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ANCILLA APPROXIMABLE

QUANTUM STATE TRANSFORMATIONS

ANDREAS BLASS AND YURI GUREVICH

Abstract. We consider the transformations of quantum states
obtainable by a process of the following sort. Combine the given
input state with a specially prepared initial state of an auxiliary
system. Apply a unitary transformation to the combined system.
Measure the state of the auxiliary subsystem. If (and only if) it is
in a specified final state, consider the process successful, and take
the resulting state of the original (principal) system as the result
of the process.

We review known information about exact realization of trans-
formations by such a process. Then we present results about ap-
proximate realization of finite partial transformations. We consider
primarily the issue of approximation to within a specified positive
ε, but we also address the question of arbitrarily close approxima-
tion.

1. Introduction and main results

Consider an experiment involving the composition of two distinguish-
able quantum systems, a principal and an auxiliary one. Initially the
auxiliary system is in a prepared initial state, and the principal system
is in an arbitrary state |ψ〉. Apply a unitary operator U to the compos-
ite system, then measure the auxiliary system, and declare success if
the auxiliary system is found to be in a particular (designated a priori)

final state. In the case of success, let Û |ψ〉 be the resulting state of the

principal system. The transformation Û is not necessarily unitary or
even total.
Such an experiment is a recurring theme in recent quantum-

computation literature; see [2, 3, 5, 6, 7, 9, 11, 16] for example. Typ-
ically one tries to maximize the probability that the measurement is
successful and the state Û |ψ〉 is of some desired form, and one may or
may not be able to use the resulting state of the principal system if
the measurement is not successful. In particular, Childs and Wiebe use
such an experiment to simulate convex linear combinations of unitary
operators [6].
A number of natural questions arise including these:
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• Which state transformations of the principal system can be ex-
actly realized that way?

• What success probability can be guaranteed?
• How many ancillas are needed to achieve the desired results?

Much depends of course on the constraints imposed on the unitary
operator U . In the simple case where no restrictions are placed on U ,
the answers to the three questions are known. We summarize them
in the following Exact Realization Theorem. But first we need a few
definitions.
Let H,H+ be the Hilbert spaces for the principal and composite

systems respectively. We presume that H+ is finite dimensional. If
|α1〉 and |α2〉 are the designated initial and final states of the auxiliary
system and if the measurement is successful, then

Û |ψ〉 = π0U(|α1〉 ⊗ |ψ〉)
where π0 is the composition

H+ → {|α2〉} ⊗ H → H

of a projection and an isomorphism, and the vector Û |ψ〉 is unnormal-
ized. As in much of the literature, we usually ignore this distinction
between a nonzero vector in a Hilbert space and the state represented
by the vector, though we try to pay attention to the distinction in
formal definitions and theorems. The following definition takes into
account that nonzero collinear state vectors represent the same state.
(Two vectors are collinear if one of them is a nonzero multiple of the
other.)

Definition 1 (Exact Realization). A unitary operator U onH+ exactly

realizes a partial transformation T of H − {~0} (into itself) if Û |ψ〉 is
nonzero and collinear with T |ψ〉 for every |ψ〉 in the domain Dom(T )
of T .

The success probability SP(U, |ψ〉) of U on a normalized H vector

|ψ〉 is ‖Û |ψ〉‖2. The guaranteed success probability of U is

min{SP(U, |ψ〉) : ‖|ψ〉‖ = 1}.
The use of min (rather than inf) is justified because the space of unitary
operators is compact. Every linear operator on H can be viewed as a
partial transformation1of H− {~0}.

1By “partial”, we mean “not necessarily total”; so total transformations are a
special case of partial ones.
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Theorem 2 (Exact Realization). Let L range over nonzero linear
operators on H, and let U range over unitary operators on H+.

(1) Every L is exactly realizable by some U , and one ancilla suffices
for the purpose.

(2) Let λmin and λmax be the minimal and maximal eigenvalues re-
spectively of the positive operator L†L. If U exactly realizes L

then the guaranteed success probability of U is at most
λmin

λmax
,

and the upper bound is achieved by some unitary operators U .

Even though Exact Realization Theorem is well-known to experts,
we have found in the literature only a quick proof of Claim (1), namely
the proof of Claim 6.2 in [1]. For the reader’s convenience and to make
this paper more self-contained, we give a detailed proof of the Exact
Realization Theorem in §3. Specifically we need the following corollary
of Theorem 2.

Corollary 3. A partial transformation T of H−{~0} is exactly realizable
if and only if there is a linear operator L on H such that L|ψ〉 is nonzero
and collinear with T |ψ〉 for every |ψ〉 ∈ Dom(T ).

Our main concern in this paper is with approximate realizability in
the simple case of our experiment where no restrictions are placed on
the unitary operator U onH+. It will be convenient to identify nonzero
collinear H vectors and work in the resulting complex projective space
P where each point represents a unique state of the principal system,
and each state is represented by a unique point in P. We presume
that H = Cn, so that P is the complex projective space of (complex)
dimension n− 1.
We show that, while almost every partial transformation of P with

domain of cardinality ≤ n + 1 is approximately realizable, almost no
partial transformation of P with a larger domain is approximately re-
alizable. To formulate this resul t precisely, we need a couple of defini-
tions.
The point in P given by a nonzero vector ~v in H will be denoted Q~v.

Any linear transformation L of H induces a partial transformation
Q~v 7→ Q(L~v) of P, denoted QL, with Dom(QL) = {Q~v : L~v 6= ~0}.
The Q notation alludes to the fact that P is a quotient of H − {~0}.
Corollary 3 justifies the following definition.

Definition 4 (Exactly realizable transformations of P). A partial
transformation τ of P is exactly realizable if there is a linear trans-
formation L of H such that QL coincides with τ on Dom(τ).
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The complex projective space P is a Riemannian manifold endowed
with the Fubini-Study metric, the only (up to a nonzero constant fac-
tor) Riemannian metric on P invariant under (the transformations of P
induced by) unitary transformations of the overlying Hilbert space H.
The Fubini-Study metric induces the standard Fubini-Study distance
measure

FS(Q~u,Q~v) = arccos
|〈~u|~v〉|
|~u| · |~v| .

It will be convenient to represent finite transformations of P as
point sequences. Fix a positive integer ℓ. A suite σ is a list
(p1, . . . pℓ, pℓ+1, . . . , p2ℓ) of 2ℓ points where the first ℓ points p1, . . . , pℓ
are all distinct; it is a point in the direct product P2ℓ of the complex
projective space P. We think of it as specifying a transformation

pi 7→ pℓ+i wherei = 1, . . . , ℓ

and we say that it is exactly realizable if the transformation is. We
carry over to suites the standard notation for domain and range of
partial transformations; thus, we write Dom(σ) for the first half,
(p1, . . . , pℓ), of σ and Range(σ) for the second half, (pℓ+1, . . . , p2ℓ). No-
tice, though, that a suite contains more information than just the trans-
formation that it specifies, because a suite also gives an ordering of its
domain.
In what follows, ε ranges over positive real numbers.

Definition 5 (Approximately realizable suites).

• A suite (q1, . . . , q2ℓ) ε-approximates a suite (p1, . . . , p2ℓ) if every
FS(pj, qj) < ε.

• A suite σ is ε-approximable if there is an exactly realizable suite
τ that ε-approximates σ.

• A suite is infinitely approximable if it is ε-approximable for ev-
ery ε > 0.

Theorem 6 (Approximate Realization). In P2ℓ, we have the following.

(1) If ℓ ≤ n + 1 then the set of exactly realizable suites is a set of
full measure.

(2) If ℓ > n + 1 then ε-approximable suites form an open set of
volume O(ε2(ℓ−n−1)(n−1)).

The proof of Claim (1) of Theorem 6 is elementary but the proof
of Claim (2) involves the volume-of-the-tube theory pioneered by Her-
mann Weyl [8, 14] and Tarski’s theorem about quantifier elimination
in the first-order theory of algebraically closed fields [12].
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Theorem 7 (Infinite Approximability). If ℓ < 3 then every suite is
exactly realizable. Assume that ℓ ≥ 3 but the principal quantum system
consists of just one qubit. A suite (p1, . . . , p2ℓ) is infinitely approximable
if and only if it is exactly realizable or else exactly ℓ− 1 of the ℓ points
(pℓ+1, . . . , p2ℓ) are equal.

The problem of characterization of infinitely approximable suites in
the general case is open.

