

refers to the extrapolated cost to implement these gates
using the results from [16]. This extrapolated cost aver-
ages over all unitaries (c ∼ 3.40). This is optimistic since
the results of [16] suggest that Z-rotations are actually
harder to implement (c ∼ 4.3). Note that in theory, the
cost of this algorithm is O(logc(1/ε), where c = 3.97 [14].

10!15 10!12 10!9 10!6 0.001
Ε

10

100

1000

10000

100000
CSKZ ,COn'#Z ,COff'#Z

(a)
ln(C′ZSK) = −4.88 + 4.41 ln(ln(1/ε))

ln(C′ZOn) = −0.78 + 1.12 ln(ln(1/ε))

ln(C′ZOff) = 0.54 + 1.75 ln(ln(1/ε))

10!15 10!12 10!9 10!6 0.001
Ε

10

100

1000

10000

CSK,COn' ,COff'

(b)
ln(C′SK) = −2.67 + 3.40 ln(ln(1/ε))

ln(C′On) = −0.78 + 1.12 ln(ln(1/ε)) + ln 3
ln(C′Off) = 0.54 + 1.75 ln(ln(1/ε)) + ln 3

FIG. 18. Full line: Cost of Solovay Kitaev decompostion
(SKD) of (a) random Z-rotations and (b) random unitaries
as a function of the precision ε. Dotted line: Offline costs, us-
ing {|H〉 ,

∣∣ψ0
〉
,
∣∣ψ1

〉
,
∣∣ψ2

〉
} as initial resources, of (a) random

Z-rotations and (b) random unitaries. Dashed line: Online
cost, using {|H〉 ,

∣∣ψ0
〉
,
∣∣ψ1

〉
,
∣∣ψ2

〉
} as initial resources, of (a)

random Z-rotations and (b) random unitaries. (a) For prac-
tical values of ε, the online cost is significantly smaller than
SK. The offline cost is lower than SK when ε ≤ 4.41 × 10−4.
(b) Again, for practical values of ε, the online cost is signif-
icantly smaller than SK. The offline cost is lower than SK
when ε ≤ 1.03× 10−6.

In all cases, the online cost is minimal when our pro-
posed scheme enhanced by {

∣∣ψ0
0

〉
,
∣∣ψ1

0

〉
,
∣∣ψ2

0

〉
} is used.

For rougher precision, e.g., 10−4, the offline cost might
be such that the total cost is still minimal for the Solovay-
Kitaev implementation of [16]. For finer precision, e.g.,
10−8 or 10−12, our proposed protocol becomes very ad-
vantageous, since the cost of the Solovay-Kitaev decom-
position becomes prohibitive.

We also compare the average behavior of the different
schemes as Figs. 17 and 18 illustrate. We first start by
noting that, loosely speaking, a random unitary is com-
posed of three random rotations, such that the curves
presented previously in Fig. 12 must be shifted by ln 3 in
general. Fig. 17 plots the fit for the Solovay-Kitaev de-
composition (solid line), the online cost (dashed) and of-
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θ C ε = 10−4 ε = 10−8 ε = 10−12

π/16 CSK 43.83 2646 29120
Con 10.20 24.52 41.95
C′on 5.88 12.48 19.38
Coff 73.06 349.8 874.4
C′off 98.29 306.1 595.0

π/128 CSK 53.84 2879 29530
Con 5.47 18.96 39.27
C′on 3.32 9.27 16.91
Coff 49.18 313.0 923.9
C′off 52.60 234.1 560.8

π/1024 CSK 128.1 2594 15075
Con 7.99 23.08 42.93
C′on 3.00 8.37 15.23
Coff 77.42 381.3 969.1
C′off 65.75 245.5 530.7

TABLE V. Con and Coff are respectively the online and offline
costs to implement the Z-rotation by angle θ using only |H〉
states, to precision ε. C′on and C′off refer to the costs for the
version of the scheme thats uses {|H〉 ,

∣∣ψ0
0

〉
,
∣∣ψ1

0

〉
,
∣∣ψ2

0

〉
} as

initial resource states. CSK refers to the extrapolated cost to
implement these gates using the results from [16].

fline cost (dotted). For all practical accuracies, the online
cost of our proposed scheme is consistently the smallest.
However, the offline cost becomes advantageous when
ε < 8.71 × 10−4 for Z-rotations and ε < 2.67 × 10−7 for
random unitaries. Fig. 18 plots the same for the scheme
with additional initial resource states. Similarly, the of-
fline cost becomes advantageous when ε < 4.41 × 10−4

for Z-rotations and ε < 1.03×10−6 for random unitaries.

VI. CONCLUSION

We have proposed an alternative protocol to Solovay-
Kitaev decomposition that results in significantly smaller
resource costs, in both the number of required resource
states and the depth of the circuit. We have shown a
significant improvement on average in the value of c,
and in many cases the number of distilled states and
rotations required to implement a single-qubit unitary
gate are reduced. Another advantage of our protocol is
that the number of resources required is a “smoother”
function of accuracy, whereas Solovay-Kitaev decompo-
sition is step-like in nature because of the recursion pro-
cess used in practice. However, note that our protocols
and Solovay-Kitaev decomposition are not exclusive. It
might be that some unitaries are better implemented us-
ing Solovay-Kitaev decomposition, while our scheme is
better suited for Z-rotations, which occur, among other
algorithms, in the quantum Fourier transform.

As future research, there are likely a variety of other
circuits that enable other “ladders” of states. One natu-
ral extension would be to use the SH eigenstates distilled
using the protocols of [11, 13]. Another extension would
be to perform a systematic study of “small” Clifford cir-
cuits. Finally, we note that implementing a rotation by
choosing the state which results in an angle closest to the
target angle is a simple way of achieving our goal, but it
is surely suboptimal. An important research direction
would be to optimize the sequence of angles required to
implement the desired rotation.
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