
Type–Hover–Swipe in 96 Bytes:
A Motion Sensing Mechanical Keyboard

Stuart Taylor1, Cem Keskin1, Otmar Hilliges2, Shahram Izadi1, John Helmes1

1Microsoft Research, 2ETH Zurich
{stuart|cemke|shahrami|v-johelm}@microsoft.com, otmarh@ethz.ch

Figure 1. We present a novel mechanical keyboard combining motion gestures on and directly above the keys with regular tactile typing. A low-
resolution but high-speed sensor (A) is embedded into an off-the-shelf keyboard (B). IR proximity sensors are interspersed between the keycaps (C).
This results in a low-resolution raw intensity image when hands are interacting above (D). A sequence of these images are accumulated into proximity
(E) and motion (F) history images. Together these form a motion signature (E+F) which can be used to robustly recognize a number of dynamic
on-keyboard (G) and hover gestures (H) using a machine learning-based classifier.

ABSTRACT
We present a new type of augmented mechanical keyboard,
sensing rich and expressive motion gestures performed both
on and directly above the device. A low-resolution matrix of
infrared (IR) proximity sensors is interspersed with the keys
of a regular mechanical keyboard. This results in coarse but
high frame-rate motion data. We extend a machine learning
algorithm, traditionally used for static classification only, to
robustly support dynamic, temporal gestures. We propose
the use of motion signatures a technique that utilizes pairs
of motion history images and a random forest classifier to ro-
bustly recognize a large set of motion gestures. Our technique
achieves a mean per-frame classification accuracy of 75.6%
in leave–one–subject–out and 89.9% in half-test/half-training
cross-validation. We detail hardware and gesture recognition
algorithm, provide accuracy results, and demonstrate a large
set of gestures designed to be performed with the device. We
conclude with qualitative feedback from users, discussion of
limitations and areas for future work.
Author Keywords
Input devices; Keyboard; Gesture recognition;
ACM Classification Keywords
H.5.2 User Interfaces: Input devices and strategies
INTRODUCTION
Since the invention of the typewriter in the 1860s, mechanical
keyboards have remained the preferred method for text entry.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CHI’14, April 26–May 01 2014, Toronto, ON, Canada
Copyright c© 2014 ACM 978-1-4503-2473-1/14/04$15.00.
http://dx.doi.org/10.1145/2556288.2557030

Their haptic nature ensures they are still central to much of to-
day’s desktop productivity and gaming scenarios, despite the
recent popularity of alternative natural user interfaces (NUIs)
such as touch, speech and 3D input.

Given their widespread adoption, research has explored how
to augment keyboards with additional sensing capabilities. In
particular, previous work has demonstrated multi-touch capa-
bilities combined with soft (i.e. non-moving) [36] and me-
chanical keyboards [3, 10, 11, 12]. The aim of such sys-
tems is to co-locate gestural interaction with regular typing
so that the user can quickly move between a resting ‘home-
position’ and either typing or touch-based interactions. Previ-
ously studies have shown advantages of combining keyboard
use with touch-based 2D pointing[11, 12]. We build on this
related work by presenting a new type of augmented mechan-
ical keyboard, capable of sensing motion gestures. These are
rich, expressive interactions which are performed both on and
directly above the device.

Our hardware design comprises of a low-resolution matrix
of infrared (IR) proximity sensors interspersed between the
keys of a mechanical keyboard. This low spatial resolution is
intentional, allowing the mechanical qualities of the keyboard
to be preserved, and providing the ability to support frame-
rates of up to an order of magnitude more than previous touch
and in-air sensing systems (325Hz). We demonstrate that this
trade-off between temporal and spatial resolution allows for a
rich set of motion gestures.

The coarse but high-speed motion data generated by our pro-
totype requires a new approach to gesture recognition. We
demonstrate a novel machine learning algorithm based on
randomized decision forests (RDF) [5]. RDFs have been
shown to be effective for classification of static hand gestures

Permissions@acm.org
http://dx.doi.org/10.1145/2556288.2557030

[19], hand pose [18], body pose [30] and objects [13], and
generally provide high classification accuracy, are robust to
noise and are relatively fast to train [5, 9]. However, one lim-
itation of standard RDFs is that they operate on single images
and therefore are not well suited for temporal data.

Given the sensor speed, the temporal domain becomes a rich
source of information. We present an extension to standard
RDFs which natively supports temporal gestures. We pro-
pose the use of motion signatures a technique that utilizes
pairs of motion history images and an RDF based classifier
to robustly recognize a large set of motion gestures on and
above the keyboard. The technique automatically performs
temporal segmentation, is invariant to linear changes in speed
and runs in real-time on commodity hardware.

The structure of the rest of this paper is as follows: We re-
view the relevant literature in the domain of augmented key-
boards, touch and in-air motion sensing. After highlighting
compelling motion gestures and interactions, we detail the
sensing hardware (Fig. 1, A-C), followed by a more in-depth
exploration of the gesture design space (Fig. 1, G+H). One of
the key contributions of our work is the concept of motion sig-
natures, we explain the working principle and detail how they
can be used to robustly recognize dynamic gestures (Fig. 1,
D-F). We present our initial results in terms of recognition
accuracy. Finally, we discuss advantages and limitations and
conclude with directions for future work.
RELATED WORK
There has been extensive work on the augmentation of stan-
dard input devices such as mice, styluses, touch pads and key-
boards, highlighting that this is indeed a rich design space for
novel interaction. Systems have added multi-touch [33], pres-
sure [6], and display capabilities to mice [38], as well as touch
[31] and proximity sensing [23] to styluses.
Augmented Touchpads
Touch pads have for some time supported multi-touch capa-
bilities [1, 29]. Choi et al. [7, 8] extend prior work [16, 17,
24] that uses discrete proximity sensors for multi-touch dis-
plays to create a touch and hover pad. A later variant [14] uses
a flexible compliant surface with proximity sensors around
the edge to support both touch, pressure and hover in a single
sensor. The system is intended to replace the standard touch
pad on laptops with a wider sensor, occupying a laptops entire
width underneath the keyboard, and support both simultane-
ous or sequential keyboard and touch input.