Acknowledgments. We thank Ralf Spatzier for finding useful
volume-of-the-tube references; Nathan Wiebe for his comments on the
earlier version of this paper; and Dorit Aharonov, Vadym Kliuchnikov
and Matthew Hastings for useful discussions.

2. Prescribing inner products

For the reader’s convenience, we prove here some well-known facts
about existence of vectors with prescribed inner products. We’ll work
over the complex field C. Except when the contrary is explicitly stated,
vector spaces of the form Cd are assumed to be equipped with the
standard (for physicists) inner product

〈~a,~b〉 =
d

∑

i=1

aibi.

Proposition 8. Let Q be an n × n matrix of complex numbers. The
following statements are equivalent.

(1) For some positive integer d, there are n vectors ~xi ∈ C
d (where

i = 1, 2, . . . , n) such that 〈~xi, ~xj〉 = Qij for all i and j.
(2) There are n vectors ~xi ∈ Cn (where i = 1, 2, . . . , n) such that

〈~xi, ~xj〉 = Qij for all i and j.
(3) Q is Hermitian, and

∑n

i=1

∑n

j=1Qijzizj ≥ 0 for all ~z ∈ Cn.

(4) Q is Hermitian, and all its eigenvalues are non-negative.

Proof. We’ll prove (1)→(3)→(2), and (3)→(4)→(3). Since (2) trivially
implies (1), this will complete the proof.

(1)→(3): Given vectors ~xi as in (1), we have

Qij = 〈~xi, ~xj〉 = 〈~xj , ~xi〉 = Qji,

so Q is Hermitian, We also have, for all ~z ∈ Cn, that
∑

i,j

Qijzizj =
∑

i,j

zi〈~xi, ~xj〉zj = 〈
∑

i

zi~xi,
∑

j

zj~xj〉 ≥ 0,

where the last inequality comes from the fact that the inner product
of any vector with itself is non-negative.
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(3)→(2): Assume (3) and consider an n-dimensional vector space
V over C with a basis {~e1, . . . , ~en}. (To avoid confusion, it is best
not to identify V with C

n at this stage; in particular, we do not want
the standard inner product on V .) Define a sesquilinear form (i.e.,
linear in the second argument and conjugate-linear in the first) B on
V by setting B(~ei, ~ej) = Qij and extending B to all vectors in V by
sesquilinearity. Because Q is Hermitian, B is conjugate-symmetric, i.e.,
B(~u,~v) = B(~v, ~u).
Observe that the expression

∑

i,j Qijzizj , which we know to be non-

negative by (3), is exactly B(
∑

i zi~ei,
∑

i zi~ei).
Temporarily assume that this expression is not only non-negative

but strictly positive for all ~z 6= ~0. Then B is an inner product on V .
So we have an n-dimensional complex inner product space (namely V
with inner product B) containing n vectors (namely the ~ei’s) whose
inner products are given by Qij. But all n-dimensional inner-product
spaces over C are isomorphic, so the standard such space, Cn with the
standard inner product, must also contain such vectors. Thus, we have
(2).
It remains to handle the case where

∑

i,j Qijzizj , though non-

negative for all ~z as required in (3), vanishes for some non-zero vectors
~z. So B fails to be an inner product on V ; it satisfies all the require-
ments in the definition of inner products except that

K = {~u ∈ V : B(~u, ~u) = 0}
is not merely {~0}.
We claim that B(~u,~v) = 0 whenever ~u ∈ K, for all ~v ∈ V . Indeed,

for any such ~u and ~v and for any α ∈ C, we have

0 ≤ B(~v + α~u,~v + α~u) = B(~v, ~v) + 2Re(αB(~u,~v)).

If B(~u,~v) were not zero, then an appropriate choice of α would make
Re(αB(~u,~v)) so negative as to violate this inequality. This completes
the proof of the claim that B(~u,~v) = 0 whenever ~u ∈ K, for all ~v ∈ V .
This claim has two consequences. First, it tells us that

K = {~u ∈ V : (∀~v ∈ V )B(~u,~v) = 0}
and so K is a vector subspace of V . So we can form the quotient space
V/K; it is a complex vector space of dimension < n.
Second, we have, for arbitrary ~u, ~u′ ∈ K and arbitrary ~v, ~w ∈ V ,

that
B(~v + ~u, ~w + ~u′) = B(~v, ~w).

This means that B determines a well-defined, conjugate-symmetric,
sesquilinear form B̂ on V/K. That is, if we write [~v] for the coset in
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V/K that contains the vector ~v, then

B̂([~v], [~w]) = B(~v, ~w)

is well-defined and satisfies all the requirements for an inner product
except perhaps positivity. It satisfies B̂([~v], [~w]) ≥ 0 because of the
analogous fact about B. But also, by dividing out K, we have elim-
inated the danger of equality here. That is, if B̂([~v], [~v]) = 0, then

B(~v, ~v) = 0, which means ~v ∈ K and so [~v] = [~0]. So B̂ is an inner
product on V/K.

Again, we have a complex inner product space (namely V/K with B̂)
containing n vectors (namely the [~ei]’s) whose inner products are given
by the entries of Q. The same therefore holds of any other complex
inner product space of the same dimension, since all such spaces are
isomorphic. Since V/K has dimension < n, we can find appropriate
vectors in C

n (with room to spare), verifying (2).

(3)→(4): Since Q is Hermitian, all its eigenvalues are real. If one

of them were negative, say λ < 0 with eigenvector ~z 6= ~0, then
n

∑

i=1

n
∑

j=1

Qijzizj =

n
∑

i=1

zi(Q~z)i = λ

n
∑

i=1

zizi < 0,

contradicting the assumption (3).

(4)→(3): Since Q is Hermitian, there is a unitary matrix U such
that UQU † is a diagonal matrix D, whose diagonal entries are the
eigenvalues of Q, known to be non-negative by (4). So we have Q =
U †DU . For any ~z ∈ C

n, view ~z as a column vector and observe that
∑

i,j

Qijzizj = ~z†Q~z = ~z†U †DU~z = ~w†D~w,

where we’ve introduced the abbreviation ~w for U~z. Since D is diagonal,
we have

~w†D~w =
∑

i

Diiwiwi,

in which every summand is non-negative. This completes the verifica-
tion of (3) and thus the proof of the proposition. �

3. Exact Realization Theorem

We use same name for a linear operator and its matrix when the
vector basis is clear from the context. Let L range over nonzero linear
operators on the Hilbert space H = Cn for the principal system. L is
weakly contracting if ‖L~v‖ ≤ ‖~v‖ for every vector ~v ∈ H. Further, let
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λmin and λmax be the minimal and maximal eigenvalues of the positive
operator L†L.

3.1. Literal realization. We start by introducing a particulary simple
version of exact realization. Recall that, according to §1, every unitary
operator U on the Hilbert space H+ for the composite system gives rise
to a linear operator Û on H.

Definition 9. A unitary operator U onH+ literally realizes L if L = Û .

Proposition 10. The following statements are equivalent.

(1) L is literally realizable.
(2) L is literally realizable with one ancilla.
(3) All eigenvalues of L†L are ≤ 1.
(4) L is weakly contracting.

Proof. Clearly (2)→(1). Taking into account that the Hermitian oper-
ator L†L is diagonalizable, we see that (3) is equivalent to

(3′) All eigenvalues of I − L†L are ≥ 0.

In the rest of the proof, we establish (1) → (3′) → (2) as well as
(3) ↔ (4)
Let k be the dimension of the Hilbert space for the auxiliary system.

We work in some basis |0〉, . . . , |kn− 1〉 of H+. To simplify the expo-
sition, we presume (without loss of generality really) that the initial
state |α1〉 and the final state |α2〉 of the auxiliary system coincide, and
that the first n basic states |0〉, . . . , |n − 1〉 of the composite system
are exactly the basic states where the auxiliary system is in state |α1〉.
According to §1,

Û |ψ〉 = ιπU(|α1〉 ⊗ |ψ〉)
where π is the projection H+ → {|α1〉} ⊗ H and ι is the isomorphism
{|α1〉} ⊗ H → H.

