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Summary. A statistical approach to speech recognition is outlined which draws close par-
allel with closed-loop human speech communication schematized as a joint process of en-
coding and decoding of linguistic messages. The encoder consists of the symbolically-valued
overlapping articulatory feature model and of its interface to a nonlinear task-dynamic model
of speech production. A general speech recognizer architecture based on optimal decoding
strategy incorporating encoder-decoder interactions is described and discussed.

1. Introduction

The general concept of closed-loop speech chain underlying human speech commu-
nication has been known for many years [2]. However, engineering construction of
automatic speech recognition machines, which have been known to perform orders
of magnitude worse than human, so far has hardly been able to capitalize on any
significant properties of the closed-loop human speech communication . This situ-
ation arises due to a number of important factors including 1) (justifiable) desires
for short-term engineering success in limited tasks; 2) lack of interactions between
scientific and technological research communities and hence lack of integration of
the respective research accomplishments; 3) fragmental and incomplete nature of
our understanding of the closed-loop human speech communication process; and 4)
lack of suitable computational formalisms which would allow the scientific under-
standing to be readily useful in computation-intensive speech technology applica-
tions.

The purpose of this tutorial paper is to describe the general nature of the
closed-loop human speech chain as an encoding-decoding process (analogous to
information-theoretic design of engineering communication systems), and to show
how within this framework computational formalisms can be established enabling
graceful integration of engineering modeling-decoding techniques with scientific
models and theories intended to faithfully describe the human speech process.

2. Functional description of human speech communication as an
encoding-decoding process

At the global and functional level, human speech communication can be viewed as
an encoding-decoding process, where the decoding process or perception is an ac-
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tive process consisting of auditory reception followed by phonetic/linguistic inter-
pretation. As an encoder implemented by the speech production system, the speaker
uses knowledges of meanings of words (or phrases), of grammar in a language, and
of the sound representations for the intended linguistic message. Such knowledges
can be made analogous to the keys used in engineering communication systems. The
phonetic plan, derived from the semantic, syntactic, and phonological processes, is
then executed through the motor-articulatory system to produce speech waveforms.

As a decoder which aims to accomplish speech perception, the listener uses a
key, or the internal “generative” model , which must be compatible with (may not
be identical to) the key used by the speaker to interpret the speech signal received
and transformed by the auditory system. This enables the listener to reconstruct,
via (probabilistic) analysis-by-synthesis strategies, the linguistic message intended
by the speaker. Such an encoding-decoding view of human speech communication,
where the observable speech acoustics plays the role of carrier of deep, linguistically
meaningful messages , is strikingly similar to the modulation-demodulation scheme
in electronic digital communication and to the encryption-decryption scheme in se-
cure electronic communication.

Since the nature of the key used in the phonetic-linguistic information decod-
ing or speech perception/understanding lies in the strategies used in the production
or encoding process, speech production and perception are intimately linked in the
closed-loop speech chain. The implication of such a link for speech recognition
technology is the need to develop functional and computational models of human
speech production for use as an “internal model” in the decoding process by ma-
chines.

3. Overview of theories of speech perception

With respect to the above encoding-decoding review of human speech communica-
tion which advocates intimate links between speech production and perception, a
number of popular theories and models of speech perception are reviewed here.

Motor theory of speech perception, addressing the issue of ubiquitous acoustic
variability of speech, experienced two main stages of development, both empha-
sizing a specialized phonetic module mediating speech production and perception.
The early version of the theory asserts existence of phonetic invariance at the levels
of articulatory gesture or motor command [13]. Due to the failure of finding such
invariance experimentally, this earlier version was modified to move the proposed
phonetic invariance to higher, vaguely specified levels of speech production [14].
The abstract nature of the modified motor theory renders it practically useless for
possible speech recognition applications.