Whilst the combination of separate touch pad and keyboard
is interesting, the sensors must still reside in two physical lo-
cations. Systems therefore enforce highly sequential use and
require the user to reposition their hands, acquiring the touch
pad much the same way as a mouse. This may increase in-
teraction time and interrupt flow especially for quick, modal
gestures that do not require the same precision as targeting.
Multi-touch & keyboards
The limitation of using a dedicated gesture device alongside
the keyboard has led researchers to explore other configura-
tions where the two are more tightly coupled. The pressure
sensitive keyboard [10] allows simple gestures based on sens-
ing the force applied to each key. Fingerworks produced a flat

keyboard (without moving keys) with support for multi-touch
gestures [36]. The recently announced Microsoft TouchCover
2∗ uses a resistive force sensing scheme to detect a small
number of gestures, performed by exerting small amounts of
force while gesturing directly on top of the keys but does not
allow for gestures above the keyboard or gesturing without
pressing down. PreSense [27] and SmartPad [28] demon-
strate single finger capacitive sensing above a mobile phone
keypad and number pad, using a single capacitive matrix be-
hind the keypad.

Touch-based pointing on keyboards
Fallot-Burghardt first describe the concept of touch sensing
above a full mechanical keyboard to support regular typing
and single finger pointer control [12]. A study of the system
shows improved time-to-completion over a standard mouse
and keyboard configuration [11]. Due to inadvertent trigger-
ing of pointing whilst typing, the system required an explicit
mode switch (via a mechanical button) to transition between
gesturing or typing. Later variants of this system [15] were
also capable of sensing multi-touch on top of the physical
keys, but did not solve the problem of false triggering when
hands are resting or typing on the keyboard. Block et al. [3]
combined the concept of coarse, per-key capacitive sensing
with projection capabilities, to display a variety of content
such as dynamic keyboard legends.

Above keyboard gestures
Other researchers have placed an RGB camera above a me-
chanical keyboard [37] or two depth cameras above a desk
[34] to detect pinch gestures in mid-air for a variety of tasks
such as map navigation and CAD. More recently, commercial
products such as LEAPMotion† and 3Gear Systems‡, have
added in-air gesturing capability either above or in-front of
a keyboard using consumer or custom depth sensors. These
systems focus on in-air gestures and do not support transitions
between on surface to above surface input.

Whilst capacitive systems have some inherent hover capabili-
ties, to our knowledge we are the first mechanical keyboard to
support rich motion gestures on and above the keyboard with
a single integrated hardware unit and no use of external cam-
eras. Our system does not require an explicit mode switch to
transition between gesturing and typing. We achieve a wide
range of motion gestures using a robust gesture recognition
technique described in detail later.

INTERACTING WITH THE MOTION KEYBOARD
Our system couples coarse motion and hover gestures with
a mechanical keyboard, whilst preserving its core function.
Fig. 2 illustrates a number of interesting motion keyboard in-
teractions. For example, a user pans and zooms a map using
multi-touch style bi-manual gestures directly on the key caps
(A). Slightly lifting the splayed left hand off the keyboard
and quick subsequent taps invoke the visual task switcher to
quickly jump between applications (B). In a graphics applica-
tion pressing the ‘C’ key brings up a color wheel and a motion
gesture performed with the other hand changes the selected
∗http://www.microsoft.com/surface/
†https://www.leapmotion.com/
‡http://www.threegear.com

http://approjects.co.za/?big=surface/
https://www.leapmotion.com/
http://www.threegear.com

Figure 2. Usage scenarios. (A) Panning and Zooming a document. (B)
Open hand hovering above keyboard invokes task switcher. (C) Press-
ing ‘C’ brings up color wheel and non-dominant hand selects color. (D)
Coarse flicks scroll whole page; index finger performs a touch and hover
‘loop’ gesture to next/previous paragraph.

color (C). In a document, swiping above the keyboard with
the whole hand advances an entire page while a single finger
in-air ‘loop’ advances by a single paragraph (D).

In summary a key goal of enhancing a keyboard in this man-
ner is to enable fast, easy, low-effort gestures and smooth
transitions back to typing, where the user’s hands always re-
main in the ‘home position’. The motion keyboard enables
this in a single, self-contained mechanical package, as op-
posed to having an external sensor such as a 2D or depth-
sensing camera. Our solution coarsely approximates depth,
but does allow for rich gestural interaction directly on the
keycaps and in a narrow band above.

HARDWARE
Physically the motion keyboard prototype does not differ
much from commercially available keyboards. Large parts of
the sensor electronics have been integrated into the electro-
mechanical ‘sandwich’ of an off-the-shelf keyboard, which
we dismantled, modified and then reassembled with addi-
tional custom sensing electronics embedded within it.

The sensor comprises of a two-dimensional array of 64 IR
proximity sensors (Avago HSDL-9100-021, Fig. 3), arranged
as four rows of 16, where each row lies between two rows
of keys. Sensor nodes are surface-mounted on a PCB which
is inserted between the array of keycaps and silicone rubber
membrane which sits underneath.

Sensor electronics
The sensor LEDs are wired in a matrix fashion, with row and
column lines driven by FET switches (Fig. 4). Using this ad-
dressing scheme allows individual LEDs to be illuminated by
activating just a single row and column. Alternatively, blocks
of multiple LEDs can be illuminated by driving several rows

Figure 3. Motion keyboard prototype hardware components. Left: indi-
vidual IR proximity sensor in metal housing. Middle: Bare PCB with
board-mounted 16x4 array of IR proximity transceivers. Note holes
cut into the PCB, through which the membrane key switches protrude.
Right: IR transceivers interspersed with regular keycaps.

Figure 4. Sensor circuit diagram.

and/or columns simultaneously. One advantage of illuminat-
ing multiple LEDs per read is that the hover range above the
keyboard can be increased programmatically.

Previously, similar sensor designs [16] have measured a ca-
pacitor’s discharge time, regulated by the photo-diode, for
analog-to-digital conversion. This readout scheme introduces
an inherent latency as the charge level must drop to logic
state zero. In contrast we use a design where the output
from the photodiodes is fed to 16 OPA4743UA quad op-
amps in a high-gain configuration, before being passed to four
16-channel, 12-bit analog-to-digital converters (ADCs). The
conversion timing and data transfer from the ADCs is per-
formed over an SPI bus (see Fig. 4). This more direct read-
out scheme allows us to run the circuitry at more than 20×
the frame rate of the original Thinsight system [16]. We
use an NXP LPC1768 ARM Cortex M3 microcontroller for
LED control, co-ordinating ADC readings and transferring
data frames to the host PC via USB.

Sensor Data
Capturing one complete frame of proximity data is achieved
with a raster scanning process. In sequence, the firmware
activates the first row/column line driver (turning on the IR
emitter for 24µs), and then instructs the appropriate ADC to
perform a conversion of the corresponding amplified photo-
diode reading. This sequence repeats for each of the sensors,
in column order, collecting a complete frame of 64×12-bit
ADC readings (i.e. 96 bytes per full frame). The frame is
then sent over USB to the host computer for post processing
and gesture recognition.