(1)→ (3′) Assume L = Û . The matrix πU is obtained from matrix
U by leaving the upper n rows intact and zeroing the other entries; the
lower kn − n rows of U play little role in our proof. Further, only the
upper n entries of the vector |α1〉 ⊗ |ψ〉 may be nonzero, and so the
right kn− n columns of matrix U play little role in our proof. If M is
the upper left n × n minor of U then M~v = L~v for all vectors ~v ∈ H.
Thus matrix L is the upper left minor of matrix U .
Let X be the lower left (kn− n)× n submatrix of U (the submatrix

right under the minor L), and let |L1〉, . . . , |Ln〉 and |X1〉, . . . , |Xn〉 be
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the columns of L and X respectively. Since U is unitary, we have

〈Xi|Xj〉 =
{

−〈Li|Lj〉 if i 6= j,

1− 〈Li|Lj〉 if i = j,

so that the matrix X†X = I − L†L. By the implication (2)→(4) of
Proposition 8, with I − L†L playing the role of Q, all eigenvalues of
I − L†L are non-negative.

(3′) → (2) Assume (3′). By the implication (4) → (1) of Proposi-
tion 8, with I − L†L playing the role of Q, there exist n-dimensional
vectors |X1〉, . . . , |Xn〉 such that the inner products 〈Xi|Xj〉 form the
matrix I − L†L.
Now we are ready to construct the desired matrix U . Put L in the

upper left corner of the matrix. Right under L put the n × n matrix
with columns |X1〉, . . . , |Xn〉. This gives us the first n columns of U
which form an orthonormal basis B for an n-dimensional subspace of
H+. Extend the list B with the standard basis |0〉, . . . , |2n−1〉 for H+

and then apply the Gram-Schmidt algorithm to the resulting list in
order to obtain an orthonormal basis for H+ extending B. This basis
provides the columns of the desired matrix U . Thus claims (1),(2),(3)
are equivalent. To finish the proof, it suffices to establish that (3) ⇐⇒
(4).

(3) → (4) Assume (3). Let vectors |ei〉 form an orthonormal basis of
eigenvectors of L†L with eigenvalues λ1, . . . , λn respectively. Then |ψ〉
is a linear combination

∑

i αi|ei〉. We have

‖L|ψ〉‖2 = (L|ψ〉)†(L|ψ〉) = 〈ψ|L†L|ψ〉
=

∑

i,j

αj αi〈ej |L†L|ei〉 =
∑

i,j

αj αiλi〈ej|ei〉

=
∑

i

|αi|2λi ≤
∑

i

|αi|2 = ‖|ψ〉‖2.

Next assume (4) and let |ψ〉 be an eigenvector of L†L with some
eigenvalue λ. Then

λ‖|ψ〉‖2 = 〈ψ|λ|ψ〉 = 〈ψ|L†L|ψ〉
= (L|ψ〉)†(L|ψ〉) = ‖L|ψ〉‖2 ≤ ‖|ψ〉‖2,

so λ ≤ 1. �

Corollary 11. [6] Any convex combination of unitary operators is lit-
erally realizable.
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Proof. Suppose L is a convex combination of some unitary operators
Ui. Then, for any vector |ψ〉, L|ψ〉 is a convex combination (with the
same coefficients) of the vectors Ui|ψ〉, each of which has the same
length as |ψ〉. Since balls in Hilbert space are convex, it follows that
L|ψ〉 has at most the same length as |ψ〉. So L is weakly contracting.
By Proposition 10, L is literally realizable. �

Childs andWiebe prove more in [6]. In particular, the U that literally
realizes a convex combination of two Ui’s can be computed by a circuit
consisting of (a) unitary operators that act only on the ancilla and
(b) the controlled Ui gates.

3.2. Literal realization vs. exact realization.

Proposition 12. A unitary operator U on H+ exactly realizes a
nonzero linear operator L if and only if it literally realizes some nonzero
multiple cL of L.

Proof. The if part of the proposition is obvious: if cL = Û then L~v and
Û~v are collinear for every ~v ∈ H. To prove the only-if part, we need
an auxiliary result from linear algebra.

Lemma 13. Let D,R be finite-dimensional complex vector spaces, and
let A,B be linear transformations from D to R such that A~v and B~v
are collinear for every ~v ∈ D. Then A,B are collinear, that is A = cB
for some nonzero c.

Proof of Lemma 13. First we treat the case where B is one-to-one. Let
d be the dimension of D. If d = 1, the lemma is obvious, so we may
assume that d ≥ 2. Let vectors ~v1, . . . , ~vd in D form a basis in D.
Since B is one-to-one, the vectors B~vi are linearly independent. By
the collinearity premise, there are nonzero complex numbers ci such
that A~vi = ciB~vi. It suffices to show that all the numbers ci are equal.
For any i < j, let ~u = ~vi+~vj . By the collinearity premise, A~u = cB~u

for some c. We have

A~u = cB~u = cB~vi + cB~vj ,

A~u = A(~vi + ~vj) = ciB~vi + cjB~vj ,

so that cB~vi + cB~vj = ciB~vi + cjB~vj . But vectors B~vi, B~vj are inde-
pendent. Then c = ci and c = cj and therefore ci = cj .
Second we treat the case where B is not one-to-one. Without loss

of generality we may suppose that B is nonzero. Clearly, A~u = ~0
whenever B~u = ~0. That is, A vanishes on the kernel K of B. So we
can regard both A and B as being defined on the quotient D/K, and
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of course B is one-to-one on D/K, so that the preceding discussion
applies.
Therefore there is a nonzero complex number c such that A = cB

on D/K. We check that A = cB on D. Pick any nonzero vector
~v ∈ D. Obviously A~v = cB~v if ~v ∈ K. Suppose that ~v /∈ K. By the
collinearity premise, A~v = c′B~v for some nonzero complex number c′.
This equality results in a similar equality A[~v] = c′B[~v] in the quotient
D/K where we also have A[~v] = cB[~v]. Since vector B[~v] is not zero,
it follows that c′ = c. �

Now we are ready to prove the only-if part of the proposition. As-
sume that U exactly realizes L, so that Û~v is nonzero and collinear
with L~v whenever L~v 6= ~0. If the implication

L~v = ~0 → Û~v = ~0.

holds then, by Lemma 13, some nonzero multiple cL of L coincides
with Û and therefore is literally realizable. Thus, it suffices to prove
the implication.
Suppose L~v = ~0. Since L is nonzero, there is a vector ~w orthogonal

to the kernel of L, so L~w and L(~v + ~w) are equal and nonzero. Hence

Û ~w and Û(~v+ ~w) are nonzero and collinear, so Û~v = bÛ ~w and therefore

Û(~v − b~w) = ~0 for some b. But then L(~v − b~w) = ~0, so that b = 0 and

Û~v = ~0. �

3.3. Guaranteed success probability.

Proposition 14. If a unitary operator U literally realizes L then the
guaranteed success probability of U is the least eigenvalue λmin of L†L.

Proof. Let |ψ〉 range over the unit sphere of Cn. Recall from §1 that
the guaranteed success probability of U is min|ψ〉 SP(U, |ψ〉) where

SP(U, |ψ〉) = ‖Û |ψ〉‖2, and assume that U literally realizes L. Then

SP(U, |ψ〉) = ‖L|ψ〉‖2.

There exist eigenvectors |e1〉, . . . , |en〉 of L†L, with eigenvalues
λmax = λ1 ≥ · · · ≥ λn = λmin respectively, that form an orthonormal
basis for H. An arbitrary unit vector |ψ〉 in H is a linear combination
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∑n

i=1 αi|ei〉. We have

SP(U, |ψ〉) = ‖L|ψ〉‖2 = (L|ψ〉)†(L|ψ〉) = 〈ψ|L†L|ψ〉
=

∑

i,j

αjαi〈ej|L†L|ei〉 =
∑

i,j

αjαiλi〈ej|ei〉

=
∑

i

|αi|2λi ≥ λmin

∑

i

|αi|2 = λmin.

In particular SP(U, |en〉) = λn = λmin. �

Corollary 15. Suppose that U literally realizes L. Then L is invertible
if and only if the guaranteed success probability of U is positive.

3.4. Proof of Exact Realization Theorem.

Proof of Claim (1) of Theorem 2. If some nonzero multiple cL of the
given linear operator L on H is literally realizable then, by Propo-
sition 10, cL is literally realizable by some unitary operator U with
just one ancilla. But then U exactly realizes L, and one ancilla suf-
fices. Thus it suffices to find a complex number c 6= 0 such that cL is
literally realizable.
If λmax ≤ 1 set c = 1; otherwise set c = 1/

√
λmax. In either case, by

Proposition 10, cL is literally realizable. �

Proof of Claim (2) of Theorem 2. Assume that U exactly realizes L.
By Proposition 12, U literally realizes some nonzero multiple M = cL
of L. Let µmin and µmax be the minimal and maximal eigenvalues of
M †M respectively. Taking into account thatM is nonzero and invoking
Proposition 10, we have

0 < µmax = |c|2λmax ≤ 1.