Closely related to motor theory, the analysis-by-synthesis model [11] of speech
perception adopted a more tangible, hypothesis-and-test approach to phonetic de-
coding by human. Elements of this model include the proposal of active internal
synthesis of comparison signals, use of generative rules to convert lexical items
into phonetic parameters (which describe the behavior of structures controlling the
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vocal-tract configuration and vocal-cords activities), and rules to convert these pho-
netic parameters into time-varying speech spectra.

Sharing partial views with motor theory, direct-realist theory of speech percep-
tion proposes that listener directly perceives the articulatory gestures of the speaker
via the structure that the gestures pass on to the common acoustic medium between
listener and speaker. The theory does not require specialized phonetic module [10].

Contrary to motor theory, acoustic-auditory theory of speech perception asserts
existence of phonetic invariance not in any internal levels of speech production,
but in the acoustic-auditory domain, which is the outcome of speech production
and determines the object of speech perception. In this theory, speech production
and perception are indirectly linked by virtue of common acoustic goals or targets
[20, 12, 9].

A drastically different theory of speech perception from all the above ones pro-
poses that it is the interactions of speaker and listener based on balances between
speaker’s efforts and listener’s contrastive perceptual goals , not the phonetic in-
variance at any levels of the speech chain, which are essential properties of speech
perception. This theory is called Hyper-Hypo or H&H theory [15, 16]. H&H the-
ory proposes that the distal object of speech perception is the speaker’s intention
(shared with motor theory), but that such an intention has both articulatory-gesture
production component and contrastive perceptual component, and is determined by
short-term, dynamic interactions of the two components. An essential concept of the
theory is plasticity of phonetic gestures — speakers adaptively tune phonetic ges-
tures to the needs of speaking situations under motor and perceptual constraints, and
phonetic gestures are not invariant but are adaptations to constraints on production
mechanisms for least “efforts” (or speech economy , low-cost behavior, or “hypo”
speech) and on perceptual mechanisms for achieving sufficient contrast (“hyper”
speech). These mechanisms are language independent and not special to speech;
“invariance” must be defined according to the global purpose of speech communi-
cation (e.g. lexical access and speech comprehension).

One supporting evidence of H&H theory is the phenomenon of compensatory
articulation where speakers are capable of re-organizing articulation to reach fixed
acoustic and perceptual goals under both artificial bite-block condition and natural
loud, clear, fast or spontaneous speaking conditions. Another evidence comes from
the formation of the phonetic system with “quantal” properties which can be shown
as being driven by a demand for sufficient perceptual contrast. Speech communica-
tion system is established via constant interaction between speaker and listener: the
listener force the speaker to make sufficient phonetic distinctions (negative control),
and the speaker tries to use least “efforts” but is simultaneously constrained by the
listener’s demand.

4. A general framework of statistical speech recognition

The Bayesian framework is adopted as a general framework for intended incorpora-
tion of scientifically motivated speech models in statistical speech recognition. Let
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O = O1; O2; :::; OT be a sequence of observable acoustic data of speech, and let
W = w1; w2; :::; wn be the sequence of words intended by the speaker who pro-
duces the acoustic recordO. The goal of a speech recognizer is to “guess” the most
likely word sequence Ŵ given the acoustic dataO. The problem can be formulated
as a top-down search problem over the allowable word sequences:

Ŵ = argmax
W

P (W jO) = argmax
W

P (OjW )P (W ); (1)

Decomposition of the word-to-acoustics probability P (OjW) above is accom-
plished by using law of total probability:

P (OjW ) =
X

F

P (OjF)P (FjW ) � max
F

P (OjF)P (FjW ); (2)

where F is a discrete-valued phonological construct (or “pronunciation” model),
which specifies, according to probability P (FjW ), how words and word sequences
W can be expressed in terms of a particular organization of a small set of fundamen-
tal phonological units; P (OjF) is the probability that a particular organization F
of phonological units produces the acoustic data O. This probability is determined
by the phonetic interface model .