Fig. 5 illustrates typical sensor data from hands moving above
the keyboard. Despite the low resolution of only 64 pixels,
there is clear signal as the user is swiping or hovering. How-
ever, this resolution is not intended for accurate localization
of a fingertip. Although fingertip contact is sensed reliably,
there are often scenarios where only a single sensor will de-
tect signal, making up-sampling or interpolation of an accu-
rate touch location difficult.

Additionally, the sensor output can be read at high frame rates
(325Hz), this can benefit in discriminating between inten-
tional gesturing, and regular typing – a much cited issue in
previous touch sensing keyboards [11]. Another big advan-
tage of using proximity sensors is that the signal contains data
about fingers and hands hovering over the key caps, illustrated
through false-color rendering in Fig. 5, (C).

Sensor characteristics and calibration
Each individual sensor node returns raw intensity values that
map roughly to proximity. In a first step we establish the

Figure 5. Sensor data. (A) Hand moving across the keyboard, including
brief hover period (middle). (B) Sensor data is low-res but can be read at
high frame rate (intensity encodes proximity). (C) False-color rendering,
scale from blue (0mm) to red (400mm).

noise floor for each cell by capturing a series of empty frames
which are accumulated into a background model that can later
be used for foreground subtraction.

We conducted experiments to find a model that best linearizes
the raw intensity values and maps them to proximity esti-
mates. Fig. 6 (left) shows the response curve for a single sen-
sor. Measurements where made of a 100mm square of gray
cardboard mounted on a motorized stage, and human finger
stabilized on the same stage. Both targets were measured at
fixed intervals from the sensor, parallel to the keycaps. Fig. 6
(right) plots sensor readings against the reciprocal of squared
distance, showing that, for both targets, the sensor response
tracks the inverse square law reasonably well. These exper-
imental results show that the sensor readings are meaningful
in a range from 6mm-33mm (as indicated by the dotted green
line). We use these curves to linearize the data and define
coarse depth estimates D = 1√

I
from raw intensity values I .

Figure 6. Left: Response curves for a single sensor where gray card-
board (blue) and human finger (orange) are positioned at varying dis-
tances from the sensor. Right: Raw intensity values approximate inverse
square law (dotted line).
GESTURE RECOGNITION
Now that the reader has a feeling for the hardware configura-
tion and the sensor data, we want to shift the focus towards
sensing and gesture recognition. In this section we first intro-
duce a number of gestures that we seek to enable, followed
by an in-depth description of our recognition engine.

The gestures discussed here are not necessarily an attempt
to design a final end-user experience but serve the dual pur-
pose of exploring the sensor characteristics, illustrating the
flexibility and power of the gesture recognition engine, and
further highlight the interactive capabilities of our system.
On-Keyboard swipes
The most basic class of gestures we support are on-keyboard
swipes, shown in Fig. 7. These directional swipes may be
used to scroll and pan large documents, to trigger scrolling
or to flick through a collection of images. Swipes may
be performed with either hand, single or multiple fingers

and anywhere on the keyboard. Our recognition engine can
discriminate gestures performed by left and right hand (as-
suming hands are never crossed) and between large swipes
across the central areas of the keyboard (see Fig. 7, left) and
shorter swipes crossing the edges of the physical keyboard
(see Fig. 7, right). We can separately create compound ges-
tures such as swiping in an out across an edge of the keyboard.

Figure 7. On-Keyboard swipe gestures. Gestures can be performed by
either hand with single finger or whole hand.

On-Keyboard shapes
A variant of the coarse swipes for navigational purposes, are
shape or stroke based gestures which could be used to trigger
discrete commands. These gestures make use of the physical
keyboard as visual landmark to aide recall. For example, one
gesture is performed by ‘drawing’ an up arrow onto the key-
board, which causes a window to maximize (Fig. 8, left). The
stroke starts with “Left-Alt” moving to “Y” and ending on the
“Right-Alt” key. Similarly, a user can use strokes to perform
complex keyboard shortcuts and leverage muscle memory to
better memorize them, for example a “Ctrl-Shift-D” stroke
inverts a selection in Photoshop (Fig. 8, right).

Figure 8. On-Keyboard shapes. Shape drawing to perform discrete com-
mands. Physical keyboard as landmark may help as mnemonic aide in
gesture memorization.

Multi-touch gestures
We also recognize a number of multi-touch inspired gestures.
For example, a static pinch gesture where the index finger
touches the thumb may invoke an OS wide search function-
ality. Furthermore, dynamic variants of these gestures can be
recognized as well where a user may pinch to zoom in and
out of a map or photo.

Micro-hover gestures
These are a class of gestures where both hands remain in
home position, ready to type or are already typing when the
user quickly lifts one or several fingers to issue commands.
For example, quickly lifting the open left hand of the key-
board and lowering it back to resting may invoke a marking
menu on screen (Fig. 9, left). Coarse swipes can then be used
to navigate the menu and selection could happen by quickly
lifting and lowering the outstretched index finger of the right
hand (Fig. 9, right).

Our system also recognizes static variants of these gestures
such as a single finger held for a short duration hovering
above the keyboard, or a victory sign also held hovering
above the keyboard. These could be used to switch between
two modes in an application.

Dynamic hover gestures
We exploit the proximity sensing capability to add further
commands to the gesture set by discriminating stroke-based
gestures that are performed entirely on the keyboard from
those that contain an in-air portion. One example of this
class is a horizontal stroke starting roughly on “LKJ” keys
after which the finger lifts off the keyboard performs a tight
loop and ends the stroke by touching roughly on “GFD” keys
(Fig. 10, left). This gesture may perform an undo while the
opposite direction may perform a redo. Another hover ges-
ture could forgo the in-air loop and simply include a hover
segment in an otherwise straight stroke (Fig. 10, right), for ex-
ample invoking a task switcher with a preview function such
as Window’s Aero Peek.

Figure 10. Dynamic hover gestures. Part of the gesture trajectory is
performed in narrow band above the keyboard.

This gives a flavor for the types of gestures we wish to imple-
ment. There are two aspects that are important to highlight.

First, whilst our sensor is coarse, the gesture set described
here is already reasonably large. To perform all the motion
and static gestures described earlier in this section, in all the
different directions across the keyboard would result in need-
ing to discriminate between a total of 28 gestures, from only
96 bytes of raw proximity data.

Second, many of the gestures share similarities in their trajec-
tories. Our approach is capable of distinguishing gestures that
follow the exact same path but with one performed entirely on
the keyboard and the other containing a hover section.

These two aspects suggest that heuristic-based recognition
approaches would struggle to robustly discriminate between
gestures (this is an intuition actually born out of our own ex-
periences during the development of this system). We there-
fore have explored a novel machine learning based technique
for gesture recognition.