By Proposition 14, the guaranteed success probability of U is

µmin = |c|2λmin ≤ λmin/λmax.

There is a real d ≥ 1 such that |cd|2λmax = 1. Redefine M from cL to
cdL. The unitary dU literally realizes M and therefore exactly realizes
L. We have

0 < µmax = |cd|2λmax = 1,

and the guaranteed success probability of dU is

µmin = |cd|2λmin = λmin/λmax.

�
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4. Approximate Realization Theorem

In this section and in the rest of the paper, we use notation and
definitions from §1. In particular, every nonzero vector ~v = (a1, . . . , an)
in H represents a point Q~v in P. The complex numbers a1, . . . , an are
the homogeneous coordinates of Q~v; at least one of the homogeneous
coordinates is nonzero. Further, any linear transformation L of H
induces a partial transformation QL of P. If L is invertible then QL is
total. Such total transformations QL are known as projective linear.

4.1. Projective linear transformations. As usual, nonzero vectors
~v1, . . . , ~vm in Cn are said to be in general position if, for any k ≤ n,
any k of the m vectors are linearly independent. Points Q~v1, . . . , Q~vk
are in general position if the vectors ~v1, . . . , ~vk are so.

Lemma 16. If points p1, . . . , pn+1 are in general position and points
q1, . . . , qn+1 are in general position then there is a unique projective
linear transformation g such that every g(pi) = qi.

Proof. Let ~en+1 be the sum ~e1+· · ·~en of the basic vectors inH. It is easy
to check that vectors ~e1, . . . , ~en+1 are in general position. It suffices to
prove that for any vectors ~v1, . . . , ~vn+1 in general position there exists a
unique, up to a constant factor, invertible linear operator L on H such
that every L~ei is collinear with ~vi.
First we prove the uniqueness. Suppose that L is a linear opera-

tor such that every L~ei is collinear with ~vi, and so there are nonzero
complex numbers zi such that

L~ei = zi~vi for i = 1, . . . , n+ 1.

In the basis ~e1, . . . , ~en, the column vector ~ei with i ≤ n has 1 at row i
and zeroes everywhere else, so that the ith column of the desired L is
zi~vi. Since ~en+1 = ~e1 + · · ·+ ~en, we have

zn+1~vn+1 =
n

∑

i=1

zi~vi .

Since vectors ~v1, . . . , ~vn are independent, ~vn+1 = a1~e1 + · · · + an~en
for some complex numbers a1, . . . , an, so that z1 = a1zn+1, . . . , zn =
anzn+1. Since vectors ~v0, . . . , ~vn are in general position, the coefficients
a1, . . . , an are nonzero. Let L0 be the invertible matrix with columns
a1~v1, . . . , an~vn. Then L = zn+1L0.
Second we prove the existence. To this end, check that every L0~e1 =

a1~v1, . . . , L0~en = an~vn and L0~en+1 = ~vn+1. �
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Recall that suites are points of P2ℓ where the first ℓ coordinates are
distinct and that a suite τ = (p1, . . . , p2ℓ) specifies the transformation
τ(pj) = pℓ+j with domain {p1, . . . , pℓ}.
Definition 17 (PL manifold). The projective linear manifold PL con-
sists of the suites specifying partial transformation of P that can be
extended to projective linear transformations of P.

We say that, over H, a sequence M1,M2, . . . of linear operators con-
verges to a linear operator L if, for every vector ~v, the sequence Mi~v
converges to L~v.

Lemma 18. Over H, for every linear operator L on H there is a
sequence M1,M2, . . . of invertible linear operators that converges to L.

Proof. Without loss of generality, L is positive. Indeed, by the Polar
Decomposition Theorem, L = UL′ for some unitary U and positive L′.
If invertible linear operators M ′

i converge to L′ then UM ′
i → UL′.

Fix an orthonormal basis for H composed of eigenvectors of L. In
that basis, L is represented by a diagonal matrix. The (matrix for the)
desired Mi is obtained from L by replacing every zero on the diagonal
with 1/i. �

Proposition 19 (PL approximants suffice). For every ε-approximable
suite σ there is a PL suite that ε-approximates σ.

Proof. Given an ε-approximable suite σ, first choose an exactly real-
izable suite τ that ε-approximates σ. Let δ be the maximum of the
Fubini-Study distances between corresponding components of σ and τ .
So δ < ε. By Corollary 3, we have a linear operator L that realizes
τ . By Lemma 18, we can find invertible linear operators M arbitrar-
ily close to L. Taking M close enough to L, we can ensure, thanks
to the continuity of the quotient map Q : H → P, that QM maps
each point in Dom(τ) to within ε − δ of the corresponding point in
Range(τ). Then, letting τ ′ be the suite with the same domain half as
τ but the range half given by applying QM to the domain, we get that
τ ′ is within ε− δ of τ and therefore within ε of σ. �

4.2. The PL manifold. The complex projective space P has dimen-
sion n− 1. So dim(P2ℓ) = 2ℓ(n− 1).

Lemma 20 (Dimension of PL).

(1) If ℓ ≤ n+ 1 then PL is an open set of full measure in P2ℓ, and
so dim(PL) = 2ℓ(n− 1).

(2) If ℓ > n+ 1 then dim(PL) ≤ (n− 1)(ℓ+ n + 1).
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Proof of Lemma. Claim (1) follows from Lemma 16. We prove
Claim (2).
A PL suite τ = (p1, . . . , p2ℓ) is determined by p1, . . . , pℓ and an in-

vertible linear operator L on H = Cn such that QL(pj) = pℓ+j for
j ≤ ℓ. So PL is the range of a (smooth, in fact rational in local coor-
dinates) map from Pℓ × L where L is the space of linear operators on
Cn modulo scalar multiples. Thus

dim(PL) ≤ dim(Pℓ)+dim(L) = ℓ(n−1)+(n2−1) = (n−1)(ℓ+n+1).

This completes the proof of the lemma. �

We remark that the upper bound in Claim (2) of the lemma is, in
all nontrivial cases (i.e., n > 1), strictly below the dimension of P2ℓ.
It will be convenient to work in affine spaces rather than projective

ones. To this end, cover the complex projective space P by its n stan-
dard coordinate patches A1, . . . , An. Here Ai consists of those points
in P whose ith homogeneous coordinate is not zero; multiplying by a
scalar, we can arrange that the ith homogeneous coordinate is 1, and
then we can use the remaining n−1 homogeneous coordinates as affine
coordinates on Ai. The space P2ℓ is covered by n2ℓ coordinate patches
A that are the cartesian products of the coordinate patches in the 2ℓ
factors.

Proposition 21 (Variety for PL). In any coordinate patch A of P2ℓ,
there exist a full-measure open set G and an algebraic variety V such
that PL ⊆ V and G ∩ V ⊆ PL.

Here an algebraic variety is the set of solutions of a system of poly-
nomial equations over the field C of complex numbers. Notice that the
union of two varieties is a variety. For example,

(f1 = 0 ∧ f2 = 0) ∨ (g1 = 0 ∧ g2 = 0) ⇐⇒
(f1g1 = 0) ∧ (f1g2 = 0) ∧ (f2g1 = 0) ∧ (f2g2 = 0).