According to phonetic theories, the interface model ideally should consist of at
least three hierarchical levels of mapping: from phonological symbols (F) to motor
commands (M), from motor commands to articulation (A), and from articulation
to acoustics (O). That is, one can further decompose the probability P (OjF) asso-
ciated with the global interface model into:

P (OjF) =
X

M;A

P (OjA)P (AjM)P (MjF) � max
M;A

P (OjA)P (AjM)P (MjF):

(3)
For efficient engineering construction of speech recognizers, an approximation

to the above layered, multi-level mapping is necessary and can be made by one-level
or two-level mappings from the phonological level F to the acoustic level O. Any
approximation must faithfully retain the dynamic character of the speech production
process. 1

5. Brief analysis of weaknesses of current speech recognition
technology

Despite some success in highly constrained recognition tasks, the current HMM-
based, data-driven speech recognition technology is fundamentally limited in its

1Some work done in our research group included three types of approximation (differing
by three distinct levels at which lies the object of dynamic modeling): 1) Acoustic-dynamic
model based on nonstationary-state or trended HMM [8]; 2) Articulatory-dynamic or stochas-
tic target model [7, 18]; and 3) Task-dynamic model [3, 4, 5].
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ability to achieve human-like speech recognition. Such a limitation stems from its
weak theoretical foundations from both phonological and phonetic perspectives.
First, nearly all currently popular speech recognition strategies use more or less
the same set of phone-like phonological speech units (e.g. triphones) arranged in
strictly linear sequences, like “beads-on-a-string”. This, however, is not how human
language faculty organizes its phonological primitives. Second, the weak theoretical
foundation of the current speech recognition technology from phonetic perspective
is reflected in the weak structure of the HMM in use and in the simplistic strategy
of surface data fitting to the observable acoustics (equipped with virtually no un-
derlying data generation mechanisms). A consequence of this weakness is that the
sample paths of the HMM as a nonstationary stochastic process deviate significantly
from true speech data trajectories.

The above weaknesses associated with the current speech recognition technol-
ogy lead to speech recognizers which inherently lack robustness, and cannot gen-
eralize from training data to mismatched test data. The problem is particularly se-
rious when little supervised adaptation data are available to recognizers, as in most
real-world speech recognition applications. Such recognizers inevitably break down
when moving from read or clear speech style to casual, fast and spontaneous speak-
ing mode, switching from “sheep” speakers to “goat” speakers, or porting from one
language to another or from one task to another. When new tasks or new languages
are involved, re-design and re-training of the recognizers are undesirably needed.

It appears that the ultimate success of human-like speech recognition will re-
quire not only extensions of existing recognizer architectures, but fundamental
changes in the statistical models of speech underlying speech recognizers. Such
new models must at a functional level faithfully characterize essential properties
of human behaviors in closed-loop speech communication (production and percep-
tion) and be equipped with effective computational formalisms and model learning
strategies.

6. Phonological model: Overlapping articulatory features and
related HMMs

Motivations of using vocal-tract constriction based articulatory features as the
phonological primitive can be succinctly summaried by a quote from modern
phonology literature [1]: “Phonetic Interpretation of the Feature Hierarchy: ...the
basic organizing principle of the feature hierarchy is the vocal tract constriction....
The place features define constriction location and the articulator-free features de-
fine constriction degree. The notion “constriction” is central to many current the-
ories of speech production, both acoustic and articulatory. It is therefore not sur-
prising that phonological representations may be organized in terms of (vocal tract)
constrictions as well.”

In the work described briefly in [5], a compact set of universal phonologi-
cal/articulatory features across world languages is designed. The resulting feature
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specification systems, one for each language, share intensively among the com-
ponent features. Through appropriate combinations of component features, new
sounds or segments in new, target languages from the sounds in the source lan-
guage(s) can be reliably predicted. The phonological model uses hierarchically or-
ganized articulatory features as the primitive phonological units motivated by artic-
ulatory phonology and feature-geometry theory.