METHOD
Our approach leverages randomized decision forests (RDFs)
for frame-by-frame gesture classification. RDFs have been
shown to be effective for a number of high-level computer
vision problems such as object recognition [13], body part
[30] and hand shape classification [18] and generally provide
high classification accuracy at low computational cost.

However, RDFs are a per-frame technique that is they do not
inherently lend themselves to the classification of temporal
activities such as human gestures. One of our contributions
in this context is a simple but powerful way to represent tem-
poral (and associated proximity) data so that it can be used in
one-shot, direct motion classification using RDFs.

The basic idea is that of training a classifier to recognize a
motion signature rather than a single image of an object. This
motion signature encodes the accumulation of motion infor-
mation over a number of frames (a temporal signature) into a
single image. A second image encodes a running average of
the proximity information over the same duration.

At training time we annotate a series of these motion signa-
tures with ground truth gesture labels (data capture and label-
ing is described later), and train a RDF with three trees. At
test time, we classify each pixel in the motion signature im-
age into one of the gestures. Note that this approach does not
introduce latency, each accumulated image contains a motion
signature that allows the RDF to recognize the gesture even
before it is completed. The technique can also cope with dif-
ferent gesture execution speeds and variations in motion tra-
jectory (within limits of the training data).

Our approach has some similarities to the method of [25].
However, this previous approach requires the extraction of a
large number of features and relies on already available per-
pixel body part classification from depth images. We extend
the capability to directly classify temporal actions in a way
that operates on essentially unprocessed data and does not
require computationally expensive feature extraction.

Building motion signatures

Figure 11. Generating a motion history images. Each MHI contains 160
frames of history. All frames t1 to t2 are labeled as a specific gesture in
the training data. At test time each pixel in the MHI is classified. All
MHIs within t1 − t2 range will be labeled as the corresponding class.

To represent important temporal information necessary to ro-
bustly recognize gestures from a single image we build upon
and extend the concept of motion history images (MHI)[4].
MHIs are formed by accumulating binary foreground masks,
weighted according to their age in a fixed size temporal win-
dow. More weight is assigned to recent frames, producing
visually recognizable motion trajectories, shown in Fig. 11.

Figure 9. Micro-hover gestures. Hands remain in home position while
typing or resting. Quick lifts off fingers triggers different commands.

Note that MHIs can be used to recognize both dynamic and
static gestures, without motion the MHI is identical to a sin-
gle foreground mask. However, the binary foreground mask
alone does not contain depth information and is thus not suit-
able to represent the type of hover gestures we seek to recog-
nize. To retain the proximity information in the signal, we ac-
cumulate a second image representing motion from weighted
intensity images instead of binarized foreground masks.

During training and classification time, we use both the
binary-MHI (bMHI) and intensity-MHI (iMHI). The bMHI
do not contain hover information, and the iMHIs are ambigu-
ous to whether changes correspond to motion over time or
changes in depth. Hence, neither bMHI nor iMHI alone are
sufficient to robustly detect all types of gestures. However,
by using the pair of images together as motion signature, we
can distinguish between static, dynamic, and hover gestures.

At each time-frame t, the sensor data consists of low reso-
lution 16x4 IR intensity image It (12-bit intensity values).
We threshold It to discard sensor noise to form Ist , and bi-
narize it producing the foreground mask Imt . These masks
are summed

∑k−1
i=0 wk−1−iI

m
t−i, where wi = 2i

k(k−1) , and k
is the number of frames used in the history and i is the cur-
rent frame index. To form the iMHI, we first normalize the
data and produce an approximated depth image Idt by apply-
ing the reciprocal of the inverse-square law. The iMHI is then
the weighted sum of the last k depth images as before.

Training data
In order to train a classifier to robustly recognize a large ges-
ture set with significant variation in terms of execution speed
and motion trajectory, we need a database which reflects as
much of this natural variation as possible.

We asked 11 subjects recruited from the lab to perform many
examples of the 28 gestures outlined previously. Instances
of each gesture were semi-automatically delimited and anno-
tated with a class label according to the current gesture. To
avoid biases introduced by learning and fatigue effects, ges-
tures were performed in a random order, and counterbalanced
appropriately. To capture a wide variation of gesture styles,
subjects received minimal instruction on how to perform ges-
tures. Only clear outliers were removed from the database.

We recorded raw frames at 325Hz and captured a total of 28
gestures ×10 repetitions ×11 subjects resulting in 3080 se-
quences. We additionally recorded large amounts of data con-
taining many different types of miscellaneous non-gestural
interactions, including typing but also hands moving to and
away from the keyboard. This data adds roughly 30% to the
entire database and is collectively labeled as ‘Typing’. This
catch all class for non-gestures greatly increases overall ro-
bustness as it allows the classifier to learn tighter decision
boundaries around the actual gesture classes.

A key contribution is our motion signature representation. In-
stead of using the entire sequence as an example gesture, we
use clusters of (iMHI, bMHI) pairs. At training time we com-
pute these pairs for every tenth frame in all sequences, since
consecutive images are very similar due to high frame-rate.
The sequences are split into a gesture onset period t0 to t1

and a gesture completion period t1 to t2 (see Fig. 11). As-
suming that the (iMHI, bMHI) pairs from t1 onward carry a
unique signature of the gesture to reliably classify it at test
time. We have experimented with different sequence split ra-
tios and have found t1 = 0.2×t2 to be a good compromise be-
tween recognition latency and accuracy. MHI pairs extracted
from the onset periods are included in the non-gesture class
to prevent early false triggering of the recognizer.

Classification
We use a standard RDF classifier similar to previous body
[30] and hand pose [19] estimation methods. These ap-
proaches use ensembles of decision trees to classify depth
images. Decision trees consist of internal split nodes, used
to analyze the data, and leaf nodes, used to infer the posterior
probability of the class label. At test time, each split node
sends the incoming input to one of its children according to
the test result. For the final decision, the posterior probabili-
ties estimated by all the trees in the ensemble are averaged.

Tests typically are of the form: fn(Fn) < Tn, where fn is
a function on features Fn and Tn is a threshold, for the split
node n. The training of a decision tree involves determining
the tests and collecting statistics from a training set in a super-
vised manner. In the case of RDFs, fn operates on a subset
of the features selected during training. This is done by ran-
domly selecting multiple function candidates and choosing
the one that best splits the data. For more details see [9].