Proof. It is clear from the definition of PL that the intersection A∩PL
is definable, in terms of the affine coordinates of A, in the first-order
language of the field C. By Tarski’s theorem [12], the first-order defi-
nition of A ∩ PL can be rewritten in quantifier-free form. We can also
arrange that the quantifier-free definition is in disjunctive normal form,
and we can assume that each disjunct is satisfied by some points, be-
cause any other disjuncts could simply be omitted from the disjunctive
normal form.
Any disjunct δ is a conjunction of some polynomial equations and

some inequations. (“Inequation” here means 6=, whereas “inequality”
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traditionally means <,>,≤,≥.) We can further arrange that there is at
most one inequation among the conjuncts, because (f 6= 0)∧ (g 6= 0) is
equivalent to fg 6= 0, and that there is at least one inequation, because
if there is none then we can adjoin 1 6= 0. So δ has the form

f1 = f2 = · · · = fk = 0 ∧ g 6= 0,

where all fj as well as g are polynomials. Let Eδ = Set(g = 0). Here
Set(g = 0) is the solution set for g = 0 in A; we will use similar
notation for other formulas as well. Further, let E be the union, over
all disjuncts δ, of the sets Eδ. The desired full-measure open set is
G = A− E.
Since there are only finitely many disjuncts, it suffices to prove that,

for any disjunct δ, there is an algebraic variety V in A such that
Set(δ) ⊆ V and G ∩ V ⊆ PL is a set of measure 0.
To obtain the desired V , we simply remove the inequation from δ,

so that V = Set(f1 = · · · = fk = 0). This looks simplistic but it works.
Obviously V is an algebraic variety and V includes Set(δ). Further,

V = [V ∩ Set(g 6= 0)] ∪ [V ∩ Set(g = 0)]

= Set(δ) ∪ [V ∩ Set(g = 0)]

⊆ PL ∪ Eδ
and therefore G ∩ V ⊆ PL. �

4.3. Tubes. The purpose of this subsection is to provide some informa-
tion on tubes that we’ll need in the proof of Approximate Realization
Theorem.
Consider a one-dimensional curve L in a three-dimensional cube.

Given a small ε > 0 and a point p ∈ L, form a disc of radius ε,
within the ambient cube, centered at p and orthogonal to L at p. (For
simplicity, we ignore the possibility that the disc bulges beyond the
cube. More pedantically, we should be talking about the portion of the
disc within the cube.) As p traverses the curve L, the disc traverses a
three-dimensional tube of radius ε around L.
Similarly the ε-approximable points of P2ℓ form a tube, Tube ε

around the set of exactly approximable suites. By Proposition 19,
it is also a tube around the PL manifold.
If the curve L is nice, one may expect that the volume of the three-

dimensional tube of radius ε is about πε2 times the length of L. One
can estimate the volume of Tube ε in a similar way. But the curve L
can be so curly that its length is infinite; the classical example is the
curve sin(1/x) where 0 < x < 1 which has a singularity at x = 0. The
curve may even fill in the whole cube. Of course, the PL manifold does
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not look bad, and there is a well developed theory of tubes around a
submanifold of a given manifold [8]. The PL manifold has singularities,
and it is not obvious at all how to apply the general theory of tubes.
Fortunately, by Proposition 21, the PL manifold is, up to a set of
measure zero, a finite union of algebraic varieties. That helps.

Theorem 22 (Wongkew’s theorem [17]). Let V be an algebraic vari-
ety of codimension k in the m-dimensional Euclidean space given by
polynomials of degree ≤ d. Then there exist constants ck, . . . , cm which
depend only on m, so that for any ball B of radius R and any positive ε,

the volume of the ε-tube around B ∩ V is bounded by
m
∑

j=k

(cjd
jRm−j)εj.

Corollary 23. Let V be an algebraic variety of complex codimension
k in a finite-dimensional Hilbert space, and let ε range over positive
reals. For any bounded open set X (or its closure), the volume of the
tube of radius ε around X ∩ V is O(ε2k).

Proof. We get O(ε2k) by taking into account only the leading term
in the sum in Wongkew’s theorem. The exponent is doubled because
we work in a Hilbert space and k is the complex dimension whereas
Wongkew’s theorem refers to real dimensions. Finally, balls can be
replaced with bounded open sets because the closure of such a set is
compact and therefore is covered by finitely many balls. �

4.4. Proof of Approximate Realization Theorem.

Proof of Claim (1) of Theorem 6. Assume ℓ ≤ n + 1 and let G be the
set of general-position suites, so that a suite (p1, . . . , p2ℓ) ∈ G if and
only if the 2ℓ points p1, . . . , p2ℓ are in general position. Clearly G is an
open set of measure 1. By Proposition 19, G ⊆ PL, so the PL manifold
is of full measure. But every PL suite is exactly realizable. So the set
of exactly realizable suites is of full measure. �

Proof of Claim (2) of Theorem 6. Assume ℓ ≥ n + 2, and define the
unit cube of a Hilbert space Cm to comprise the points in Cmwhose
coordinates all have absolute values in the real interval [0, 1].
Recall the coordinate patches of P and P2ℓ that we used in the

proof of Proposition 21. If you identify a patch Ai of P with a copy of
Cn−1, then it makes sense to speak about a unit cube Ci in Ai. The
cubes C1, . . . , Cn cover P. Indeed, if p ∈ P and the ith homogeneous
coordinate of p is, in absolute value, a largest homogeneous coordinate
of p then p belongs to the cube Ci.
Now, every coordinate patch A of P2ℓ is a cartesian product of co-

ordinate patches in the 2ℓ factors of P2ℓ. View every factor patch as
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a copy of Cn−1. Then A is a copy of C2ℓ(n−1). The unit cube C in A
is the cartesian product of the unit cubes in the 2ℓ factor patches. It
follows that P2ℓ is covered by the unit cubes in its coordinate patches.
Since the number of such cubes is finite, it suffices to prove the

following for every coordinate patch A of P2ℓ: The ε-approximable
suites form an open set of volume O(ε2(ℓ−n−1)(n−1)) in the unit cube C
of A. By Proposition 19, it suffices to prove that, in C, the volume of
the ε-tube around C ∩ PL is O(ε2(ℓ−n−1)(n−1)).
To this end, let G and V1, . . . , Vk be as in Proposition 21. Then

C ∩G is an open set of measure 1 in the cube C and (C ∩G) ∩ PL =
(C ∩G) ∩ (V1 ∪ · · · ∪ Vk).
Since the set C−G is of measure 0, it suffices to prove that, in C∩G,

the volume of the ε-tube around (C ∩G) ∩ PL is O(ε2(ℓ−n−1)(n−1)). To
this end, it suffices to prove that, in C ∩ G, the volume of the ε-tube
around every C ∩ Vj is O(ε2(r−1)(n−1)), but this follows directly from
Corollary 23. �

5. Infinite approximability

Recall that a suite is infinitely approximable if it is ε-approximable
for every positive ε. By Proposition 19, the infinitely approximable
suites form the closure of PL.
We start with a couple of general remarks and then give a complete

characterization of infinitely approximable suites in the case where the
principal quantum system consists of a single qubit. The problem of
characterization of infinitely approximable suites in the general case is
open.

5.1. General considerations. Recall that the Hilbert space H for
our principal quantum system is Cn and the corresponding projective
space is P = CP

n−1. Suites are tuples in P2ℓ where the first ℓ points are
distinct. A suite σ = (p1, . . . , p2ℓ) is viewed as the finite transformation
that sends the domain tuple Dom(σ) = (p1, . . . , pℓ) to the range tuple
Range(σ) = (pℓ+1, . . . , p2ℓ). If σ is infinitely approximable then every
vicinity of σ contains exactly realizable suites; but σ itself does not
have to be exactly realizable.

Example 1 (An infinitely approximable suite that is not exactly realiz-
able). Set ℓ = n+1. In this case, by Lemma 16, every suite in general
position extends to a projective linear transformation and thus is ex-
actly realizable. Since general-position suites form an open set of full
measure, every suite is infinitely approximable. It remains to construct
a suite σ = (p1, . . . , p2n+2) that is not exactly realizable.
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Construction. Given an orthonormal basis ~e1, . . . , ~en for H, let
~en+1 =

∑n

i=1 ~ei. We saw, in the proof of Lemma 16, that the vectors
~e1, . . . , ~en+1 are in general position. Set

p1 = Q~e1, . . . , pn = Q~en, pn+1 = Q~en+1

σ(p1) = · · · = σ(pn) = p1, σ(pn+1) = p2.

By reduction to absurdity, assume that σ extends to the transforma-
tionQL for some linear operator L onH. Then the vectors L~e1, . . . , L~en
are collinear with ~e1, and so the range of L is the one-dimensional sub-
space spanned by ~e1. Accordingly the range of QL consists of a single
point p1 while the range of σ contains p2 as well. �

Lemma 24. For each suite σ of length 2n + 2, whose domain half
Dom(σ) and range half Range(σ) are each in general position, let fσ
be the unique projective linear transformation that maps Dom(σ) to
Range(σ). Then fσ(p) is a continuous function of σ (in the space of
suites) and p (in P).