The phonological model further entails a statistical scheme to allow probabilis-
tic, asynchronous but constrained temporal overlapping among components (sym-
bols) in the sequentially placed feature bundles. A set of feature overlapping and
constraining rules are designed based on syllable structure and other prosodic fac-
tors . Examples of the rules for English are: 1) overlap among consonant clusters
in syllable onset and coda, and in consonant sequence across connected words; 2)
overlap between syllable onset and nucleus; 3) overlap between syllable nucleus and
coda; 4) overlap of the tongue-dorsum feature between two adjacent syllable nuclei;
5) except for Lips and Velum features, no overlap between onset and coda within
the same syllable.

The phonological model finally contains a crucial component which converts
the above probabilistic feature overlap pattern to a finite state automaton (FSA)
or HMM state topology. This FSA represents ensemble sequences of phonological
units composed of the overlapped features, serving as the phonetic plan which con-
trols lower (phonetic) levels of speech production resulting in dynamic patterns of
speech acoustics.

7. Task-dynamic model of speech production

Before I discuss how the above overlapping-articulatory feature based phonologi-
cal model can be interfaced to the phonetic variables (including ultimately speech
acoustics), the (deterministic) task-dynamic model of speech production developed
in speech science [19] is briefly reviewed. This is a most comprehensive speech pro-
duction model, well developed and tested, based originally on a general model of
skilled movement control. In this model, the control signal is derived from abstract
gestural units defined in articulatory phonology; these gestural units are organized
into utterance-specific “gestural scores”. Each gesture is correlated with two task
variables , vocal-tract constriction degree and constriction location. At any point in
time, only a small subset (fewer than 3 or 4 usually) of the gestures are co-occurring
(overlapping or “blending”) during speech production. When blending occurs, com-
petitive blending rules are used to determine the final values of the correlated task
variables.

The intrinsic dynamics for each task variable is modeled as critically damped
second order system, which is characterized by the gesture-dependent (normalized)
stiffness and by the gesture-dependent point-attractor of the dynamical system. The
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relation between the task variables and the model-articulators is characterized by a
static and nonlinear function, which is constructed by vocal-tract geometry 2.

Using piecewise locally linear approximation of the nonlinear relation between
task variables and model-articulators, the linear dynamics for the former is con-
verted into quasi-linear dynamics in the latter. Jacobian transformation matrix de-
rived from the nonlinear relation becomes a component of the linearized dynamics.
Finally, given the time-varying model-articulator motions, a further static, nonlin-
ear relation maps the model-articulators into speech acoustics using Haskins Lab’s
configurable articulatory synthesizer .

8. Interfacing overlapping features to task-dynamic model and
a general architecture for speech recognition

Our computational approach to phonology-to-phonetic interface is based on a
discrete-time task-dynamic model derived from the continuous-time model re-
viewed above, with a statistical structure imposed [4]. In this approach, each in-
dividual articulatory feature (as symbolic phonological unit) is made to associate
with the task-dynamic model parameters including stiffness and the point or region
of the attractor (continuous phonetic variables). The stiffness and attractor parame-
ters corresponding to simultaneously overlapped or blended features are determined
from those of individual component features according to either empirical rules or
automatic learning. The nonlinear relation between the task variables and the model-
articulators is approximated by trainable Multi-Layer Perceptron (MLP) neural nets,
which serve as a generic device for data interpolation in a multi-dimensional space.
Another trainable MLP is used to approximate the nonlinear articulator-to-acoustics
mapping.

An architecture for speech recognition is presented in Fig. 1 based on the ap-
proach described above using the overlapping articulatory feature model interfaced
to task-dynamic model of speech production. Language-universal components in-
clude the feature primitives in the phonological model and in most subcomponents
in the task-dynamic (phonetic) model. The decoding strategy (recognition search)
is similar to that in the current HMM-based technology, but the way the acoustic
likelihood is computed is drastically different. The structured, probabilistic phono-
logical and phonetic models used here have a high degree of parameterization,
which allows parsimonious yet accurate characterization of the recognizer capa-
ble of language independent, speaker independent, speaking-style independent, and
unlimited-vocabulary speech recognition.