Here, we follow the same methodology, but instead of depth
features (correlating to the shape of the object) we use MHI
pixel intensity differences, which correlate to the dynamic
signature of the gesture for bMHI, and to the proximity of the
hand for iMHI. Furthermore, during training time the tech-
nique selects features from both the bMHI and iMHI, as both
can contain information crucial for gesture discrimination.
Given an MHI I(x), where x denotes location, we define a
feature Fu,v(I,x) as follows:

Fu,v(I,x) = I(x+ u)− I(x+ v) (1)

The offsets u and v are vectors relative to the pixel in ques-
tion. At training time, each split node is assigned a pair of
offsets and a threshold that best separates the labeled train-
ing data. The leaf nodes are assigned the histograms of class
labels of the pixels that end up in those nodes.

At run-time, every pixel is evaluated independently with each
tree in the forest. The histograms at the leaf nodes are then
normalized and averaged to obtain the posterior likelihood of
each pixel. These posteriors are pooled across the image to
form a final likelihood for the entire frame. The sequence of
posteriors is then smoothed with a running mean filter, and
the class label of the mode is assigned to the current frame.

Discussion of Method
Our gesture set includes the static, dynamic and hover ges-
tures illustrated earlier. We picked an RDF classifier over
other methods, mainly because they are accurate and robust
to noise and can classify each gesture type without modify-
ing the model. Furthermore, RDFs are fast enough to enable
classification in real-time, can skip high level feature extrac-
tion and work directly on images, and local feature tests can

be very simple pixel operations. RDFs are also highly paral-
lelizable (every tree and every pixel is independent).

Whilst in principle it is feasible to use other classifiers in com-
bination with motion signatures, we briefly want to highlight
potential issues with other classification approaches. Hidden
Markov Models (HMMs) [26] or Support Vector Machines
(SVMs) [2] are not easily applicable to classification of such
motion signals. HMMs typically model feature sequences
rather than image sequences. It is an open research ques-
tion which features would work for our low-res IR images.
Designing HMMs that can model both dynamic and static
signals is also difficult and uncommon. More importantly,
continuous recognition is not straight-forward and usually re-
quires mechanisms for gesture spotting [22]. SVMs on the
other hand, lend themselves primarily to the classification of
static gestures. A common approach is to extract a single fea-
ture vector from a fixed number of images to train the SVM.
This again brings up the non-trivial feature selection prob-
lem, and other pre-processing steps such as noise reduction
may prove necessary. Note that using an MHI as a 64 dimen-
sional feature vector would lead to gestures being conditioned
on their locations, which is undesirable. RDFs do not suffer
from this issue by using relative features only.

SYSTEM EVALUATION
We have introduced a novel scheme to directly and per-frame
recognize dynamic or motion gestures using RDF classifiers.
Our approach is centered around the idea of motion signatures
capturing the essence of both static and motion gestures. In
this section we detail experiments we have conducted to eval-
uate the performance of our classification scheme.

Test Data and Forest Parameters
The forest size (number of trees) and the depth of the trees
are the two main parameters affecting classifier performance.
Increasing the forest size enhances the accuracy at a linear
computational cost. To ensure that recognition is fast enough
for real-time interaction at 325Hz, we set the number of trees
to 3. Table 1 summarizes performance at different tree depths.

To evaluate the accuracy of our gesture recognition technique
we collected an additional data set of 28 gestures in total col-
lected from 11 users. 6 of these gestures are essentially the
same motion, performed by left or right hand on different lo-
cations of the keyboard (e.g. swipe-right with left or right
hand). We merged these gestures such that there is no dis-
tinction between left and right hands at the RDF level. The
hand type is determined at a higher level based on where
the gesture is performed. After these modifications we have
21 gesture classes and one non-gesture class. We report re-
sults using both leave–one–subject–out cross–validation and
by using half of the gesture samples in the set for training and
the remaining half for validation.

Table 1 summarizes overall classification accuracy, averaged
over all recognized gestures. Increasing tree depth improves
classification accuracy but also increases training time and
memory footprint. Over-training starts at depth 19, so we set
the tree depths to 18.

15 16 17 18 19 20
Tr PPCR 0.69 0.74 0.79 0.83 0.86 0.89
Tr SCR 0.80 0.82 0.85 0.89 0.92 0.95
Ts PPCR 0.57 0.58 0.59 0.6 0.60 0.59
Ts SCR 0.74 0.73 0.75 0.76 0.75 0.75

Table 1. Classification accuracy for half training / half test (Tr) and
leave–one–subject–out (Ts) cross validation. PPCR stands for per-pixel
classification rate and SCR for state classification rate. Columns report
accuracy for different tree depths. Over-fitting starts at depth 19.

The accuracy of the leave–one–subject–out technique directly
depends on the inter-personal variation in the dataset. Users
have their own preferences for natural gestures, and the vari-
ation is quite high. As the number of subjects increases, so
does the variation covered in the training set, and the model
generalizes better to previously unseen subjects. At depth 18
the accuracy of leave–one–subject–out technique converges
in our case and over-training starts when depth is increased
more. This accuracy can be viewed as a lower bound. Half
training–half test scheme is provided to give a better estimate
of the power of the proposed method. Overall, recognition
performance is very good even with very shallow trees for
this technique (cf. Table 1).

LC
am

el
Le

ft
R

ig
h

t

LC
lo

se
P

in
ch

In
d

ex
U

p
D

o
w

n

LL
o

o
p

Le
ft

R
ig

h
t

LO
p

en
P

in
ch

LS
p

la
ye

d
Fi

n
ge

rs
U

p
D

o
w

n

St
at

ic
H

o
ve

rI
n

d
ex

St
at

ic
H

o
ve

rV
ic

to
ry

LS
ta

ti
cP

in
ch

LS
tr

o
ke

_
LA

lt
_Y

_R
A

lt

Sw
ip

eD
o

w
n

Sw
ip

eL
ef

t

Sw
ip

eR
ig

h
t

Sw
ip

eU
p

R
C

am
el

R
ig

h
tL

ef
t

R
C

lo
se

P
in

ch

R
Lo

o
p

R
ig

h
tL

ef
t

R
O

p
en

P
in

ch

R
Sp

la
ye

d
Fi

n
ge

rs
U

p
D

o
w

n

R
St

at
ic

P
in

ch

R
St

ro
ke

_
R

A
lt

_Y
_L

A
lt

B
Ty

p
in

g

0.81 0.00 0.13 0.04 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 1.00 0.00

0.02 0.00 0.72 0.00 0.00 0.00 0.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.27 0.00 0.08 0.57 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.01 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.04 0.00 0.01 0.00 0.00 0.92 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.01 0.00 0.05 0.00 0.00 0.00 0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.02 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.86 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00

0.07 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.89 0.00 0.00 0.02 0.00 0.01 0.00 0.00 0.00 0.00 0.00

0.11 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.85 0.00 0.02 0.00 0.01 0.00 0.00 0.00 0.00 0.00

0.05 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.90 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.07 0.00 0.12 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.76 0.00 0.04 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

0.10 0.00 0.08 0.02 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.23 0.00 0.56 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

0.02 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.95 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.95 0.00

0.02 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.93

Figure 12. Confusion matrix for all 22 recognized gestures, test data
recorded from 11 participants. Results from our forest-based classifier;
mean success rate 88.9%.