Proof. Because continuity is a local property, we may assume that the
relevant points, namely the 2n + 2 components of σ and the point p,
are each confined to lie in one of the n coordinate patches that cover
P. (Of course, different components might be in different patches.)
Fixing these patches, we can fix a normalization for the homogeneous
coordinates of the relevant points. If a point is confined to the patch
where the ith homogeneous coordinate is non-zero, then we normalize
its homogeneous coordinates so that the ith coordinate is 1.
We now revisit the proof of Lemma 16, paying attention to continuity

issues.
To begin, consider suites of the form (E,Range(σ)), where the range

is that of a variable σ, as above, but the domain is fixed as the (n+1)-
tuple (Q~e1, . . . , Q~en+1) of points in P corresponding to the n standard
basis vectors ~e1, . . . , ~en and their sum ~en+1 inH. Because Range(σ) is in
general position, the proof of Lemma 16 produces an invertible matrix
L corresponding to the projective linear transformation f(E,Range(σ)),
and now we need to look more closely at this L. (Recall that it is
unique up to an overall nonzero scalar factor.) It can be obtained
as follows. First form the matrix L′ whose columns are the homoge-
neous coordinates (normalized as above) of the first n components of
Range(σ). The corresponding projective linear transformation trans-
forms each Q~ei for i = 1, 2, . . . , n correctly, namely to Range(σ)i, but
it might transform Q~en+1 incorrectly. To correct this one remaining
component, without damaging the other n, we multiply the columns
of L′ by suitable nonzero scalars zi. Any choice of zi’s will preserve
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the correctness of the values at Q~ei for i = 1, 2, . . . , n, but the zi’s
must be chosen carefully to ensure that the new matrix L sends en+1

to Range(σ)n+1. (It would suffice to send en+1 to a vector collinear with
Range(σ)n+1, but this additional freedom is just the freedom, already
noted above, to multiply L by an overall nonzero scalar factor.) The
required condition on the zi’s is a system of linear equations, whose
coefficient matrix is L′. The fact that L′ is invertible ensures not only
that there is a unique solution for the zi’s but also that this solution
is a continuous function of Range(σ). Indeed, by Cramer’s rule, the
solution is given by certain rational functions, namely ratios of deter-
minants, of the entries of L′ and the components of Range(σ)n+1. Since
the entries of L′ are components of Range(σ)i for i = 1, . . . , n, and since
the denominator of these rational expressions, the determinant of L′,
is not zero, we have the claimed continuity of the zi’s. It follows that
L is a continuous function of Range(σ).
Similarly, we can realize the finite transformation (Dom(σ), E) by a

matrix M whose entries are continuous functions of Dom(σ). Indeed,
the previous paragraph shows how to continuously realize (E,Dom(σ)).
To realize (Dom(σ), E), we need only take the inverse matrix. It will
still be a continuous function of Dom(σ), because matrix inversion is a
continuous function, given by ratios of determinants.
Having realized both (E,Range(σ)) and (Dom(σ), E) by matrices

that depend continuously on σ, we need only multiply these matrices
(and observe that multiplication is continuous) to realize σ.
Finally, fσ(p) can be obtained as the image in P of the product of

the matrix realizing σ and the column vector (normalized as above)
representing p. It is therefore a continuous function of σ and p. �

The border of PL consists of the infinitely approximable suites that
do not belong to PL.

Claim 25. If σ is a suite on the border of PL, then there cannot be
n+1 points in general position in Dom(σ) such that the corresponding
n+ 1 points in Range(σ) are also in general position.

Proof. Suppose that σ = (p1, . . . , pl, q1, . . . , ql) were a counterexample.
To simplify the notation, permute the components, if necessary, so that
(p1, . . . , pn+1) and (q1, . . . , qn+1) are general-position (n+1)-tuples. By
Lemma 16, let f be the unique projective linear transformation that
sends pi to qi for all i in the range 1 ≤ i ≤ n + 1. We shall show that
f(pj) = qj also for n+1 < j ≤ l. This will complete the proof, because
it means that f realizes σ and therefore σ belongs to PL, not to its
border as assumed. For the rest of the proof, we fix some arbitrary
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j in the relevant range, n + 1 < j ≤ l, and our goal is to prove that
f(pj) = qj .
Since σ is in the closure of PL, we can consider PL suites σ′ ar-

bitrarily close to σ. Temporarily consider a fixed σ′ near σ. (Later,
we shall let σ′ vary and approach σ.) Let us write τ for the suite
(p1, . . . , pn+1, q1, . . . , qn+1) of length 2(n+1); so f realizes τ . Similarly,
let us write τ ′ for the suite consisting of the first n + 1 points from
the domain and from the range of σ′. Since σ′ belongs to PL, it is
realized by some projective linear transformation f ′. Of course this f ′

also realizes τ ′. Furthermore, f ′ sends the jth component p′j of σ′ to

the corresponding component q′j in the range half of σ′ (the (l + j)th

component of σ′).
Now let σ′ vary, in PL, and approach the border suite σ. Then in

particular, τ ′ approaches τ , p′j approaches pj , and q′j approaches qj.
Applying Lemma 24 (with τ ′ in the role of the σ in the lemma), we
find that f ′(p′j) approaches f(pj). That is, q′j approaches f(pj). But,
since σ′ approaches σ, we also know that q′j approaches qj . Therefore,
f(pj) = qj , as required. �

Now we turn to the single-qubit case where H = C2 and P is the
Riemann sphere = CP

1 that extends the field C of complex numbers
with an additional point ∞.
In this case, Claim 25 simplifies somewhat, because a tuple is in

general position if and only if all its components are distinct. Indeed,
since n = 2 in this case, the definition of general position requires
simply that any two of the components are images, in P, of independent
vectors in H, which means that they are distinct points in P.
Our definition of “suite” requires the components in the domain half

to be distinct, so Claim 25 has the following consequence.

Corollary 26. In the single-qubit case, every suite on the border of
PL has at most two distinct points in its range half.

A point of P with homogeneous coordinates (a, b) can be conve-
niently represented as the ratio a/b where a/b = ∞ if b = 0.
The Riemann-sphere representation of one-qubit states is closely re-

lated to the Bloch-sphere [11], a representation of one-qubit states on
the unit sphere S2 of the three dimensional Euclidean space E3. Re-
call the standard stereographic projection of S2 — from the north pole
onto the plane through the equator. Think of this plane as a copy of
C. Then the standard stereographic projection naturally extends to the
stereographic projection of S2 onto the Riemann sphere by mapping
the north pole onto ∞. Let π be the inverse projection of the Riemann
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sphere onto the Bloch sphere. It is easy to check that πQ|ψ〉 is the
Bloch-sphere representation of the state given by the vector |ψ〉 in H.
In particular π∞ is the north pole of S2. The Fubini-Study distance
between points z1, z2 on the Riemann sphere is one half of the geodesic
distance between the points πz1, πz2 on Bloch sphere.

Lemma 27. If L is a nonzero linear operator on H given by a ma-

trix

(

a b
c d

)

in the standard orthonormal basis of H then QL is the

transformation z 7→ az + b

cz + d
·

Proof. Let ~v = α~e1 + β~e2 and z = α/β. If β 6= 0 then we have

(QL)z = Q(L

(

α
β

)

)

= Q(L

(

z
1

)

) = Q

(

az + b
cz + d

)

=
az + b

cz + d
·

If β = 0 then z = ∞, and we have

(QL)∞ = Q(L

(

1
0

)

) = Q

(

a
c

)

=
a

c
=
a∞+ b

c∞+ d
·

�

5.2. Cross-ratio. Projective linear transformations of the Riemann
sphere are known as fractional linear transformations and have the form
c1z + c2
c3z + c4

where c1, . . . , c4 are complex numbers with c1c4 − c2c3 6= 0.

The cross-ratio of four distinct points a, b, c, d on the Riemann sphere
is defined by

χ(a, b, c, d) =
a− c

b− c
· b− d

a− d
.

If one of the four points is ∞, the cross-ratio is defined by continuity;
that amounts to just omitting those two of the four factors that involve
∞. It is easy to check that the cross-ratio is invariant under fractional
linear transformations.
Although defined for tetrads of distinct points (general position),

the cross-ratio extends continuously to tetrads in which two of the
four points are equal while the other two are distinct (configuration
2 + 1 + 1), and also to tetrads in the configuration 2 + 2, provided we
allow ∞ as a value for the cross-ratio. By Corollary 26, configuration
2+ 1+ 1 cannot occur in the range of a suite on the border of PL, but
configuration 2 + 2 is consistent with the corollary.