One most crucial component of the task-dynamic model is the nonlinear relation
between task variables and model-articulators and that between model-articulators
and acoustics. In the speech recognition architecture of Fig.1, a trainable neural net-

2Many-to-one nature of the relation gives rise to compensatory articulation (or motor
equivalence) and to coordinative structure in this model.
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FIGURE 1. An architecture of speech recognition using feature-based phonological model
interfaced to statistical task-dynamic model of speech production

work is used for approximating these relations. The general topology of the network
is shown in Fig.2, with the network unit connections strongly constrained by speech
production mechanisms .

9. Discussions: Machine speech recognition

The above sections described a feature-based phonological model interfaced with a
task-dynamic model of speech production. While many details need to be specified,
this model can be regarded as the a simple version of the “key” used by speaker to
encode phonological messages and simultaneously as a functionally compatible “in-
ternal” model used by human listener in decoding speech (perception). In machine
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FIGURE 2. Neural-net implementation of static nonlinear mappings in the task-dynamic
model

recognition of speech, this production-oriented model is used by the recognizer to
accurately and succinctly characterize the dynamic pattern of the observed speech
signal, thereby providing an accurate term in class probability P (OjW ) of Eqn.(1).
According to Bayesian decision which we adopt as an engineering strategy for the
analogous human listener’s cognitive interpretation of the auditorily received speech
information, optimal recognition performance would be achieved given accurate es-
timate of P (OjW ).

The proposed production-oriented approach to speech recognition is based on
statistical characterization, via functional approximation, of the signals at various
levels of the human speech “chain” — phonological, motor-task, articulatory, acous-
tic, and auditory levels. In particular, statistical relations among the signals at these
levels are functionally approximated. This, therefore, contrasts sharply with mo-
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tor theory, direct-realist theory, and acoustic-auditory theory of speech perception
(section 3) which all insist on existence of phonetic invariance either at particular
level(s) of the speech production process, or at the output of such a process. It also
contrasts sharply with the analysis-by-synthesis model of speech perception (section
3) in that the speech recognition decision is made in an integrated manner by evalu-
ation and comparison of a posteriori probability P (W jO) given possible candidate
hypotheses3, rather than performing step-by-step inversions from the auditorily re-
ceived signal to the final perceptual object of linguistic messages.

Similar to the well established practice in modern speech recognition research,
the functional form of the speech encoder described in this paper, which comprises
the feature-based phonological model interfaced to a task-dynamic model, is fixed a
priori, while the parameters of the speech encoder are automatically trained from ob-
servable speech data 4. While the Bayesian-based optimal decoding strategy remains
the same, different training methods have different implications in terms of the var-
ious phonetic theories of speech perception. Maximum-likelihood training implies
phonetic invariance in the parameters of the speech production model characterizing
systematic changes of the phonetic variables5. For Bayesian-style training (includ-
ing but not limited to the MAP learning), the implication is that phonetic invariance
exists in the probability distribution classes, consistent with the proposal in a recent
theoretical framework that speech production goals are specified in terms of regions
(distributions) rather than of points [17]. Finally, minimal classification error (dis-
criminative) training will imply non-existence of any kind of underlying phonetic
invariance; rather, perceptual contrasts are the primary objective in determining the
speech encoder’s parameters. If some type of constraints on speech economy are
incorporated into the speech model as an encoder 6, then proper balance between
the degree of the constraints and the discriminative objective would give a way of
implementing the concept of H&H theory (section 3) advocating encoder-decoder
or speaker-listener interactions and mutual constraints in the human speech commu-
nication process.
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