Fig. 12 summarizes classification accuracy as a confusion
matrix for the entire gesture set that an RDF has been trained
on. Our technique achieves generally very good classifica-
tion accuracies with a mean per-class accuracy (mean of the
confusion matrix’s diagonal) of 88.9%. Furthermore, many
gestures achieve close to 100% accuracy per frame. Please
keep in mind that these are raw, per frame classification rates.
Simple temporal low-pass filtering will further improve these
and for most gestures real-world accuracy should be higher.
It is worth noting very successful, per-frame classification
approaches such as the Xbox Kinect body-tracker, which is
based on [30], ’only’ reports 60% per-frame mean accuracy
yet provides good enough performance when combined with
temporal tracking for a mass market product.

The results show excellent classification performance for dy-
namic and static gestures on the keyboard, and some confu-
sion between the dynamic hover gestures ‘Wave’ and ‘Loop’.
The primary reason for the reduced accuracy for the hover
gestures is the loss of signal when the hand is out of range of
the sensor. The remainder of the motion signature is very sim-
ilar for both gestures, making it hard to distinguish between
the signals.

Also important to highlight is the ‘non-gesture’ classification
rates of 93%, as indicated previously this is the state in which
users were typing, resting their hands, and not performing
a gesture. This accuracy level is compelling and adds more
substance to the machine learning based approach outlined.
PRELIMINARY USAGE OBSERVATIONS
So far we have concentrated on evaluating the gesture recog-
nition accuracy and specifically the impact of motion signa-
tures, which we deem one of our main contributions. We also
ran some very informal 30 min sessions with 8 users (6 male,
2 female) recruited from our lab, just to gather initial feed-
back and observations regarding the prototype.

Uniformly all participants instantaneously ‘stress-tested’ the
system to see if it still worked for real text input. All partic-
ipants expressed real surprise at how little the gestures im-
pacted the keyboard functionality. Once they had learned
some of the gestures they quickly tried to explore and un-
derstand the whole corpus. The left-right swipes Fig. 7 and
the hover gestures that do not require much lateral motion,
were well received (Index Up/Down, SplayedHand Up/Down
(Fig. 9), Index Loop (Fig. 10, left)).

While other gestures received some criticism for being cum-
bersome to perform (Swipe Up/Down) or difficult to remem-
ber (Hover Stroke) (Fig. 10, right). The former might be due
to the keyboard’s form-factor which has only limited depth
and hence larger hands have very little room to travel in the
up/down direction. Finally, one idea that was seen as some-
thing with a lot of potential was that of combining the benefits
of the keyboard (visual landmarks, haptic feedback) with that
of stroke based character recognition or ‘shape writing’ [20]
(e.g., Maximize/Minimize (Fig. 8)) to augment or replace
keyboard short cuts – similarly too prior work on touch key-
boards [21]. Compound gestures comprising of key presses
and swipes such as the color picker example Fig. 2 (C) were
also received favorably. Some users even generated several
new ideas based on these examples. For example, controlling
volume, screen brightness and other continuous OS settings
in such a manner.

Of course these observations are only preliminary. Our ges-
ture set was in part designed to evaluate the range of variation
our recognizer can cope with. Nonetheless, the current ges-
tures illustrate the utility of enriching mechanical keyboards
with gesture sensing capabilities, especially those that go be-
yond simple 2D pointing. A key benefit seems to be the
fact that the system can robustly detect very quick and sub-
tle gestures such as the rapid ‘SwipeLeft’, ‘SwipeRight’ ges-
tures and the ‘IndexFingerLoop’ gesture. Furthermore, users
commented that the absence of an explicit mode switch is
very compelling. This can be seen as partial confirmation of

our initial design goal of low-effort gestures, allowing user’s
hands to always remain in the ‘home position’ and of smooth
transitions between typing and gesturing.

A final important observation was that of user’s initial con-
cerns and reservations with the concept of a sensor embedded
in a keyboard, which is perhaps understandable given the im-
portance of the keyboard for their day-to-day work life. How-
ever, all of the participants expressed their surprise in how
robust the system is in delineating resting and typing motion
from intentional gesturing. Hence, many participants indi-
cated that they would use such a system in earnest if, and only
if, it provided close to zero false gesture activation. We feel
this backed up by our initial accuracy rates, and highlights the
importance of a sophisticated and robust gesture recognition
engines such as the one outlined here.

DISCUSSION
The initial quantitative and qualitative results of the motion
keyboard in use are compelling. Classification results based
on motion gestures performed by a variety of users on the
keyboard illustrates that even our initial prototype can be used
for a diverse set of gestures, even with the low resolution and
noise characteristics of our sensor. To our knowledge this
is the first time that a touch and hover based keyboard has
been demonstrated, especially with this level of robustness
for gesture recognition. One important aspect to note is that
given our recognition engine is machine learning based, new
gestures can be added simply by providing new examples,
and retraining our system.

There are also clearly many areas of improvement, which we
discuss in this section, outlining limitations and future work.
As with all vision systems, ambient light is an issue. We have
experimented with IR cut-off filters to alleviate common am-
bient IR sources (e.g. natural lighting, and room and desk
lights), but strong direct light sources are still an issue.

More resolution
In this paper we have intentionally designed a keyboard with
low spatial resolution sensing. First, we have wanted to use
this device for coarse and lightweight (i.e. low precision
but also low effort) gestures that are easy to perform. This
takes an opposite approach to systems such as [11], which
have looked at replacing the mouse. We on the other hand
wish to complement mouse interactions with motion gestures
mapped to other UI actions. There have also been mechanical
and electronic constraints and cost and power considerations
which have also pushed us to choose our current sensing res-
olution. Clearly, there are ways to improve the spatial res-
olution in the future. One interesting possibility is to use a
denser [23] arrangement of IR proximity sensors. Reverse-
biased IR LEDs could also give more flexibility removing
the need for an emitter/receiver pair, and instead integrating
both sensing or illumination into a single unit (which could be
driven using interesting sampling strategies as described be-
low). Higher resolution sensing could allow for fine grained
gestures to be coupled with coarser gestures using different
readout schemes. For example, the sensor could operate by
default in a “coarse” mode of operation allowing regular mo-

tion gestures to be sensed, but once detected, could switch to
finer scale sensing, allowing fingertip interactions.