Lemma 28. Let a, b, c, d be points in the Riemann sphere P.

(1) If the tetrad (a, b, c, d) is 2 + 2 then χ(a, b, c, d) ∈ {0, 1,∞}.
(2) If a, b, c, d are distinct then χ(a, b, c, d) /∈ {0, 1,∞}.
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Proof. To prove claim (1), check that

• if a = b 6= c = d then χ(a, b, c, d) = 1,
• if a = c 6= b = d then χ(a, b, c, d) = 0,
• if a = d 6= b = c then χ(a, b, c, d) = ∞.

We prove claim (2) by reductio ad absurdum. Let a, b, c, d be arbi-
trary distinct points in P.
First suppose that χ(a, b, c, d) ∈ {0,∞}. If all points a, b, c, d are

complex numbers (not ∞) then clearly χ(a, b, c, d) /∈ {0,∞}. If a = ∞
then χ(a, b, c, d) = b−d

b−c
/∈ {0,∞}. The cases b = ∞, c = ∞ and d = ∞

are similar.
Second suppose that χ(a, b, c, d) = 1. This is equivalent to each of

the following equations:

(a− c)(b− d) = (b− c)(a− d)

ab− ad− bc + cd = ab− bd− ac+ cd

bd+ ac− ad− bc = 0

(a− b)(c− d) = 0.

So either a = b or c = d. �

Every suite σ of length 8 consists of a domain tetrad Dom(σ), where
all four points are distinct, and a range tetrad Range(σ).

Lemma 29. No suite σ of length 8 such that Range(σ) is 2 + 2 is a
limit point of the PL manifold of suites of length 8.

Proof. By reductio ad absurdum, suppose that σ is a suite of length
8 such that Range(σ) is 2 + 2 and σ is a limit point of the PL mani-
fold of suites of length 8. Then there is a sequence τ1, τ2, . . . of PL
suites of length 8 that converges to σ. In particular, the domain
tetrads Dom(τk) of suites τk converge to Dom(σ), and the range tetrads
Range(τk) of suites τk converge to Range(σ). By continuity, cross-
ratios χ(Dom(τk)) → χ(Dom(σ)) and cross-ratios χ(Range(τk)) →
χ(Dom(σ)) as k → ∞. Since fractional linear transformations pre-
serve cross-ratios, every χ(Dom(τk)) = χ(Range(τk)), and so

χ(Dom(σ)) = lim
k→∞

χ(Dom(τk))

= lim
k→∞

χ(Range(τk))

= χ(Range(σ))

which contradicts Lemma 28 �

In contrast to configurations 2+1+1 and 2+2, the cross-ratio does
not extend continuously to tetrads in the configurations 3 + 1 or 4.
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Indeed, any neighborhood of any tetrad in either of these configurations
contains general-position tetrads with all possible cross-ratios.
To see this, it suffices to prove the claim for one tetrad of each of

these two sorts, say (0, 0, 0,∞) and (0, 0, 0, 0). (This sufficiency fol-
lows immediately from the facts that the group of fractional linear
transformations acts transitively on each of these two sorts of tetrads
(because it acts doubly transitively2 on the Riemann sphere) and pre-
serves cross-ratios.) Given any possible cross-ratio, we can find two
tetrads (a, b, c, d) and (a′, b′, c′,∞) with that cross-ratio, where all of
a, b, c, d, a′, b′, c′ are complex numbers (not ∞). Now apply to these
tetrads the fractional linear transformation z 7→ εz for a very small,
positive, real ε. The resulting tetrads have the same cross-ratio and are
very close — arbitrarily close as ε→ 0 — to (0, 0, 0, 0) and (0, 0, 0,∞),
respectively, as claimed.

5.3. Proof of Infinite Approximability Theorem. We assume
that ℓ ≥ 3 and the principal quantum system consists of just one
qubit. Fix an orthonormal basis ~e1, ~e2 in H = C2.

Lemma 30. A suite σ is exactly realizable by means of a nonzero
singular linear operator L on H (so that σ extends to QL) if and only
if all ℓ points in Range(σ) are equal.

Proof. If a nonzero singular linear operator L exactly realizes the given
suite σ then L~e1 and L~e2 are collinear and QL is constant. Hence all
points in Range(σ) are equal.
If all points in Range(σ) are equal, say to a pointQ~v, then the desired

L can be obtained by setting L~e1 = L~e2 = ~v. �

Proposition 31 (Border of PL). A suite σ belongs to the border of the
PL manifold if and only if the range part Range(σ) satisfies one of the
following two conditions.

(1) All ℓ points in Range(σ) are equal.
(2) Exactly ℓ− 1 of the ℓ points in Range(σ) are equal.

Proof. We first prove the only-if implication. Suppose that σ belongs
to the border of PL. By Claim 25, the range tuple Range(σ) contains
at most two distinct points. If all points in Range(σ) are equal, we
are done. Suppose that Range(σ) contains exactly two distinct points.
Then the index set {ℓ+1, . . . , 2ℓ} splits into disjoint parts I and J such
that the same point p occurs in all I positions and a different point q
occurs in all J positions. Without loss of generality, I contains at least
two indices. Suppose toward a contradiction that J contains at least

2In fact it acts triply transitively, but that’s not relevant here.



QUANTUM STATE TRANSFORMATIONS 25

two indices as well, so that ℓ ≥ 4. Then there is a suite σ0 of length
8 embedded in the suite σ of length 2ℓ such that the range of σ0 is of
type 2+2 and σ0 is a limit point of the PL manifold of suites of length
8. This contradicts Lemma 29.
Next we prove the if implication. Notice that, in either of the two

cases, σ does not belong to PL. Indeed, fractional linear transforma-
tions (and projective linear transformations in general) preserve equal-
ity and disequality, and so all points in the range part of a PL suite
are distinct. It remains to prove that σ belongs to the closure of PL.
If all points in Range(σ) are equal then, by the preceding lemma, σ

is exactly realizable by means of a nonzero singular linear operator L.
Now use Lemma 18.
Suppose that some ℓ−1 points in Range(σ) are equal, say to a point

p, but another point q also occurs in Range(σ). It suffices to consider
the case where p = 0 and q = ∞. Indeed, there is a fractional linear
transformation f that moves p, q to 0,∞ respectively. If PL suites τk
converge to fσ then PL suites f−1τk converge to σ.
Without loss of generality, ∞ occurs in the very last position in σ,

so that σ has the form

(p1, . . . , pℓ−1, pℓ, 0, . . . , 0,∞).

There is a fractional linear transformation g that sends pℓ to ∞. For
each k = 1, 2, . . . , let gk be the fractional linear transformation g/k,
and let τk be the restriction of gk to Dom(σ). The sequence of PL
suites τk converges to σ. �

Theorem 7 follows from Proposition 31 and Lemma 30.

6. Final remarks

6.1. Mixed states. We have been working with pure states. One may
consider a generalization of the results above to mixed states. Here we
just point out that the scenario in the beginning of our story readily
generalizes to mixed states and channel representation.
As is, the scenario is not a channel; since the unsuccessful measure-

ment result is discarded, the trace is not preserved. But the scenario
becomes a channel if the unsuccessful measurement result is not dis-
carded and the measurement result is not looked at. The modified
scenario corresponds to a composition of three channels, as follows. To
simplify the exposition, we consider only the case of one princpal qubit
and one ancilla, and we presume that the designated initial and final
states of the ancilla are |0〉.
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First, we take the essential qubit, in some state |ψ〉 and adjoin to
it a prepared ancilla. This is, to begin with, a linear embedding E of
the Hilbert space C

2 for a single qubit into the Hilbert space C
4 for

two qubits; it sends |ψ〉 to |0, ψ〉. The embedding preserves lengths of
vectors, and we get a channel by sending each linear operator R on C2

to the linear operator ERE† on C4. This is the channel for the first
part of our scenario.
Second, we apply the unitary operator U to the two-qubit system.