How unique are motion signatures?
One interesting finding from experiments is that even with the
coarseness of the current sensor configuration we are able to
use RDFs to distinguish between diverse static gestures ro-
bustly (as well as dynamic). There is clearly signal present
even at this coarse resolution, which is being learned by our
RDF. So clearly our input has some unique signature even
for a single frame of data (rather than multiple frames in a
motion signature). The question then becomes whether this
per-frame signature is unique enough to identify coarsely the
overall hand pose, potentially super-resolving the shape of the
hand, from the low resolution signal. Inspired by recent work
on image retrieval from tiny images [32, 35], we think it may
be possible to apply a database look-up scheme to retrieve
high-res images of the user’s hand, whereby the 96-byte raw
sensor data is used as hashing index. To this end we have
recorded sequences of 2D images from a top down camera
pointing at our sensor, and captured interactions with the sen-
sor using a single finger sliding across the surface.

At test-time we estimate the hand configuration (and in this
case the fingertip location) by performing a nearest neighbor
lookup into the database (Fig. 13). Initial experiments are
promising and seem to indicate some uniqueness per frame
even for subtle hand pose differences.

Figure 13. Fingertip localization. Left: Ground truth data. Middle:
best candidate from kNN search. Right: Hand contour is traced and
fingertip extracted and tracked over time.

Intelligent sampling
Relating to the issue of teasing out more data from the sig-
nal we have, is the ability to use more sophisticated sampling
mechanisms. Currently, we use a simple scan-line based sam-
pling scheme where each emitter is turned on for a small frac-
tion of time (24µs) sequentially. However, there might be
other ways of sampling. For example, rather than turning a
single emitter on in sequence, we could turn a neighborhood
of 3 × 3 around the current sensor on (i.e. 8 other emitters,
with the one in the middle sensing). Given the speed of the
sensor, we could do this type of sampling every other frame.
This could become a separate iMHI and bMHI, which could
improve the “uniqueness” of motion signatures, potentially
improving our kNN approach outlined earlier.

Per-pixel calibration
Whilst we have started to characterize the response of the
proximity sensors within our keyboard, we have yet to ex-
ploit this knowledge fully during calibration. Fig. 4 plots the
response curve of a single pixel, and as noted, the readings
become non-linear the further we move away from the sen-
sor (essentially following the inverse square law). One can

accommodate for some of these non-linearities by correct-
ing all pixels (based on the simple inverse square law ap-
proximation), as currently implemented. However, we have
empirically noted that each sensor has a different response
curve, so instead it might be possible to correct each sen-
sor independently. This is akin to radiometric calibration of
cameras.Here operating the sensors occasionally in “shadow
mode” where no active illumination is used for a single frame,
could also allow subtraction of ambient light to help reduce
external IR interference.

Interestingly despite our current naive calibration process,
our classifier is robust to these differences in per pixel re-
sponses. Clearly with radiometric aligned responses from the
sensors, our classification could potentially be improved fur-
ther. However, the RDF is also encoding and learning this
mapping in an implicit way. Another avenue of future work
therefore could be to have the RDF more explicitly learn the
individual response curves of each pixel.

Other hardware/software configurations
Another interesting area of research is to think about both our
sensor and gesture recognition in new contexts. Whilst we
have demonstrated the advantages of our sensor in a mechan-
ical keyboard, in the future it might be interesting to consider
new form-factors such as a stand-alone touch and hover pad.
One of the limitations of our current device is extended depth.
One interesting possibility is to combine our bottom-up sens-
ing approach with top-down depth cameras to capture inter-
actions in this extended space, using both sensor modalities
depending on the proximity to the keyboard. We also feel
that our motion signature classification algorithm is general
and can be applied to other sensor modalities beyond the mo-
tion keyboard, such as depth cameras. Obviously, another big
area of future experience is in investigating more specific ap-
plication scenarios for the motion keyboard, especially ones
such as gaming or CAD, where the proximity could be di-
rectly mapped to 3D interaction.

CONCLUSIONS
We have presented a new input device, a motion sensing me-
chanical keyboard. Our sensor allows a variety of gestures
on and directly above the keyboard. The device allows very
lightweight gestures to be performed without moving your
hands away from the keyboard. Our main contributions can
be summarized as follows: 1) a new motion sensing keyboard
prototype which for the first time demonstrates both touch
and hover gestures; 2) a new gesture recognition engine for
robustly identifying both static and temporal gestures using a
single motion signature and RDF framework; 3) a large ex-
ample gesture set realized using our novel hardware prototype
and classification algorithm.

ACKNOWLEDGMENTS
We thank Christoph Rhemann, Alex Butler and Christopher
Zach for insightful discussions and Emily Whiting for pro-
viding the video voiceover.

REFERENCES
1. Apple Inc. Magic TrackPad, 2010.
2. Bahlmann, C., Haasdonk, B., and Burkhardt, H. Online

handwriting recognition with support vector machines -

a kernel approach. In Proc. Frontiers in Handwriting
Recognition, 2002. (2002), 49–54.

3. Block, F., Gellersen, H., and Villar, N. Touch-display
keyboards: transforming keyboards into interactive
surfaces. In Proceedings of ACM CHI (Apr. 2010),
1145–1154.

4. Bobick, A., and Davis, J. The recognition of human
movement using temporal templates. IEEE PAMI 23, 3
(Mar. 2001), 257–267.

5. Breiman, L. Random Forests. Machine Learning 45, 1
(Oct. 2001), 5–32.

6. Cechanowicz, J., Irani, P., and Subramanian, S.
Augmenting the mouse with pressure sensitive input. In
Proceedings of ACM SIGCHI (Apr. 2007), 1385–1394.

7. Choi, S., Gu, J., Han, J., and Lee, G. Area gestures for a
laptop computer enabled by a hover-tracking touchpad.
In Proceedings APCHI, ACM Press (New York, New
York, USA, Aug. 2012), 119–124.

8. Choi, S., Han, J., Kim, S., Heo, S., and Lee, G.
ThickPad: a hover-tracking touchpad for a laptop. In
Adjunct Proceedings of ACM UIST (Oct. 2011), 15–16.

9. Criminisi, A., and Shotton, J., Eds. Decision Forests for
Computer Vision and Medical Image Analysis. Springer
London, London, 2013.

10. Dietz, P. H., Eidelson, B., Westhues, J., and Bathiche, S.
A practical pressure sensitive computer keyboard. In
Proceedings of ACM UIST (Oct. 2009), 55–58.