That corresponds to the channel that sends any linear operator R on
C4 to URU †.
Finally, we measure the ancilla. The measurement involves two pro-

jection operators P0 and P1, from C
4 to C

2, corresponding to the val-
ues |0〉 and |1〉 for the ancilla respectively. Each Pi induces a linear

transformation Ti(R) = PiRP
†
i from linear operators on C4 to lin-

ear operators on C2, but the projection operators Pi do not preserve
lengths of vectors, and the transformations Ti do not preserve traces.
If we discarded the results in the case of failure, we’d have only T0,
which isn’t a channel. But by keeping the (one-qubit) result in both

cases, we get T0 + T1 : R 7→
∑1

i=0 PiRP
†
i , and this is a channel, with

∑1
i=0 PiP

†
i = I + I = 2I. The factor 2 is needed to make the super-

operator trace-preserving; the source and target Hilbert spaces have
different dimensions.
Composing the three parts, we have a channel

R 7→
1

∑

i=0

(PiUE)R(PiUE)
†.

6.2. One numerical function of suites. If L is a nonzero linear
operator on H, let ρ(L) be the ratio λmin/λmax of the minimal and
maximal eigenvalues of L†L. According to Theorem 2, ρ(L) is the
maximum of the guaranteed success probabilities of unitary operators
on H+ realizing L exactly. Since ρ(L) = ρ(L′) if if L, L′ are collinear,
define ρ(QL) = ρ(L). For any exactly realizable suite σ define ρ(σ)
to be the supremum of ρ(QL) taken over all nonzero linear operators
L such that σ extends to QL. Finally, observe that a nonzero linear
operator L is singular if and only if ρ(L) = 0.

Claim 32. If σ is a suite in the closure of PL such that, for some fixed
ρ0 > 0, every neighborhood of σ contains a PL suite τ with ρ(τ) > ρ0,
then σ belongs to PL.



QUANTUM STATE TRANSFORMATIONS 27

An equivalent way to formulate the claim is that, if σ is on the border
of PL then every sequence τ1, τ2, . . . of PL suites converging to σ must
have ρ(τk) → 0 as k → ∞.

Proof. Apply the hypothesis of the claim to choose a sequence τ1, τ2, . . .
of PL suites converging to σ and having ρ(τk) > ρ0. Choose linear
operators Lk with ρ(Lk) > ρ0 such that τk extends to QLk; we may
assume that λmax(Lk) = 1, so that λmin(Lk) > ρ0.
Every Lk has a polar decomposition UkPk where Uk is unitary and

Pk is Hermitian and positive definite (not just semi-definite, because

Lk is invertible). Notice that L†
kLk = P †

kPk. Since Pk is Hermitian, it

can be diagonalized, say Pk = BkDkB
†
k where Bk is unitary and Dk

is diagonal. Since the eigenvalues of P †
kPk lie between ρ0 and 1, the

diagonal entries in D lie between
√
ρ0 and 1.

By passing to a subsequence of τ1, τ2, . . . , we can arrange that the
unitary matrices Uk converge to some unitary matrix U (because the
unitary group is compact), that the unitary matrices Bk converge to

a unitary matrix B (same reason), that therefore B†
k → B†, that the

diagonal matrices Dk converge to a diagonal matrix D (because the
eigenvalues all lie in the bounded interval [

√
ρ0, 1]), and that therefore

the matrices Pk converge to a matrix P = BDB†, and the Lk converge
to some L = UP .
Because of the convergence, we have that the eigenvalues of D lie

in [
√
ρ0, 1] and, in particular, are positive. So D is invertible, and

therefore so are P = BDB† and L = UP .
Finally, let ~d and ~r be the domain and range parts of σ respectively,

and let ~dk and ~rk be the domain and range parts of τk respectively.

Since Lk(~dk) = τk(~dk) = ~rk → ~r as k → ∞, and as Lk(~d) → L(~d) by

continuity, we have L(~d) = ~r. Thus, σ is in PL, as claimed. �

6.3. Inapproximability in the single-qubit case. According to
§5.2, the cross-ratio does not extend continuously to tetrads of points in
Riemann sphere that are in configurations 3+1 or 4; any neighborhood
of any tetrad in either of these configurations contains general-position
tetrads with all possible cross-ratios. Thus there cannot be a theorem
of the form: If the cross-ratios of two general-position tetrads differ by
at least ε, then the suite of length 8 consisting of these two tetrads
cannot be within δ of the FL manifold of suites of length 8. Indeed, no
matter how big we make ε and how small we make δ, counterexamples
can be found within δ of the double-suite (0, 0, 0, 0; 0, 0, 0, 0).
The best we can hope to do in the direction of such an inapprox-

imability theorem is to assume, as an additional hypothesis, that the



28 ANDREAS BLASS AND YURI GUREVICH

tetrads in question are bounded away from the singular locus of the
cross-ratio, i.e., the locus S of tetrads of configurations 3 + 1 and 4.

Claim 33. Let ε and γ be positive real numbers. Then there is a
positive real δ with the following property. Let t and t′ be tetrads whose
distance from the singular locus S of the cross-ratio function is at least
γ. Suppose further that the distance between their cross-ratios is at
least ε. Then the distance between t and t′ is at least δ.

Proof. Let γ > 0 be given and let D be the space of tetrads whose
distance from S is at least γ. This is a closed subsace of the compact
space of all tetrads, so it is also compact. The cross-ratio is a continuous
function from D to the Riemann sphere, so, by compactness, it is
uniformly continuous. Given ε > 0, let δ > 0 be as in the definition of
uniform continuity: Any two points of D whose distance is < δ have
cross-ratios whose distance is < ε. In view of the invariance of the
cross-ratio under fractional linear transformations, that is exactly (the
contrapositive of) the assertion of the proposition. �

The preceding argument is valid for any distance functions inducing
the usual topologies on the space of tetrads and on the Riemann sphere.
Quantitative information about how the δ in the claim varies as a
function of γ and ε could be obtained by methods of elementary calculus
(Lagrange multipliers).

6.4. Variety for PL in the single-qubit case. Proposition 21 as-
serts that, in any coordinate patch of P2ℓ, there exists an algebraic
variety V such that PL ⊆ V and G ∩ V ⊆ PL for some full-measure
open set G. The proof of the proposition is not constructive. We can
do better and provide a constructive proof for the proposition. Here
we restrict attention to the single qubit case where the construction is
especially easy due to the cross-ratio function. In the general case, one
can use the construction of proof of Lemma 16.
If ℓ ≤ 3 then, by Proposition 16, every general-position suite belongs

to PL, so V could be given by 0 = 0. Suppose that ℓ ≥ 4.
Let V be the algebraic variety in the Riemann sphere, in variables

a1, . . . , aℓ, b1, . . . , bℓ given by ℓ− 3 polynomial equations obtained from
ℓ− 3 equations

(1) χ(a1, a2, a3, ai) = χ(b1, b2, b3, bi) where i = 4, . . . , ℓ

by clearing fractions.

Claim 34. PL ⊆ V and every general-position suite in V belongs to
PL.
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Proof. The inclusion PL ⊆ V follows from the fact that fractional linear
transformations preserve cross-ratios. Suppose that a general-position
suite σ satisfies our polynomial equations. Then it also satisfies the
equations (1). By Lemma 16, there is a fractional linear transformation
f that sends (a1, a2, a3) to (b1, b2, b3). For each i = 4, . . . , ℓ, we have
also

χ(b1, b2, b3, bi) = χ(a1, a2, a3, ai)

= χ(fa1, fa2, fa3, fai)

= χ(b1, b2, b3, fai),

which implies that f(ai) = bi. �

Finally, let’s consider suites of length 8 with domain (0,∞, 1,−1).

Claim 35. Every PL suite of the form (0,∞, 1,−1, a, b, c, d) satisfies
the equation

(2)
ab+ cd

2
=
a+ b

2
· c+ d

2

Equation (2) is easy to remember due to the slogan “average of
products equals product of averages.”

Proof. First we show that every PL suite of the form
(0,∞, 1, q, a, b, c, d) satisfies the equation

(3) (1− q)(ab+ cd) = a(c− qd) + b(d − qc).

where q is the inverse of χ(a, b, c, d).
Indeed, the unique fractional linear transformation sending (a, b, c)

to (0,∞, 1) is

z 7→ z − a

z − b
· c− b

c− a

So (a, b, c, d) is the image of (0,∞, 1, q) under a fractional linear trans-
formation if and only if the exhibited transformation sends d to q, i.e.,
if and only if

(4) q =
d− a

d− b
· c− b

c− a

so that q is the inverse of χ(a, b, c, d). Clearing fractions and rearraging
terms in (4), we get equation (3) which yields equation (2) in case
q = −1. �
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