11. Fallot-Burghardt, W., Fjeld, M., Speirs, C., Ziegenspeck,
S., Krueger, H., and Läubli, T. Touch&Type. In Proc.
NordiCHI ’06 (Oct. 2006), 465–468.

12. Fallot-Burghardt, W., Speirs, C., Ziegenspeck, C.,
Krueger, H., and Läubli, T. Touch&TypeTM: a Novel
Input Method for Portable Computers. In Proc.
INTERACT (2003), 954–957.

13. Gall, J., Yao, A., Razavi, N., Van Gool, L., and
Lempitsky, V. Hough forests for object detection,
tracking, and action recognition. IEEE PAMI 33, 11
(Nov. 2011), 2188–202.

14. Gu, J., Heo, S., Han, J., Kim, S., and Lee, G. LongPad:
A TouchPad Using the Entire Area below the Keyboard
on a Laptop Computer. In ACM CHI’13, ACM Press
(Paris, France, 2013).

15. Habib, I., Berggren, N., Rehn, E., Josefsson, G., Kunz,
A., and Fjeld, M. DGTS: Integrated Typing and
Pointing. In Proc. INTERACT, vol. 5727 of Lecture
Notes in Computer Science, Springer Verlag (Berlin,
Heidelberg, 2009), 232–235.

16. Hodges, S., Izadi, S., Butler, A., Rrustemi, A., and
Buxton, B. ThinSight: versatile multi-touch sensing for
thin form-factor displays. In Proceedings of ACM UIST
(Oct. 2007), 259–268.

17. Hofer, R., Naeff, D., and Kunz, A. FLATIR: FTIR
multi-touch detection on a discrete distributed sensor
array. In Proceedings of TEI ’09, ACM Press (New
York, New York, USA, Feb. 2009), 317.

18. Keskin, C., Kiraç, F., Kara, Y. E., and Akarun, L. Hand
Pose Estimation and Hand Shape Classification Using
Multi-layered Randomized Decision Forests. In ECCV
2012, Lecture Notes in Computer Science, Springer
Verlag (Berlin, Heidelberg, Oct. 2012), 852–863.

19. Keskin, C., Kiraç, F., Kara, Y. E., and Akarun, L.
Randomized decision forests for static and dynamic
hand shape classification. In 2012 IEEE CVPR
Workshops, IEEE (June 2012), 31–36.

20. Kristensson, P.-O., and Zhai, S. SHARK 2. In
Proceedings of ACM UIST (Oct. 2004), 43.

21. Kristensson, P. O., and Zhai, S. Command strokes with
and without preview. In Proc. ACM CHI (Apr. 2007),
1137.

22. Lee, H.-K., and Kim, J. H. An HMM-based threshold
model approach for gesture recognition. IEEE PAMI 21,
10 (1999), 961–973.

23. Liu, S., and Guimbretière, F. FlexAura: a flexible
near-surface range sensor. In Proceedings of ACM UIST
(Oct. 2012), 327–330.

24. Moeller, J., and Kerne, A. ZeroTouch: an optical
multi-touch and free-air interaction architecture. In
Proceedings of ACM CHI (May 2012), 2165.

25. Nowozin, S., and Shotton, J. Action Points: A
Representation for Low-latency Online Human Action
Recognition. Tech. rep., Microsoft Research Cambridge,
2012.

26. Rabiner, L., and Juang, B. An Introduction to Hidden
Markov Models. In IEEE Acoustic Speech Signal
Processing Magazine (1986), 3–4.

27. Rekimoto, J., Ishizawa, T., Schwesig, C., and Oba, H.
PreSense: interaction techniques for finger sensing input
devices. In Proceedings of ACM UIST (Nov. 2003),
203–212.

28. Rekimoto, J., Oba, H., and Ishizawa, T. SmartPad: a
finger-sensing keypad for mobile interaction. In CHI ’03
extended abstracts, ACM Press (New York, New York,
USA, Apr. 2003), 850–851.

29. Rosenberg, I., and Perlin, K. The UnMousePad: an
interpolating multi-touch force-sensing input pad. ACM
Transactions on Graphics 28, 3 (July 2009), 1.

30. Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T.,
Finocchio, M., Moore, R., Kipman, A., and Blake, A.
Real-time human pose recognition in parts from single
depth images. In CVPR 2011, IEEE (2011), 1297–1304.

31. Song, H., Benko, H., Guimbretiere, F., Izadi, S., Cao,
X., and Hinckley, K. Grips and gestures on a multi-touch
pen. In Proceedings of ACM CHI (May 2011).

32. Torralba, A., Fergus, R., and Freeman, W. T. 80 million
tiny images: a large data set for nonparametric object
and scene recognition. IEEE PAMI 30, 11 (Nov. 2008),
1958–70.

33. Villar, N., Cao, X., Chen, B., Izadi, S., Rosenfeld, D.,
Benko, H., Helmes, J., Westhues, J., Hodges, S., Ofek,
E., and Butler, A. Mouse 2.0: multi-touch meets the
mouse. In Proceedings of ACM UIST (Oct. 2009).

34. Wang, R., Paris, S., and Popović, J. 6D hands:
markerless hand-tracking for computer aided design. In
Proceedings of ACM UIST (Oct. 2011), 549–558.

35. Wang, R. Y., and Popović, J. Real-time hand-tracking
with a color glove. In ACM Transactions on Graphics,
vol. 28 (July 2009).

36. Westerman, W., Elias, J. G., and Hedge, A.
Multi-Touch: A New Tactile 2-D Gesture Interface for
Human-Computer Interaction. Proceedings of the
Human Factors and Ergonomics Society Annual
Meeting 45, 6 (Oct. 2001), 632–636.

37. Wilson, A. D. Robust computer vision-based detection
of pinching for one and two-handed gesture input. In
Proceedings of ACM UIST (Oct. 2006), 255–258.

38. Yang, X.-D., Mak, E., McCallum, D., Irani, P., Cao, X.,
and Izadi, S. LensMouse: augmenting the mouse with
an interactive touch display. In Proceedings of ACM
SIGCHI (Apr. 2010), 2431–2440.

	INTRODUCTION
	RELATED WORK
	INTERACTING WITH THE MOTION KEYBOARD
	HARDWARE
	Sensor electronics
	Sensor Data
	Sensor characteristics and calibration

	GESTURE RECOGNITION
	METHOD
	Building motion signatures
	Training data
	Classification
	Discussion of Method

	SYSTEM EVALUATION
	Test Data and Forest Parameters

	PRELIMINARY USAGE OBSERVATIONS
	DISCUSSION
	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

